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PREFACE TO THE FIRST EDITION 

In September 1947, the  Column Research Council o f  Engineering Foundations 
of the United S ta t e s  s en t  a le t te r  t o  Professor Kameyama Naoto of  t he  F i r s t  
Engineering Department of Tokyo University.  
cooperation i n  carrying out exhaustive research per ta in ing  t o  the  problems of 
e las t ic  i n s t a b i l i t y  which possess extremely complex proper t ies ,  and hope t o  
produce indices  s u i t a b l e  f o r  design purposes. For t h i s  reason, i n  connection 
with these problems, w e  would very much l i k e  t o  rece ive  repor t s  published a f te r  
1942; i .e. ,  i n  t he  per iod after t h e  war began, r epor t s  on research t h a t  has 
been completed, but as ye t  unreported, and information concerning research 
being conducted a t  t he  present  time." 
keenly aware t h a t  research on problems i n  elastic i n s t a b i l i t y  was extremely 
important, and f o r  t h i s  reason they used t h i s  as an opportunity t o  propose t o  
the  Jzpan Science Research Council t h e  establishment of  a Column Research Spe- 
c i a l  Committee. 

I t  read: "We would l i k e  t o  obta in  

S p e c i a l i s t s  i n  our  country had long been 

A t  t he  end of  t h e  same year  t h i s  committee w a s  organized. 

This was a group cons is t ing  of  22 members from throughout t h e  country. 
was divided i n t o  fi-de groups i n  promoting t h i s  research,  namely the  Invest iga-  
t i on  Liaison Section (survey of materials, c o l l e c t i m  and f i l i n g ,  English t rans-  
l a t i o n  and pr in t ing ,  l i a i son ) ,  t h e  F i r s t  Sect ional  Research Committee (research 
on columns, dense columns, trusses, arches and f-aames as s t r u c t u r a l  elements), 
t h e  Second Sect ional  Research Committee (study of  p l a t e s  and reinforced p l a t e s  
as s t r u c t u r a l  elements), t h e  Third Sect ional  Research Committee ( inves t iga t ion  
of spheres and s h e l l s  as s t r u c t u r a l  elements), artd t h e  Fourth Sect ional  Re-  
search Committee ( inves t iga t ion  of  adjustable  support  columns f o r  mine p i l l a r s ) .  
Meetings were held almost every month, and i n  addi t ion  t o  publishing research 
r e s u l t s ,  i n  accordance with the  requests  from the Column Research Council o f  
The United S ta tes ,  78 repor t s  of averaging 400 r q e s  each were t r ans l a t ed  i n t o  
English and submitted t o  t h a t  council .  Since ;'.at time, research l i a i s o n  has 
developed between the  Column Research Counci.ls ..n both countr ies ,  and an ex- 
change of repor t s  has been continuing. 

I t  

The abov,? Column Research Special  ConnnittLc, i n  performing i t s  main func- 
t i on  as an agency for the  introduct ion of research on e las t ic  s t a b i l i t y  theory 
i n  our country t o  foreign countr ies ,  decidcd t o  publish t h i s  handbook on elastic 
s t A i l i t y .  iyoshi  of Tokyo University was 
the  motif icat ion f o r  the  publ icat ion of t h i s  hal.dbook. I t  began with the  col-  
l ec t ion  of materials on e l a s t i c  s t a b i l i t y  vtich t h e  late engineer Takahashi 
Shogen published as h i s  graduation thes i s  from t h e  Archi tectural  Section of t he  
Engineering Department of  The Tokyo Imperial University i n  1940. 
Takahashi died only a few years after h i s  gradnazion, and after t h a t  Sugano 
Wakoto and Hisada Toshihiko continued on with h i s  work. 
damage p a r t  of the  or igin61 manuscripts were burned, and sca t t e red ,  and it w a s  
ex+temdy d i f f i c u l t  t o  br ing them a l l  together.  The Committee recognized t h a t  
t h i s  pro jec t  would not only make it possible  'to gain a foothold i n  research on 
e l a s t i c  s t p h i l i t y  theory,  but a l s o  wcdd  be O F  grea t  bene f i t  d i r e c t l y  t o  f i e l d s  
i n  applied engineering. 

The proposal of  Professor Takefuji 

Unfortunately, 

However, due t o  war 

For t h i s  reason, it 1 ' s  decided t o  take up t h i s  p ro jec t ,  
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t o  examine it through t h e  committee members mentioned below, and t o  expand and 
complete the  research and publish it. This i s  because such a book had no t ,  up 
t o  t h e  present time, then beer. published anywhere i n  t h e  world. 

General Theory (Kuranishi Ylasatsugu) Materials (Naka Takao) 
Frames [Rahmen] (Sugano Makoto) Arches (Hirai Atsushi) 
P l a t e s  (Yoshiki 'lasso) She l l s  (Hayashi Shigem) 

In addi t ion  t o  respec t ing  as much as poss ib le  the  aim of Professor Take- 
f u j i ' s  proposal t o  arrange t h e  contents as loose-leaf materials, I t  was decided 
t o  add t o  each chapter a general  discussion touching on the  b a s i e  probiems of 
e l a s t i c  s t a b i l i t y  thus forming a guide t o  mater ia l ,  i n  order  t o  ac Z t  t he  hand- 
book t o  conditions i n  our country, which a t  t he  time of t h i s  wr i t ing ,  was char- 
ac t e r i zed  by a general lack of l i t e r a t u r e  pe r t a in ing  t o  e las t ic  s t a b i l i t y .  
This book is  thus completely d i f f e r e n t  i n  aim from o the r  books o f  t h i s  s o r t .  

Owing t o  (1) t h e  fe rvent  cooperation o f  each member o f  t h e  committee i n  
planning the  book and ga ther ing  the  mater ia l s ,  (2) t h e  supervision by Hayashi 
Shigeru over a l l  matters pe r t a in ing  t o  p r i n t i n g  and publishing, (3) t he  fact 
t h a t  t he  extremely troublesome t a s k  of formulating reques ts  t o  t h e  Yin is t ry  of 
Education was accomplished rap id ly ,  (4) t o  t h e  fact  t h a t  over a period of two 
years t h e  Ministry provided f i n a n c i a l  support i n  publishing t h e  r e s u l t s  of our 
research and f i n a l l y ,  owing t o  t h e  sympathetic Cooperation of Corona Publishers,  
t h i s  d i f f i c u l t  p ro j ec t  was completed i n  a r e l a t i v e l y  s h o r t  period of time. In 
compiling and preparing the  materials, much cooperation was received from t h e  
following persons, to  whom we are very gra te fu l :  
Takeshi, Hato Sukeyuki, Sumida Minoru, Takata Shuzo, Tamura Koichi, Nagai 
Tamotsu, Hommh Yasuyuki, arid :.ktsuoka Tsuyoshi. 

Akasaka Takashi, Kunio 

Due t o  t h e  na ture  of t h i r  book, it should be supplemented every year, and 
f o r  t h i s  reason we would l i k e  t o  ball t he  a t t e n t i o n  of t h e  users t o  t h i s  fact 
and hope t h a t  it w i l l  be poss ib le  t o  r ev i se  t h e  book f u r t h e r  i n  t h e  fu ture .  
i n  t he  committee s ince re ly  hope t o  obta in  t h e  opinions of everyone i n  t h e  f i e l d .  
F ina l ly ,  we should l i k e  t o  po in t  ou t  t h a t  i n  t h e  general  discussions by each 
responsible member, t h e  method of t r e a t i n g  the  problems and making explanations 
i s  not uniform. 
considered as an o r i g i n a l  cont r ibu t ion  from each committee member. 

We 

This i s  because i n  t h e  compilation o f  t h i s  book, each p a r t  is 

20 Ju ly  1951 Chairman of  t h e  Column Research 
Committee 

Yuasa Kiichi 
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PREFACE TO SECOND R E V I S E D  AND ENLARGED E D I T I O N  

Already e igh t  years have passed s ince  t h e  handbook on e las t ic  s t a b i l i t y  
During t h i s  was published by the  Column Eesearch Committee i n  October 1951. 

period, s ince  the  e d i t o r i a l  pol icy with regard t o  t h i s  book was unprecedented 
i n  t h i s  f i e l d ,  the fact t h a t  it merited recogni t ion and acclaim, both a t  home 
and abroad, was an honor t o  the  members o f  t he  committee. 

Later,  t h e  Column Research Special  Committee t h a t  was es tab l i shed  by the  
J a p n  Science Council was dissolved,  but  i t s  research p ro jec t s  have been con- 
t inued by tne  Column Research Committee. In v i -  of t h e  wishes expressed with 
regard t o  t h i s  book t h a t  have cone from every a. -a s ince  the  publ icat ion of the  
f i rs t  ed i t i an ,  and the  la ter  developments i n  problems of e l a s t i c  s t a b i l i t y ,  it 
was decided among the  authors of  t h e  first ed i t ion ,  t o  continue working on sup- 
plementing and rev is ing  the  o r ig ina l .  
af ter  April  1957, but  each author had h i s  own funct ions and du t i e s  t o  perform, 
some t rave led  overseas on business during t h a t  i n t e r v a l ,  so t h a t  t h e  ed i t i on  
vas not ready u n t i l  now. 

A t  first it was scheduled f o r  one year  

In preparing t h i s  rev ised  enlarged ed i t i on ,  the  objec t ive  of the  first 
ed i t i on  rev is ion  w a s  t o  c o l l e c t  as much d a t a  as poss ib le  t h a t  were published 
s ince  the  p r i n t i n g  of t h e  first ed i t i on ,  but  due t o  such problems as the  ind i -  
vidual  circumstances of each author described above, and d i f f i c u l t y  with regard 
t o  the  expansion and t h e  contents of  each sec t ion  and problems i n  p r in t ing  
technology, it was impossible t o  completely coordinate the  pol icy  f o r  expanding 
and co l l ec t ing  da ta  with t h e  da t a  co l lec t ion .  Moreover, it was decided t h a t  
i n  the  expanded por t ions ,  each sec t ion  would include i t s  own t e x t ,  da ta ,  and 
references.  Consequently, an inconvenience arises i n  the  sense t h a t  material 
on the  same item may be sca t t e red  i n  two d i f f e r e n t  p laces ,  bu t  s ince  t h i s  is 
pr imari ly  due t o  p r i n t i n g  problem,  the  authors would appreciate  the  reader ' s  
understanding i n  t h i s  matter. However, i t  was decided t o  make indexing as con- 
venient as poss ib le ,  and the  arrangement of  t he  items follows the  order  i n  the  
first ed i t ion .  
Table of  Contents. 

Moreover, t he  pos i t ions  of  these  items are indicated i n  the  

The major port ions i n  which expansions were made, i n  addi t ion t o  the  lit- 
e ra tu re  on the  subjec t ,  are as follows: 

Section 2. 

Chapter 3. Flexural Torsional Buckling 

Materials:  
Constant Section Columns 
Eccentric Compression 
Lateral  Buckling of Beam 
Flexural Torsional Buckling 



Section 3. 

3.1.11 Examples of Calculations Determining Buckling Load 

Chapter 1. 

Materials - Continuous mater ia ls  

Rahmen (Rigid Frames) 

Chapter 2 .  

Materials - Torsional Buckling of  Langer Girders 

Section 4. 

Chapter 6 .  Sandwich Plates 

Chapter 7.  Plastic Buckling of Rectangular Plates 

Yaterials: I so t ropic  Sandwich Plates 

Sandwich p l a t e s  with surface member i so t rop ic ,  core member or thot ropic .  

Orthotropic Sandwich Plates 

Corrugated 

Materials: Bent P la t e s  

Molding, Reinforced Plates 

Cy1 inders  

E l l i p t i c  cyl inders  

Spherical  s h e l l s  

Arc sec t ion  cyl inders  

She 1 1 s with s iirf ace of h yperb o 1 i c p arab o 1 c i d 

Reinforcing curved p’ r;tes 

Reinforcing cyl inders  

Sandwich Circular Columns 

7 December 1959 
Chairman of the  Column Research Committee Yoshiki Masao 
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SYMBOLS 

D 

d 

IP  i 
JO; F O  
K 
k 
t; u 
2 

M 

Sect ional  area 
Side length of  p l a t e ;  1/2 of main access of e l l i p s e  
1 / 2  of main access of e l l i p s o i d  
E .  I f l exura l  r i g i d i t y )  
Width and height  of rectangular  sec t ion  
Torsional r i g i d i t y  

1, .L- :? 

p , 1  ... >') ( f l exura l  r i g i d i t y  of p l a t e )  -~ ___ 

1 d l  inner  diameter 
d2 outs ide diameter Diameter (e.g. 

Young s modulus 
Eccentric dis tance 
Force 
Vibration number; allowable u n i t  s t r e s s  (e.g. ,  f c , f k )  
Modulus of r i g i d i t y  
Gravity acce lera t ion  
Horizontal force  (e.g., Hk buckling hor izonta l  force)  
Geometrical moment of i n e r t i a  
Polar moment of i n e r t i a  of area 
Radius of gyrat ion of area 
Type 1, Type 2 Bessel func t iom 
I / 1  = r i g i d i t y  
Constant; r i g i d i t y  r a t i o ;  subscr ip t  denoting buckling 
External work; i n t e r n a l  work 
Length of member; span 
Buckling length 
Bending moment 
Bending moment of p l a t e  
Torsional-moment of  p l a t e  
Poisson's number; constant;  mass 
Half wave number 
Axial force of p l a t e  
Shearing force of p l a t e  
Constant 
Concentrated force;  concentrated load; a x i a l  force 
Buckling load 
Euler load of compression number 
Normal; equally d i s t r ibu ted  load i n  d i r ec t ion  of tangent 
Shearing force 
kc ac t ion  ; re si 11 t an  t ( force ) 
radius (e.g., rl - ins ide  rad ius ;  r 2  - outside radius)  
Geometric moment of a rea  
Length along axis  of curve 
Torsion moment 
Thickness of member 
Displacement i n  d i r ec t ion  of x, y, z 

v i  



V 
V 
v; I1 
l\i 

X , Y , Z  
Z 

W 

a 
3 
Y 
6 

e 
A 
u 
V 

P 
(3 

E 

ae 
T 

w 

Volume 
Vz l o c i  t y  
Ver t ica l  of reac t ion ;  horizontal  component 
Total  load of member; concentrated load of beam 
Deflection cf p l a t e  

Section modulus 
P---A i n 9 CIuu*ur.r--. 

Constant 
Side length r a t i o  (a/b) of p l a t e ;  constant 
Shearing s t r a i n  
Deflection, displacement a t  s p e c i f i c  po in t  
Normal s t r a i n  
Angle 
Slenderness r a t i o  ( l / i )  (e.g.,Ak = 1 / i =  buckling slenderness r a t i o )  
F r i c t ion  coe f f i c i en t  
Poisson r a t i o ;  s a f e t y  f a c t o r  
Densitv; radius  of curvature 
Normal stress; e.g. ,  ak = normal s t r eng th  of  buckling compression) 
Euler s t r e s s  of p l a t e  (T2D/b2t) 
Shear u n i t  s t r e s s  (e.g. ,  T* = buckling shear  un i t  stress) 
Angular ve loc i ty ;  2 f ;  Ruckling coe f f i c i en t  

k 
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HANDBOOK OF ELASTIC STABILITY R E V I S E D  AND SUPPLEMENTED 

ABSTRACT. An exhaustive mathematical treatment of  t h e  
probiem of e l a s t i c  s t a b i l i t y  is presented. Direct and 
s p e c i f i c  solutions a r e  provided i n  formula and tabula  form 
f o r  each type of member (p l a t e  s h e l l ) .  Problems in t h e  
plaster a rea  are d i s c u s s e d  i n  considerable depth. General 
methods and numerical examoles i n  t h e  determination of the  
buckling load a r e  also presented. 

SECTION 1 .  GENERAL REHARKS 

The purpose of  t h i s  sec t ion  i s  t o  o u t l i n e  the  bas i c  problems r e l a t i n g  t o  
the  theory on elastic s t a b i l i t y .  Since the  direct and s p e c i f i c  so lu t ions  f o r  
each type of member (p la te ,  s h e l l )  and s t r u c t u r e  are given i n  d e t a i l  i n  each 
sec t ion ,  here  w e  s h a l l  not  touch upon them. Instead,  w e  have decided t o  d i s -  
cuss bas i c  observations per ta in ing  t o  problems o f  elastic s t a b i l i t y ,  and t o  
include as much as poss ib le  on t h e  elements e f f e c t i n g  s t a b i l i t y  problems and 
the p r a c t i c a l  aspects  of t he  theory. Moreover, ins tead  o f  d iv id ing  the  d i s -  
cussion ind iv idua l ly  according t o  columns, p l a t e s  and s h e l l s ,  w e  w i l l  refer 
t o  var ious problems while cont ras t ing  each of  these.  In this,maruter, t h i s  book 
is  qu i t e  d i f f e r e n t  i n  substance from previous works [1]-[l0l1 although the  
t i t l e  of t h e  book is  e las t ic  s t a b i l i t y ,  i n  ac tua l  p r a c t i c e ,  s t r eng th  and change 
i n  r i g i d i t y  based on e las t ic  s t a b i l i t y  are important, so it would be inappro- 
p r i a t e  t o  consider  stress only within the  l i m i t s  of  e l a s t i c i t y .  
discussion including the  f i e l d  of  p l a s t i c i t y  would be o f  even g rea t e r  import- 
ance. 
erab le depth. . 

/If 

Instead,  a 

Consequently v e  have decided t o  discuss  problems i n  t h i s  a r ea  i n  ccnsid- 

Moreover, s ince  it i s  considered a p p r ~ p r i a t e  t o  discuss  general  method and 
theory f o r  determining buckling load; i .e . ,  numerical computation methods, 
within the  general  remarks, xe have decided t o  introduce as many methods as 
possible ,  with regard t o  t h i s  po in t ,  and t o  use examples t o  make the  explana- 
t i o n  c l ea re r .  

'Figures i n  brackets  r e f e r  t o  references a t  t he  end of the  sec t ion .  

*Numbers i n  the  margin ind ica te  pagination i n  the  foreign t e x t .  

We have 
only c i t e d  the  most representa t ive  works. 
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CHAPTER I 

I NTRODUCT I ON 

1 . 1 . 1 .  E l a s t i c  Stabi 1 i t y  and F i n i t e  Deforriition Theory 

When a body undergoes e las t ic  deformation by m c m s  o f  an ex terna l  force ,  
not only i s  the  ex terna l  force  and t h e  i n t e r n a l  force  c a s e d  by e l a s t i c i t y  i n  
a state of  equilibrium, but  normally t h i s  i s  a s t a b l e  equiiibrium. 
i n  a p a r t i c u l a r  type of  deformation, when t h i s  reaches a c e r t a i n  magnitude, o r  
when the  magnitudes of  t he  ex terna l  force  corresponding t o  t h i s  becomes g r e a t e r  
than the  c e r t a i n  magnitude, t he  state o f  equi l ibr ium no longer i s  s t a b l e  and 
then e i t h e r  a separa te  type of  deformation forms a s t a b l e  equilibrium, o r  a 
rapid,  grent  deformation takes p lace  and damage t o  t h e  body frequent ly  occurs.  
Elastic s t a b i l i t y  theory dea ls  with t h i s  type o f  problem. 

iiowever, 

The bas i c  hypotheses t h a t  are normally used as a thecry of e l a s t i c i t y  
determining e las t ic  deformation and stress are (1) i n  the  r e l a t ionsh ip  between 
deformation o r  displacement and s t r a i n ,  t h e  deformation is considered t o  be 
minute and l i nea r ,  
considered t o  be l i n e a r ,  and (3) t h e  equi l ibr ium between t h e  stresses them- 
se lves  and with t h e  ex terna l  force may be es tab l i shed  by t h e  configurat ion and 
t h e  state of t h e  body p r i o r  t o  t h e  deformation. 
such bas i c  hypotheses i s  ca l l ed  the  theory of  inf ini tes imax deformation. i n  
t h i s  case, t h e  deformations and stresses xhich are caused by t h e  ex terna l  fo rce  
are a l l  l i n e a r  with respect  t o  the  ex terna l  force  (see Figure 1.1.1) form a 
s t a b l e  equilibrium, and it is impossible t o  improve t h a t  with respec t  t o  the  
state of any ex terna l  force ,  they are only i n  a s i n g l e  state of  deformation. 

(2) The r e l a t ionsh ip  between stress and s t r a i n  is a l s o  

The theory which is based on 

/ 2  - 

0 lo However, i f  considered ca re fu l ly ,  s ince  t h i s  theory 
corresponds t o  t h e  case when t h e  load is  in f in i t e s ima l ,  
and is regarded as ind ica t ing  t h e  d i r ec t ion  i n  which a 
p a r t i c u l a r  type of deformation w i l l  occur i n  t h e  case 

-Deformation when the  condition changes from 2 state of  a 0 load t o  
one i n  which t h e  beginning of  the  appl ica t ion  o f  t h e  
load takes place,  it can be s a i d  t o  be impract ical .  
ilowever, t h i s  theory is  simple and i t s  r e s u l t s ,  except 
i n  spec ia l  cases,’ are considerably c lose  t o  ac tua l  de- 

si/ 
Figure 1 . 1 . 1  

formation; i . e . ,  they can be regarded i n  p i z c t i c e  as a s u f f i c i e n t  approximation 
so they a re  widely used i n  ac tua l  computations. 
of e l a s t i c i t y  i n  ordinary e l a s t i c  dynamics, material  dynacics and s t r u c t u r a l  
dynamics bel .  ng t o  t h i s  theory of i n f in i t e s ima l  ciefcmna:ion. 

Moreover, nos t  of t he  theory 

In such a theory of i n f in i t e s ima l  deformation, s ince  a s t a b l e  s ta te  of 
equilibrium i s  constant ly  maintained, as described above, it cannot be used as 
a bas i c  theory of e las t ic  s t a b i l i t y .  I t  i s  thus necessary t o  consider the  

general conditions responsible  f o r  t h i s  spec ia l  case a r e  s t i l l  not clear. 
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case when none of  the  bz; ic  hypotheses w i l l  hold. Ne s h a l l  ca l l  such a theory 
a theory of  r i n i t e  defoniat ion.  According t o  i t ,  as a r e s u l t ,  t h e  deformation 
rchich was caused k-. an ex terna l  force  is not necessar i ly  always l i n e a r  with 
respect  t o  the  external  force,  and it cannot be s a i d  t h a t  t he re  is continuously 
a s t a b l e  state of equilibrium. This a l s o  means t h a t  i t  i s  not t r u e  t h a t  a s i n -  
g l e  s ta te  of  deform:tio.: e x i s t s  with respect  t o  the  state of a p a r t i c u l a r  ex- 
t e r n a l  force.  The:efore, it i s  absolutely necessary t o  r e l y  on t h i s  thegry of 
f i- i te deformation *hen considering e l s t i c  s t ab i l i . t y .  
wh:ch discusses  tl.2 f in;- te  deformation theory is  extensive [11]--[16], w e  w i l l  
not go i n t o  d e t a i l  'iere. 

Since the  l i t e r a t u r e  

1.1.2. Phenomena o f  Elastic S t a b i l i t y  and Bodies S u b j e c t  to It. 

If f i n i t e  de fmnr t ion  theory is  followed, the  following occurs,  even 
considering simple :ases. 
respect  t o  load increases  monotonously, there  a r e  cases when t h e  rate of in -  
crease i n  the  load with respec t  t o  the  deformations shown i n  Figures 1 . 1 . ?  ET i 
1.1.3 rise gradually a d  cases when it decreases gradllally. 
t i v e l y  refer t o  these,  which are shown i n  Figures 1.1.1 and 1.1.2 and 1.1.3, 
as t h e  usual type, ,  and w i l l  refer t o  them indlTri2ually as t he  l i n e a r  type,  
gradual load increase type, and gradual load decrease type respec t ive ly .  How- 
ever,  s ince  the re  are no cases in  which an unstg.ble equilibrium occurs with 
these  types, they are not  properly the  subjec t  of problems i n  e las t ic  s t a b i l i t y .  

F i r s t  of a l l ,  ev2n when t h e  deformation with 

We s h a l l  co l lec-  

U U y/ <I / 
I 

-Deform 

f b.f' 
- Def orma t ion t ion  

Figure 1.1.2 F i g u r e  1.1.3 

The cases which pose problems i n  elastic s t a b i l i t y a r e  those shown i n  
Figures 1.1.4, 1.1.5 and 1.1.6, i n  which extremely la rge  ox extremely small 
load values are produced, and there  OCCIIT po in ts  o f  deviat ion after which two 
states of  equilibrium are present .  

Figure 1.1.4 Figtare 1.1.5 F i g u r e  1.1.6 

In cases such as those r;'iown i n  Figure 1,164, i n  which whPn the  m a x i m u m  
value is  reached, t he  load can no longer be sustained,  we s h a l l  c a l l  t h i s  
"yield1' and the  maximum load i n  such a case w i l l  be ca l l ed  t h e  "yield load." 

i 5  - There are a l so  cases such as t h a t  i n  Figure 1.1.5, i n  which a maximum 
value (point A) and a minimum value--(point D? a r e  present ;  In such a case, 
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when the load is  increased up t o  Point A, the  d e f o n a t i o n  rap id ly  increases  
discontinuously and varies g rea t ly  up t o  Point B. Moreover, when a load i s  
increased above t h i s ,  i t  follows Line B-C and the  deformation changes. When, 
conversely, t he  load i s  reduced fron! t h i s  s ta te ,  it passes through Point B and 
reaches the  Point D which is  the  minimum value. In t h i s  case,  t he  deformation 
changes rap id ly  and moves t o  Point E. Then it follows Line E - 0  and re turns  t o  
point  0. 
w i l l  be ca l led  respec t ive ly  the  Ascending and Descending jump t r a n s i t i o n  loads.  

We s h a l l  cal l  t h i s  a "jump t r ans i t i on . "  Yoreover, po in ts  A and D 

In Figure 1.1.6, Point A is  the  separat ion poin t  and a f te r  t h i s  two states 
of equilibrium along A-B and A-C are formed. 
formation are d i f f e r e n t .  
"buckling." 

ick i ing  load." Normally the  term %uckling" is used i n  a much wider sense,  
and includes cases i n  which a curve without a poin t  o f  b i fu rca t ion  i s  formed, 
A i c h  is c lose  t o  the  load-deformation curve with a b i fu rca t ion  point  and is  
due t o  load and o ther  conditions.  
adopt it as descr ibing l'purelt buckling. This buckling w i l l  form the  cen t r a l  
subjec t  matter of the  theory of  elastic s t a b i l i t y  t o  be described below, and 
has been s tudied  f o r  t h e  longest per iod of time and the  most extensively.  
Moreover, only the  s implest  cases have been indicated above, and the re  are 
both instances i n  which t h e  above cases are combined, and instances i n  which 
more complex cases may occur. 

Moreover, t h e i r  states of de- 
Cases with such a point  of separa t ion  w i l l  be ca l l ed  

Moreover, t he  load a t  t h i s  po in t  of separat ion w i l l  be  r a l l d  t h e  

However, i n  t he  narrow sense,  we s h a l l  

In discussing problems i n  elastic s t a b i l i t y ,  it is  by a l l  means necessary 
t o  e n t e r  i n t o  the  domain of f i n i t e  deformation theory,  bu t  normally the  phen- 
omena t h a t  have been described above, appear i n  bodies such as s lender  ba r s ,  
t h i n  p l a t e s  and s h e l l s ,  whose dimensions i n  t h e  d i r ec t ion  of more than one co- 
ord ina te  are extremely small i n  comparison with t h e i r  dimensions i n  o the r  d i -  
rec t ions .  That is ,  t h e  objec ts  of  inves t iga t ion  are bars ,  whose cross-sect ion 
dimensions are much smaller than t h z i r  dimensions lengthwise, p l a t e s  whose 
thickness i s  much smaller than t h e i r  length and width, and s h e l l s  whose p l a t e  
thickness i s  much smaller than t h e i r  width, length and radius  of curvature.  
In such cases, sipce the re  i s  a tendency f o r  t he  displacement i n  the  d i r e c t i o n .  
i n  which the  dimensions are small t o  become grea t ,  it is  easy f o r  s t a b i l i t y  
problems such as buckling t o  arise. Therefcre i n  speaking of  problems of elas- 
t i c  s t a b i l i t y ,  these  s lender  ba r s ,  t h i n  p l a t e s  and s h e l l s  immediately become a 
problem. 
matter of problems i n  e l a s t i c  s t a b i l i t y .  

Consequently, it is  easy t o  tnink t h a t  these  alone are the  subjec t  

lfowever, ac tua l ly ,  such s lender  or t h i n  bodies are not  necessar i ly  the  
only ones t o  be t r ea t ed ,  and problems i n  e l a s t i c  s t a b i i i t y  can arise even i n  
th ick  or massive objec ts .  For example, compression s t r eng th  i n  lumber and 
Nakanishi Fuj io 's  y i e l d  theory,  etc. are c l ea r ly  a type of s t a b i l i t y  problem, 
and one can consider t h a t  t he  mountain forming a b i l i t y  of t h e  e a r t h ' s  c rus t ,  
caveins i n  mine tunnels ,  etc. ,  are r e l a t e d  t o  s t a b i l i t y  problems. E l a s t i c  
s t a b i l i t y  theory on such massive objects  has not ye t  become t h e  focus of 
a t t en t ion ,  so except i n  spec ia l  cases, the re  is  no reason t o  discuss  it here  
a t  any grea t  length. Consequently, we s h a l l  discuss  t h e  above s lender  bars ,  
t h i n  p l a t e s ,  shells and combinatjons of  these within the framework of t he  
theory. Moreover, as r e l a t e d  phenomena, we s h a l l  deal  mainly with the  above 
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Suckling, y i e ld ,  jump t r a n s i t i o n  and items re l a t ed  t o  these.  

CHAPTER 2 

BUCKL I NG 

1.2.1. B u c k l i n g  Deformation tha t  can Occur i n  Bars, P la tes  and S h e l l s  

Since buckling is the  case i n  which a b i fu rca t ion  point  occurs,  as de- 
scr ibed above, i n  the  region immediately adjacent  t o  t h i s  po in t ,  two states of - / 4  
equilibrium are present .  
is  a form of  deformation ( tha t  w e  s h a l l  ca l l  "d i rec t  form of  deformation") 
which is  present u n t i l  t he  load is  appl ied.  The o ther  state of equilibrium i s  
a form of  deformation (ca l led  "buckling form of deformatior.") which is  d i f f e r -  
en t  from the  first and must be such t h a t  u n t i l  it occurs,  it is  t o t a l l y  absent. 
Now we s h a l l  c i te  two o r  th ree  examples of  what can be considered as buckling 
deformation. 
following tab le .  

I t  i s  ce r t a in  t h a t  one of the  states of  equilibrium 

Considering first an isotropic s t r a i g h t  bar ,  w e  can consider the  

Table 1.2.1 

I I I I 
Load Type S t ra ight  Deformation Buck1 i n g  Deformat 

1 .  Axial compression St ra ight  a. Berlding 
1 oad Contraction b. Torsion 

2. Bending load around Bending around 
one pr incipal  ax i s  pr incipal  ax i s  

a .  Bending around 
o ther  pr incipa 1 axes 

b .  Torsion I 
1 3 .  Torsion load 1 7orsion I a .  Bending 

The combination 1-a f o r  t h i s  type of load and buckling deformation is  
ca l led  "column buckling." 
time of Euler [17] and is  representa t ive  of buckling. When cont ras t ing  t h i s  
with o ther  types of buckling, we s h a l l  c a l l  it f l exura l  buckling (Knickung). 
The combination 1-b was first published by I I .  Wagner [18] i n  1928, and i s  a 
r e l a t ive ly  recent ly  developed theory. Consequently, even though it  does actu- 
a l l y  occur qu i t e  considerably, it has not  been the  center  of  general  i n t e r e s t .  
We s h a l l  c a l l  t h i s  t o r s iona l  buckling (Verdrehung). 

I t  has been t r e a t e d  the  most r : t ens ive ly  s ince  the  

In the case of load type 2 ,  i f  it is one which causes a bending moment, 
it can be e i t h e r  a couple load or a lateral load. However, it is impossible 
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f o r  a and b i n  buckling deformation t o  occur independently. Buckling deforma- 
t i on  appears as a combination 2-a-b. L. Prandtl  [19] was the  first t o  t r e a t  
t h i s  and c a l l s  it l a t e r a l  buckling (Kippung). Case 3-a was first discussed by 
Greenhill [2G]. I t  appears i n  the  case of  a twisted s lender  wire. 

In addi t ion t o  the  items indica ted  i n  t h i s  t a b l e ,  there  a re  a l so  cases of 
combinations of  these loads,  f o r  example, one can conceive of 1 - 2  and 1-3 com- 
binat ions.  Moreover, i t  i s  a l s o  poss ib le  t o  have a pu l l ing  load i n  place of 
the compression load 1. 

TABLE 1.2.2 

Load Type 

1. Ax ia l  compression load 
or  uniform external  
pressure. 

2. Bending load ins ide 
plane o f  gy ra t i on  

3 .  Uniform in te rna l  
pressure ins ide plane 
of gyrat ior :  or external  
pressure 

S t ra igh t  Deforma t ion 

Contraction i n  which 
o r i g i n a l  form i s  
genera l ly  maintained 

Bend i ng 
o r i g i n a  
genera 1 

Elongat 
t i o n  i n  
form i s  
ta  i ned 

i n  which 
form i s  

y maintained 

on or contrac- 
which o r i g i n a l  
genera l ly  main- 

Type o f  Buckl ing 
Def orma t i on 

a. bending ( i ns ide  

b. bending (outsic'e 

c. t o r s  ion 

plane o f  gyrat ion)  

plane o f  gyrat ion)  

a. Bening toward out-  
s ide plane o f  
gy ra t i on  

b. Torsion 

a. Inversion 

Even i n  the  case of a bar ,  d i f f e r e n t  problems w i l l  arise with a bent bar .  & 
For example, the  cases indicated i n  Table 1 . 2 . 2  can be considered when the  b a r  
is  c i r c u l a r ,  o r  p a r t  o f  i t  is .  

In the  combination 1-a i n  t h i s  t ab le ,  t h e  f lexure  (bending) occurs in s ide  
the  plane of gyration, and is  widely known as c i r c u l a r  buckling [ Z l ] .  
c a l l  t h i s  f l exura l  buckling here.  The combination 1-b-c- is  considered t o  oc- 
cur i n  the  case of the  toppl ing of  an arch. 
occur i n  the  form of  toppling. 

We s h a l l  

Even i n  the  case o f  2 ,  a and b 

3-a was discussed by Biezeno [22] .  I t  occurs i n  the  form i n  which i n  the  
deformation of a c i r c l e ,  the  in s ide  and outs ide over the  e n t i r e  circumference 
a r e  uniformly replaced by each o ther .  He c a l l s  t h i s  Umstulpung ( inversion) .  

In the  case of a bent bar ,  it i s  poss ib le  f o r  t he  load combination 1-2 
t o  occur which causes toppling. 
of bent bar ,  can 
s t r a i g h t  b a r  [23!. 

Moreover, the  h e l i c a l  spr ing ,  which i s  a type 
i n  i t s  e n t i r e t y ,  undergo the  same type of buckling as a 
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In addi t ion t o  the  simple cases l i s t e d  above, there  a re  a l s o  various com- 
binat ions [112,113], but  general ly  considerations of bars  i n  t h e  pas t  have been 
confined t o  the  range discussed above. 

Structures  in  the  form of continuous beams, t ru s ses  and r i g i d  frames 
(Rahmen) a re  combinations of s t r a i g h t  bars. Moreover, i f  we include bent ba r s ,  
t h i s  would involve r i g i d  frames which include the  continuation of  arches o r  
arches themselves. These cases can a l s o  be considered as beingthe same forms 
of buck 1 ing de forlaat ion.  

In the case of an isotropy i n  ba r s ,  s ince  the  r e l a t ionsh ip  between the 
load type and the  d i r e c t  type of deformation i s  not as simple as  it is above, 
d i f f e ren t  cases can a r i s e .  For example, a to rs ion  load may occur due t o  ten- 
s ion ,  as i n  kinks i n  s t randed wire,  and as a r e s u l t ,  it is possible  f o r  f l ex -  
u r a l  buckling t o  occur. 

The load i n  f l a t  p l a t e s  belongs t o  in t ra -p lane  load. This type changes 
from a type of deformation i n  which only deformation occurs ins ide  t h e  plane,  
t o  a type of deformation i n  which a def l ec t ion  occurs i n  the  d i r ec t ion  towards 
the  outs ide of the  plane [24]. This i s  c h a r a c t e r i s t i c  o f  p l a t e s ,  and while i n  
addi t ion buckling similar t o  t h a t  i n  ba r s  may a l s o  occur,  it i s  not i n t r i n s i c  
with p l a t e s ,  so we s h a l l  not consider it as buckling i n  p l a t e s .  
load, shear ing load and o thers  can be considered as intra-plane loads of p l a t e s  
and s ince  p l a t e s  can have various configurations such as rectangular ,  c i r c u l a r ,  
e l l i p t i c a l ,  with c i r c u l a r  o r  e l l i p t i c a l  holes;  t he re  are many problems r e l a t ed  
t o  these  types.  

Compression 

Cases i n  which these p l a t e s  have re inforc ing  members o r  s t r u c t u r e s  i n  
which f l a t  p l a t e s  a r e  bonded together ,  pose problems and i n  t h i s  case while 
f o r  t h e  p l a t e  i t s e l f ,  only the  def lec t ion  cons t i t u t e s  a form of buckling de- 
formation, i n  re inforc ing  member:; o r  p a r t s  of f l a t  p l a t e s ,  the  type of buckling 
deformation occurring i n  ba r s  may a l so  appear. Since the  l a t t e r  can a l s o  occur 
i n  combination with the  former, the  problems t h a t  a r i s e  a r e  considerably com- 
plex.  

I 

In the  case of s h e l l s ,  there  a re  those which B V C  open and a r e  viewed as 
curved p l a t e s ,  and those such as cy l ind r i ca l  s h e l l s ,  e l l i p t i c a l  shells,  conical 
s h e l l s  and spher ica l  s h e l l s  which are p a r t l y  o r  completely enclosed. 
load s t a t e s  under which only stress re su l t an t s  (Schni t tkraf te )  i n  s h e l l s  may 
occur a re  considered as forms of  d i r e c t  deformation, and deformations such 
t h a t  a displacement of a d i r ec t ion  perpendicular t o  the  s h e l l  surface;  i . e . ,  
def lec t ion ,  i s  applied i s  considered as a form of buckling deformation [ 2 4 ] .  

Usually 

' * . , * ... , .a* 
' \ \ , i t  I ,,,,::11'/ 

Figure 1.2.1 Figure 6 1 . 2 . 2  

7 



/ 6  - As i n  the case of f l a t  p l a t e s ,  various problems arise depending on the  
configuration of the  s h e l l ,  the  t),e of load, the  presence o r  absence of a re -  
inforcing member, an isotropy,  e tc . ,  and t h e  type of buckling load i s  t h a t  
which accompanies def lec t ion .  However, on t h i s  bas i s  i t  cannot be sa id  t h a t  
buckling deformation is  l imited t o  only one t ) p e .  For example, when a cyl inder  
sus ta ins  an ax ia l  compressive load, e i t h e r  o f  two types of deformation may 
occur, (1) when a diamond shaped surface such as t h a t  shown i n  Figure 1 . 2 . 1 ,  
o r  an ax ia l ly  symmetrical type of deformation i n  which the  circumference is  
uniformly protruding o r  concave as shown i n  Figure 1.2.2.  Consequently, it 
i s  necessary t o  consider ca re fu l ly  which type of buckling deformation may oc- 
cur.  Moreover, the  form of buckling deformation c h a r a c t e r i s t i c  i n  bars  may 
a l s o  appear, but  s ince  it  i s  not i n t r i n s i c  t o  s h e l l s ,  it w i l l  not be considered 
here.  Nevertheless, i n  t he  case of s h e l l s ,  i t  i s  necessary t o  consider care- 
f u l l y  the  f a c t  t h a t  from t h i s  type of deformation, o ther  types of  deformation 
i n t r i n s i c  t o  the  s h e l l  i t s e l f  may be induced. 

1 .2 .2 .  Buckling Loads o f  Bars, Plates and Shel ls .  

Since a buckling load is a load a t  a point  of b i fu rca t ion ,  one should 
consider a possible  new type of  buckling deformation, and f ind  a load due t o  
which there  i s  es tab l i shed  an equilibrium which takes  i n t o  account the  i n f i n i -  
tesimal defornation t h a t  occurs,  when t h i s  new deformation i s  applied.  
such a case, it i s  not possible  t o  determine the r e l a t ionsh ip  of  the  load t o  
the deformation with respect  t o  a large deformation which cccurs a f te r  buckling 
but  a t  least  i t  is  poss ib le  t o  determine the  magnitude of  t he  buckling load 
and the  form of the  deformation, 

In 

as a type of buckling deformation. 

Since i n  t h i s  case only an in f in i t e s ima l  deformation i s  appl ied,  it is 
icposs ib le  t o  employ without modification the  relationshipsibetween displace-  
ment and s t r a i n ,  and s t r a i n  and s t r e s s  according t o  in f in i t e s ima l  deformation 
theory,  LG; th: equation f o r  the  equilibrium of i n t e r n a l  forces  must be con- 
s idered,  not d i t h  respect  t o  the  o r ig ina l  form of the  body, but with respec ts  
t o  the def::-zc;J s t a t ? .  Nevertheless, t h i s  r s s u l t s  i n  a 1 !-.ear d i f f e r e n t i a l  
equation f o r  the  deformation which is  very convenient drill relati-;?:." z x y  t o  
solve.  

The equation f o r  equilibrium i n  the  case I - * . - * '  cr. an in f in i t e s ima l  displace-  
ment i s  applied as a form of buckling -.!?I?-; ':;.ticn i s  as follows. F i r s t ,  when 
a s t r a i g h t  ba r  with a uniform sec t ion  .ri.5tr.:..5 2 cen t r a l  compressive load P 
and a buckling load i s  generated, assumir,g cyle def lec t ion  t o  be v,  s ince  as  
shown i n  Figure 1,2.3, the  l a t e r a l  load h . .  no e f f e c t  except a t  the  end of the 
bar ,  the following equation i s  obtained. 

8 

(1.2.1) 



of the  axial force and shear  force ,  as shown i n  
Figure 1.2.3,  must be considered as the  a x i a l  
d i r ec t ion  of  t he  deformed bar ,  o r  a d i r ec t ion  
perpendicular t o  t h i s .  # ~ ( € I $ e , )  + s, ( E  I 'v rr 'PL 

As end condi t ions,  if we appropriately 
A ( E I % ]  combine 

P r . ,  
dr 

L (1) Displacement 0 (v = O ) ,  o r  
F 

Bending moment 0 Cd3i~ / i~~*=O~ 

these may oe given, a t  both ends as 

In e i t h e r  case the end conditions a re  o f  the  same order .  
so lu t ion  f o r  the  above d i f f e r e n t i a l  equation which s a t i s f i e s  the  end condi t ions,  
the iden t i ca l  with s ign  v=O, if P does not have a s p e c i f i c  value (eigen value) 
a so lu t ion  cannot be obtained. 
the  buckling load. Moreover, the  so lu t ion  v(x) , the  d i f f e r e n t i a l  equation i n  
t h i s  case ( i . e . ,  an eigen function) takes the  st.ape of the  i n i t i a l  deformation 
i n  t h i s  type of buckling deformation. In t h i s  case,  an undetermined coe f f i c i en t  
remains, but  t h i s  does not me;.! t h a t  it i s  possible  t o  employ a value of any 
s i z e ,  it only means t h a t  the  in f in i t e s ima l  i n i t i a l  deformation is not quanti-  
t a t i v e l y  determined and can be understood only i n  terms of  i t s  configurat ion.  

Except when i n  the /7 

Moreover, t h i s  value of P is none o ther  than 

Below a re  severa l  examples of t he  above. 

(1 * 2 . 2 )  

When both ends a re  r i g i d  

P=4m't'EI/L2, v=A(I-cos2~nnx/I , ) ,  m = l ,  2, . . (1.2.3) 
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One end r i g i d ,  the  o ther  end r o t a t i n g  

(1.2.5) 

(1.2.6) 

What should be taken i n t o  p a r t i c u l a r  account here  i s  the  f a c t  t h a t  the  equi l ib-  
rium i s  considered i n  terms of f i n i t e  deformation theory,  which means t h a t  the 
f r ee  end does not involve a bending moment of 0 (d2v/dx2 = 0 ) ,  a shear  force of 
3 (d3v/dx3 = 0 ) .  Actually i n  the  above r e s u l t s ,  when the  f r e e  end i~ = 0) , t he  
bending moment i s  0 (d2 v/dx3 = 0 ) ,  but  t he  shear force becomes E 1  d3v/dx3 = 
(+I AEI (1/2 + m ) 3 ~ 3 / L 3 ,  which i s  not  0. 
l a t exa l  force should be 0 .  Moreover, considered i n  simple terms, i f  the  shear  
force of 0 is  considered as a condition f o r  the f r e e  end, t h i s  would mean t h a t  
the  case i s  being t r ea t ed  i n  which the  d i rec t ion  of t he  load va r i e s  with the  
def lec t ion ,  as shown i n  Figure 1.2.5 as i f  ;he load operated i n  the  d i r ec t ion  
of t he  def lected axis.  Yoreover, i n  t h e  case of Figure 1.2.5,  equilibrium i s  

not es tab l i shed  [ l o ] .  
ploying the  shear  force is t o  employ the  l a t e r a l  force .  
t h a t  it i s  nPP-es:ary t o  consider carefu l ly  the  f a c t  t h a t  the  magnitude of the 
load and the d i rec t ion  vary together  with the buckling deformation. 

That i s ,  i n  the f r e e  end, the  above 

' nclt considered i n  such a deformation so  t h i s  type of buckling deformation i s  
I t  i s  evidenced from t h i s  t h a t  what  i s  meant by not em- 

Moreover, it i s  c l e a r  

As indicated by t h e  above examples, numer- 
, ous values obtained corresponding t o  the  case 

when the  buckling load i s  m = 1, 2 ,  t he  ac tua l  
buckling load t h a t  occurs should be a form of 
deformation with a = t a b l e  equilibrium. From 
t h i s  point  of view, the  minimum value of m; 
i . e .  ,only the case of  the minimum value f o r  
the  buckling load represents  the  s t a b l e  equi- 
l ibrium f o r  the type of buckling deformation. 
Consequently, only i t  can become the buckling 

sec t ion  of  a ba r  has two main axes, general ly  
Figure 1 2.4 

both of them must be considered together  and when the end conditions a r e  inde- 
pendent with respect  t o  both main axes, it turns  out t h a t  a buckling deforma- 
t i on  occurs Sli.. I t h a t  a l l  the  buckling loads f o r  both main axes,  t he  one w i t h  
the low value &tams. 
i n  an a r b i t r a r y  d i rec t ion  i s  solved as i n  example when the  end conditions a re  
r e l a t ed  t o  both main axes [ lo] .  

/8 

Figure 1 . 2 . =  load i n  the  true scase.  Moreover, s ince  the 

The case i n  which the  r o t a t i n g  end i s  around an ax is  

When the displacemenL is 0 ,  and the  l a t e r a l  force is 0 ,  the d i f f e r e n t i a l  
equation (1.2.1) above mzy be the  following two-stage equation 

d'V 

dx' EI-+Pv=O. 
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This equilibrium equation is  found from the  equilibrium of t!le noment due t o  
the  in t e rna l  and ex te rna l  forces  operating on the  port ion froiil t h e  cross-sec- 
t m a t  point  x of t he  b a r  t o  t h e  end sec t ion .  In t h i j  case,  t h e  moment which 
is Pv appears prec ise ly  because f i n i t e  deformation i s  being consider:.d. This 
mean5 t h a t  i n  t h i s  case,  t h e  end conditions i n  both ends a r e  

ic) bending momznt (d2v/dx2 = 0 )  , cL- def l ec t ion  0 (v = 0) , o r  
de f l ec t ion  angle (dvjdx = 0 )  

and t h a t  only cne of them can be used. Such a two-stage d i f f e r e n t i a l  eqtiation 
i s  e a s i e r  t o  understand s o  t h i s  i s  t h e  method t h a t  i s  normally used, i n  which 
t h e  buckling load i s  determined by adding t o  t h i s  equation the  added displace-  
ment a t  t h e  ends, o r  t h e  term based on t h e  added l a t e r a l  force .  However, t he  
method i n  (1.2.1) above j c  t h e o r e t i c a l l y  t h e  correct  one a d  s ince  it is  con- 
venient when considering it i n  con t r a s t  with a f l a t  p l a t e ,  we have used it  and 
noted i t  here.  

The d i f f e r e n t i a l  equation f o r  equilibrjum with respect  t o  t h e  to r s iona l  
buckling due t o  the  c o q r e s s i v e  load of a s t r e i g h t  bar, i s  as  follows [18]. 

(1.2.8) 

I t  i s  possible  t o  give the  end conditicns with respect  t o  each end by the  
f o 1 1 ow i ng comb i n  a t  i on : 

r o t a t i o n  0 (Q = 0 , )  o r  

ro ta t io i l  f r e e  around cen te r  5f f igu re  
( E 4 4  c i ' ~ ? / d 2 + ( P i : ~  - Q,r,)dv/~~-Pro'.2~/L=O) <')Cb*> 

end p l a i n  warp 0 

o r  end p l a i n  warp free (d'pp=O) 

(d  p/dx=O) 

and t h e  end conditions a r e  determined by 

In  t h e  case of pr&lems a r i s i n g  when an a x i a l  load and a bending load are 
applied and a l a t e r a l  h c k l i n g  occx-3, assming  t h a t  only I around t h e  a x i s  
i s  very l a rge ,  a simultaneous equation f o r  s ,  + is  obtained [ l o ]  of t h e  fom 

Y 

l i  



(1.2.9) - /9 

Ihe end conditions are a combination of (A)(D) above and L i s  mems t h a t  f o r  
both e ids  4 conditions are applied due t o  (B) (E). 
the displacement i n  the  d i rec t ion  of  t he  axes x, y ,  z a t  both ends (Oi externa l  
force) and ro t a t ion  (or moment) but  s ince  the  displacement i n  the  d i r ec t ion  of 
x, ind i rec t ion  of t h e  z axis ,  and around axis  y are not t r e a t e d  as problens 
here, we obtained the  three  end conditions;  namely, t he  displacement i n  5 i rec-  
t i on  y (cr lateral force) and the  ro t a t ion  around ax is  x, z (or bending or t o r -  
s ion moment). The terms d$/dx (or dZg/dx2) ind ica t ing  the  r e l a t ionsh ip  of the  
hending and tors ion  t o  t h i s  form the  condition. 

That i s ,  t h i s  i s  6 for 

The case of a bent h a 7  is e s s e n t i a l l y  similar t o  t h a t  described above. 
Yoreover, the  case i n  w h c h  inversion buckling occurs i s  d i f f e r e n t  from t h i s .  
This is the  main point  i n  which curved bar and a s t r a i g h t  ba r  are d i f f e r e n t ,  
and i n  such a case, not only buckling but  jump t r a n s i t i o n  a l s o  occurs. (See 
Section :. 3.2); 

When, i n  :he case of a f la t  p l a t e  o f  uniform thickness ,  t he  load in s ide  
the  p l a t e  i s  uniform, the  equation f o r  t he  equilibrium when an in f in i t e s ima l  
def lec t ion  w occurs, takes a shape similar t c  t h a t  of Equation (€.2.€) ,  and 
assuming t h a t  D = Et3/12(l  -u2) when the  compressive load is  nx, n and the  
plane in t e rna l  shear  load i s  n w e  obtain Y' 

XY ' 
(1.2.10) 

Assuming t h a t  t h i s  i s  a rectangle  p a r a l l e l  t o  axes x and y, the  end conditions 
with a periphery where x o r  y are constant are as follows, assuming t as the  
d i rec t ion  of t he  periphery and n as the  normal 

and s ince the  dirplacement i n  direct iol l  n , t  or t h e  stress re su l t an t  are taken 
in to  consideration from the beginning, t he  equation holds,  so there  i s  no prob- 
lem. 
above conditiorls, the  end conditions Secoine 

General considerations on t h i s  point are described later.  Combining t h e  
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Ir. t h i s  case, f o r  the  lateral  forces ,  i n  addi t ion t o  t h e  lateral  shear  stress 
re su l t an t s ,  the  term is  added which is based on the  va r i a t ions  of the  torsior.-  
a1 moment as a corresponding shear  stress r e s u l t a n t ,  and from t h e  equilibrium 
i n  a f i n i t e  deformation, t he  term based on t h e  load is a l s o  added. The above 
equation (1.2.9) forms the  equation f o r  t he  condition i n  t h e  case of a comF;ex 
buckling deformation whereby the  continuous terms from t h e  d i f fe rence  between 
the  centroid and the  center  of t h e  shear  is added w w 3 J -  

c 

Considering an example of the  simplest  case of buckling of  a f l a t  p l a t e ,  
where n = n = 0, t he  four  s ides  are x = 0, x = b,  y = 0,  y = L (assuming 

L 
qbove d i f f e r e n t i a l  equation becomes 

x XY 
b) when the  e n t i r e  periphery is  a r o t a t i n g  periphery,  a so lu t ion  f o r  the  

/ 10 - 
e=Asinzrfisinn',r;rylL (m=l,s , .  - .) (1.2.11) 

t he  buckling load is  

In t h i s  case, the  minimum value of m,does not  necessar i ly  become the  1-west 
value of n . Figure 1 . 2 . 6  ind ica tes  t h e  case w'lere m = 1, 2, -.. with the  
term L/b (8n the  r i g h t  s i d e  of the  equation) as t h e  abcissa.  Consequently, 
m = 1 gives the  lowest value o f  ny when L/b 
value when J? 5 L/b = fi and general ly ,  m'= n gives  t h e  lowest value when 
J n(n - 1) 5 L / b 7  Moreover, when m i s  la rge ,  t h e  curve -2ct ion 
where the  lowest value is  obtained becomes almost eqcal t o  25r. 
is poss ib le  t o  assume 

n; m = 2 gives t h e  lowest 

n(n + 1). 
Generally, i t  

(1.2.13) 
L/b<l when n,=r(b/L + L/b)'?D/b' 

with L/b as the  boundary giving t h e  m i n i m  value i n  t h e  beginning. 
periphery conditions are d i f f e r e n t ,  t h e  edge of  t h e  load as ind ica ted  i n  
Figure 1 .2 .7  i s  t h e  same as above. In t h i s  case t5F: overa l l  tendency i s  ex- 
a c t l y  the  same as above, except t h a t  t he re  i s  a d i f fe rence  i n  the  value of 
L/b when it becomes an in f in i t e s ima l ly  small value and i n  the  in f in i t e s ima l ly  
small value. When the  load edge becomes a r i g i d  edge wher L/b i s  small 
(L/b < 4 ) ,  t h i s  is markedly greater than i n  the  case whert t he  load edge i s  
a ro t a t ing  edge, bu t  when L/b becomes la rge ,  t he  inf luence of t h i s  load edge 

When the  
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becomes extremely small. In t5e same manner, when t h e  load edge i s  a free 
edge, ?:here L/b is  small, t he  value i s  much smaller  than the  value when i t  is  
a ro t a t ing  edge, but *<hen L/b becomes la rge ,  i t  i s  considered t h a t  the  in f lu -  
ence where there  i s  a load edge becomes small, but s ince  t h i s  has not y e t  been 
computed, i t  is not indicated i n  the  f igure .  

- - % 

Figure 1.2.: 

Figure 1.2.7 

The case of  a compressive load from four  sides y ie lds  a r e s u l t  which is  
very similar. However, i n  t h e  case o f  a shear  load, it is d i f f i c u l t  t o  ob ta in  
a so lu t ion  a lgebra ica l ly  f o r  a rectangular  p l a t e ,  and only a case of an in f in -  
i t e  zone can be obtained. 
form. 

But it i s  easy t o  imagine t h a t  it is similar i n  

In  the  case of a c i r c u l a r  p l a t e ,  since it is neczssary t o  consider t h a t  
t h e  plane-internal  stress re su l t an t s  necessar i ly  vary, t h e  equi l ibr ium d i f f e r -  
en t ia l  equation with respect  t o  def lec t ion  w i n  t h i s  ease employs four  coordin- 
ates, and assuming the  tension t o  be pos i t i ve  with the  regular  n n [SI t h e  n' e q u a t  i on be comes 

(1.2.14) 

and the  periphery conditions on t h e  s i d e  where r = constant are t h e  same as  i n  
the  case of a rectangular  p l a t e  combining 
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This becomes more complicated i n  t h e  case of  s h e l l s .  
simultaneous d i f f e r e n t i a l  equations are formed f o r  u, v, and w ,  (3) from t h e  
equation of  equilibrium f o r  t he  i n t e r n a l  cross-sect ional  forces  i n  t h e  case 
when a cylinc'rical s h e l l  sus t a ins  an a x i a l  c o q r e s s i v e  load, a bending load, 
a tors ion  load, and ex terna l  pressure and t h e  r e l a t ionsh ip  between t h e  d i s -  
placement i n  d i rec t ions  x, y, z, u, v, w, a?d t h e  sec t iona l  i n t e r n a l  forces. 
Using the  nota t ion  N = E t / ( l  - u2), D = Et3/12(l  -_u2), D/b2N = k,, n5/h = 91, 
n /N = q2, pa/N = q with t h e  d i f f e r e n t i a l  aa/ax, .'a/a+, we have 

For example, t h ree  

x+ 3 

(1.2.15) 
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The terms underlined with a dot ted l i n e  i n  thatquat ion a re  those used by L .  11. 
Donne11 [ 2 6 ]  for to rs ion  load. Judgments by d i f f e r e n t  authors on the  iniport- 
ance of these terms i n  the  equation d i f f e r ,  and the re  are differenceswhich 
should be se l ec t ed  and which should be re jec ted .  
should be four  each. 
t ions  should be constructable  by t h e  combination 

As contour condj t ions,  there  
For example, f o r  x = a constant end p l a i n ,  these condi- 112 - 

(1) displacement 0 i n  d i r ec t ion  of  diameter (w = 0 ) ,  o r  

(2)  s lope  0 (w’ = C.), i n  d i r ec t ion  of genera t r ix  or bending 

moment (W = 0) r 

(3) Displacement 0 (u = 0) ,  i n  d i r ec t ion  of generatrix o r  (J) 

axial force  0 GaZ+n,, u-/u=o) 

(4) Dispiacement 0 (v = 0) ,  i n  d i r ec t ion  of periphery o r  

lateral  force ins ide  plane 0 (n,,-Mz,/a+n,d/a=o) 

Normally even i n  the  case of a f ixed  end, it is c l e a r  t h a t  w = 0, w 0  = 0,  or 
i n  a r o t a t i n g  end, w = 0,  Mr = 0, but  there  are many cases  i n  which the  condi- 
t i ons  (3) and (4) are not c l e a r l y  given. For t h i s  reason, it i s  necessary t o  
grasp c l e a r l y  whether t h i s  i s  the  ac tua l  th ing ,  or the  so lu t ion  of t he  equa- 
t i o n  uses one of these.  In a f r e e  end the  condition 

Qr $- JI’, =/a - n,ic’/cl- n, = IC -In = 0, JI, = 0, nL + n,, u./a = 0, n, - Jr, ./a -I- ikv’/a=o 

should hold. When t h i s  i s  not a cyl inder ,  bu t  a rectangular  ci-irved p l a t e ,  
(a cyl inder  cut  along the  genera t r ix) ,  t h i s  forms a condi t ion which is  similar 
t o  the  case of a f l a t  p l a t e  on t h e  la teral  face.  

Except i n  spec ia l  cases, f o r  example, L. H. Donnell’s so lu t ion  f o r  t o r -  

In t h e  case of  a cyl inder ,  
s iona l  problems (it is  very d i f f i c u l t  t o  determine t h e  eigen values and eigen 
functions from the  above d i f f e r e n t i a l  equations.  
assuming it t o  be extremely long, t he re  a re  many cases i n  which a per iodic  
so lu t ion  i n  the  lengthwise d i r ec t ion  is  s a t i s f a c t o r y .  In such a case, the  
end conditions do not pose a problem. However, even i n  such a per iodic  solu-  
t ion ,  s ince  it i s  d i f f i c u l t  t o  accurately express the  form of buckling deforma- 
t i on ,  t he  so lu t ion  s!iould be found by s a t i s f y i n g  it i n  a form which is  mathe- 
mat ical ly  easy t o  handle, namely u = A cos m +  COS Xx/a. 
thus obtained is g rea t e r  than a p a r t i c u l a r  length,  t h i s  r e s u l t s  i n  being ab le  
t o  consider t h a t  the  buckling load i n  t h e  i n t r i n s i c  buckling of t he  s h e l l  
hardly changes at  a l l .  
the  g rea t e r  is the  increase i n  the  gradual buckling load (See Figure 1.2.8). 
.[27]. In sho r t  cases,  quan t i t i e s  such as r t / L 2  have a predominant. inf luence.  
This tendency i s  exact ly  similar t o  t h e  case of a rec tangular  f l a t  p l a t e ,  and 
i s  a c h a r a c t e r i s t i c  of  p l a t e s  and s h e l l s  as d i s t i n c t  from bars .  

When the  so lu t ion  

In cases shor t e r  than t h i s ,  the  g rea t e r  the  shor tness ,  

16 



The r e s u l t s  thus obtained should be considered 
as c l a s s i c  values.  For example, i n  the  case when a 

Q) cy l ind r i ca l  s h e l l  i s  buckled by sus ta in ing  a com- 
L Q\ 3 i pressive load, t he  buckling load has a value of 

about aka/Et = 0.6,  where a, is  the  compressive 3 
0 stress. However, i n  t e s t  r e s u l t s ,  t he  value is 
05 
a sca t t e red  between 0.1 and 0.4 and 0.2 can be COR- - s idered  as the  average value.  That i s ,  it i s  about 
u 1/3 of the  c l a s s i c a l  t heo re t i ca l  value. The buck- 

om1 

- . 
@¶Do! 

\ 

l i n g  load value f o r  a s h e l l  thus is d i f f e ren t  from 
the  case of a f l a t  p l a t e  o r  a b a r  and the re  is a 

&VC?t grea t  d i f fe rence  between the  classical theo re t i ca l  
--c L I 1  value and the  experimental value.  This i s  a l s o  a 

c h a r a c t e r i s t i c  pecul ia r  t o  t h e  buckling of  shel ls .  

W I  

Figure 1.2.8 
Moreover, i n  cy l ind r i ca l  shells,  i n  tile case 

of an a x i a l l y  compressive load, considering even the  i n t r i n s i c  buckling of t he  
s h e l l  i t s e l f ,  s ince ,  as s t a t e d  above, t he re  a r e  two types of buckling deforma- 
t i on ,  it is necessary t o  determine which of these i s  manifested. Axially 
symmetrical deformation normally only occurs i n  a cy l ind r i ca l  s h e l l  which is  
r e l a t i v e l y  th ick  and has a high buckling compressive stress. In addi t ion ,  
when t h e  cy l ind r i ca l  s h e l l  i s  long, t h e  buckling should occur i n  t h e  form 
c h a r a c t e r i s t i c  of  bars  and ac tua l ly  appears i n  p a r t  of the r e s u l t s  as a spec ia l  
case of t h e  above so lu t ion .  

/13 - 

What should be noted i n  p a r t i c u l a r  for the  case of s h e l l s ,  is t h a t  i n  t h e  
above methods, when determining the  buckling load, t he  s t r e s s e s  p r i o r  KO buck- 
l i ng  are taken i n t o  account, bu t  deformations and displacements p r i o r  t o  buck- 
l i n g  are not considered. There are cases i n  which these  cannot be overlooked 
i n  the  case of  s h e l l s .  When t h i s  i n i t i a l  deformation i s  included i n  the  
equation, t he  deformation i t se l f  completely depends on f i n i t e  deformation. 
In t h i s  event,  t h i s  is a case with no poin t  of b i furca t ion .  The buckling of  
s h e l l s  is thus not a simple matter, and s ince  it i s  r e l a t e d  t o  such th ings  as 
jump t r a n s i t i o n ,  y i e l d  or vaul t ing ,  it i s  impossible t o  deter%ne the  buckling 
phenomenon adequately, only i n  terms of equilibrium i n  which the  f i n i t e  defor- 
mation i s  considered t o  be inf in i tes imal .  Consequently, i n  such L case, i t  i s  
necessary t o  deal with general  f i n i t e  deformation equations.  Since t h i s  in -  
volves d i f f e r e n t i a l  equations which are d i f f i c u l t  t o  so lve  even when they are 
l i nea r ,  and which become non-linear i n  t h i s  case,  the  method described above 
is impract ical .  For t h i s  reason, t he  energy metho3 described below i s  used. 

As described above, when r e s t r i c t i n g  f i n i t e  deformation t o  an i n f i n i t e s i -  
mal value,  i n  t he  methods of dc tmnin ing  buckling load, t he  c h a r a c t e r i s t i c  
differences between rods and p l a t e s ,  and s h e l l s  a r e  character ized by the  f a c t  
t h a t  when they are long, t he  buckling load decreases a t  an jncreasing r a t e  i n  
bars ,  but the buckling load i n  the  case of the  i n t r i n s i c  buckling of  p l a t e s  and 
s h e l l s  reaches a point  where it  no longer va r i e s .  The most c h a r a c t e r i s t i c  f a c t  
concerning the d i f fe rence  between bars ,  p l a t e s  and s h e l l s ,  i s  most c l ea r ly  
manifested i n  the  case of  the  deformation occurring a f t e r  buckling. 
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I .  2.3. Deformat ion and Load After Buck1 i n g  

Since we are deal ing with deformations occurr in? a f t e r  buckling, it i s  
absolutely necessary t o  follow f i n i t e  deformations. For t h i s  reason, s ince  i t  
is necessary t o  employ non-l inear  d i f f e r e n t i a l  equations,  t h i s  becomes extreme- 
l y  d i f f i c u l t ,  it is  therefore  necessary i n  very many cases t o  use a method of 
approximation, without following pure f i n i t e  deformation theory and merely t o  
determine the  re la t ionship  between bowed and deformation up t o  a ce r t a in  degree 
of deformation. 
and the re  a r e  many cases i n  which such a treatment i s  used, but  t h i s  point w i l l  
be described la te r  on. 

Nhen energy theory i s  u t i l i z e d ,  t h i s  becomes r e l a t i v e l y  easy, 

Regarding deformation occurring after t h e  buckling of  a s t r a i g h t  bar ,  
following normal f lexure  theory (1.2.7) above, t he  bending moment is assumed 
t o  be proport ional  t o  t h e  curvature,  and i f  w e  decide t o  use the  cor rec t  values 
from d i f f e r e n t i a l  geometry f o r  t he  curvature,  we obtain the  following equation. 
When one end i s  free and the  o the r  end i s  r i g i d ,  expressing the  def lec t ion  a t  
t he  f r e e  end as 6 [4 ] .  

(1.2.16) 

or using dv/ds = 8 as a var iab le  [l] and using length s along the  ba r  axis 
i n  place of x, it is t r ea t ed  i n  the  form 

(1.2.17) 

and it is poss ib le  t o  determine the  r e l a t ionsh ip  between 6 and P. 
has long been known under the  name Elastica, t h e  r e l a t ionsh ip  between &and  P 
is shown i n  Figure 1.2.9, and na tu ra l ly  one proceeds from the  S i fu rca t ion  where 
there  i s  a buckling load. 
1.2.10 and 1.2.11. The a l ,  a2, and a3 correspond t o  the  curves m = 0 and b l ,  
b2, b3 correspond t o  m = 1. The curves m = 0, 1, 2 ,  ... i n  Figure 1.2.9 are 
independent and not in te rsec ted .  As described below, only m = 0 i s  the  case 
of a s t a b l e  equilibrium and m = 1, 2,  ... is  the  case of unstable  equilibrium. 
In the case where both ends a re  ro t a t ed ,  t h e  deformation i s  as shown i n  Figures 
1 .2 .12  and 1.2.13, deformations a l ,  a2, a2 are s t a b l e ,  and the  o the r  b l ,  bp, 
b3 a re  unstable .  The r e l a t ionsh ip  between load and def lec t ion  i n  the  center  
is similar t o  t h a t  which is  shown i n  Figure 1.2.9. 

The r e s u l t  

The form of  deformation i s  as shown i n  Figures 
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I C  

Figure 1.2.9. Figure 1.2.10. 

Figure 1.2.11. 

c: 
Figure 1.2.12. 

Figure 1.2.13. 

Now the  i n i t i a l  por t ion  of t he  curve m = 0 i n  Figure 1.2.9 i s  almost a 
parabola, and the  equation f o r  t he  parabola is 

P=P,( liT 1 -$). (1.2.18) 

Consequently, when P increases  1% more than Pk, 6 becomes 18% of column length 
L and the  deformation increases  markedly even i n  the  case of a s l i g h t  increase 
i n  load. 
takes place with buckling load. 
ber ,  it cannot withstand such a deformation. 
r ea l i zed  i n  the  case of something l i k e  a human h a i r .  Thus, as general  theory,  
we can say t h a t  i n  f lexura l  buckling due t o  t h e  compressive load on a s t r a i g h t  
bar ,  i n  t he  c s e  o f  buckling load, a la rge  deformation occurs, even i f  the  load 
is scarce ly  increased a t  a l l ,  and f o r  t h i s  reason, rupture  i s  caused. In o ther  
cases of buckling of a s t r a i g h t  ba r ,  it i s  considered t h a t  almost the same kind 
of tendencies appear, bu t  apparently the re  are no c l e a r  cases of such tendencies.  _/E 

Consequently, i t  can be considered t h a t  a very la rge  deformation 
And when t h i s  i s  an ordinary structura!. mem- 

Such a la rge  deformation can be 

In the case of a f l a t  p l a t e  as described above, t h e  case i n  which the  de- 
formation i s  s o  grea t ,  t h a t  t he  curvature must be expressed cornpletely i n  terms 
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of f i n i t e  deformation, i s  not t r ea t ed  here.  
s t ruc ted  from t h e  re la t ionship  of displacement and s t r a i n ,  assuming the def lec-  
t i m  t o  be great .  
carry out an approximation o r  change over t o  the  energy method [g] .  
case,  i n  the event of a p l a t e ,  it i s  extremely d i f f i c u l t  t o  obtain subs t an t i a l  
r e s u i t s .  Only various types of r e s u l t s  €or  the  case i n  which some degree of 
approximation i s  allowable, have been published. The equilibrium equation f o r  
a f l a t  p l a t e  end r e s u l t s  obtained when i t  i s  assumed t h a t  within the  displace-  
ment, only the  def lec t ion  is  assumed t o  be la rge ,  i s  as follows. F is  A i r y ' s  
s t r e s s  function 

Ne proceed from an equation con- 

There a re  many cases i n  which during the  process we e i t h e r  
In any 

(1.2.19) 

(1.2.20) 

Using these equations,  t he  r e s u l t s  obtained which determine the  re la t ionship  
between the  load and the  deformation a f t e r  buckling i n  a rectdggular  p l a t e  
which sus ta ins  a compressive load i n  one d i r ec t ion ,  a r e  shown i n  Figure 1 .2 .14 .  
In many cases ,  ins tead  of expressing It i n  t h i s  form, it i s  expressed as i n  
Figures 1.2.15 and 1.2.16 i n  terms of t he  e f f e c t i v e  width (mittragende Brei te)  
bm. 
approximately with the  tes t  r e s u l t s .  

I t  is expressed by the  following equations,  i n  which i t  i s  made t o  agree 

Figure 1.2.14 Figure 1.2.15 Figure 1.2.  I6 

Karman's equation (291. 
(1.2.21) 

hiarguerre's equation [30]. b,/b=i/a,/crc (1.2.22) 

where uL i s  the  v e r t i c a l  compressive stress i41 the  case of l a t e r a l  force and 

uk is  the  buckling compressive s t r e s s .  
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In such a case,  i t  i s  even more important t o  s t a t e  i n  d e t a i l  how the con- 
tour  conditions a re  obtained, than i n  the  case described above i n  the  previous 
sec t ion .  I f  not done, a great  difference w i l l  appear i n  the  r e s u l t s .  Even ,n 
the case of the load s i d e  conditions [ l i t e r a l  t r a n s l a t i o n ] ,  it i s  possible  t o  
proceed i n  such a manner t h a t  i n  compression, the  load on the  com7ression s i d e  
i s  uniformly d i s t r ibu ted ,  o r  t o  have the  load such t h a t  the  displacement i s  
uniform. 
but the  r e s u l t s  a r e  completely d i f f e ren t  a f t e r  buckling occurs.  
example i s  a case where displacement has a uniform d i s t r i b u t i o n  and s ince  t h i s  
i s  c loses t  t o  cases which ac tua l ly  occur, normally t h i s  case i s  employed. I f  /16 
we consider t h a t  t h e  load has a uniform d i s t r ibu t ion ,  the  increase  i n  load a f t -  
e r  buckling, will be extremely s l i g h t  and vi11 be considered t o  y i e ld  a r e s u l t  
which i s  close t o  t h a t  i n  the  case of a bar.  

Both of these  have exact ly  the  same meaning u n t i l  buckling occurs,  
The previous 

-- 

In the  r e s u l t s  where with a s i d e  load, t he  displacement has a uniform 
d i s t r i b u t i o n ,  t he  d i s t r i b u t i o n  of t he  ex terna l  force on t h e  load s i d e  becomes 
non-uniform a f t e r  buckling occurs,  and has the  d i s t r i b u t i o n  shown i n  Figure 
1.2.17. Immediately a f t e r  buckling, t h i s  is  almost a cosine curve and i n  the 
center  is equivalent  t o  the  buckling s t r e s s ,  bu t  af ter  t h i s ,  i n  the  region of 
the  contour, whereas the  ex terna l  forces  increase gradually,  conversely i n  the  
center  sec t ion  the  ex terna l  forces  decrease. Since the re  i s  absolut3ly no de- 
f l ec t ion  on the contour, t h e  shrinkage i s  d i r e c t l y  determined f r o 3  the  d i s -  
placement, and the  stress i s  determined. In the  center  port ion,  considering 
the  e f f e c t  of t he  def lec t ion ,  i t  i s  zecessary t o  perform the  above ca lcu la t ions  
i n  c rder  t o  determine the  magnitude of t he  ex te rna l  force .  

The r e l a t ionsh ip  between de f l ec t ion  and load 
Ul acccrding t o  Kromm and Marguerre's ca lcu la t ions  

[31] i s ,  assuming w = f s i n  vx/b s i n  vy/Bb, 
0 = P/tb 

P 
o,/u,=(p"+I3"+2)/4, or (1.2.23) 

f 
Q1 

---- b----- 

Figure  1.2.17 

Consequently, immed-iately a f t e r  buckling, t h i s  forms a parabola 

(1.2.24) 

which is  as shown i n  Figure 1.2.18. Let us compare t h i s  with the  case of a bar .  
In a bar  which sus t a ins  an ax ia l  compressive load, when bath ends are r o t a t i n g  
ends, P/Pk  = 1 + 1 r ~ / 8 * 6 ~ / L ~ .  Here and i n  the  above equation, i f  we compare the  
coe f f i c i en t s ,  6/L2 and f2 /b2 ,  the l a t t e r  i s  E/ok times g r e a t e r  than the  former. 
Since such a large cont ras t  occurs, the increase in  de f l ec t ion  with respect t o  
the increase i n  load i n  the  case of a p l a t e ,  is not as marked c y  it i s  i n  the  
case of a bar .  
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In t h i s  manner, the re la t ionship  between defor- 
mation and load t f t e r  buckling d i f f e r s  g rea t ly  i n  
comparison with the  case of a bar ,  and the load in -  
creases markedly a f t e r  buckling can be s a i d  t o  be one 
of the  major c h a r a c t e r i s t i c s  of the  buckling of a 
f l a t  p l a t e .  

I P/p* 

Figure 1.2.18 
Now l e t  us consider as representa t ive ,  t h e  case 

i? which a cy l ind r i ca l  s h e l l  sus t a ins  an axial compressive load, f o r  the  case 
of deformation a f t e r  the buckling of a s h e l l .  In t h i s  case,  i n  the  buckling 
which causes a x i a l l y  symmetrical deformation, it i s  normal f o r  t he  s t r e s s  t o  
be g rea t e r  than a proport ional  l i m i t ,  so t h i s  w i l l  be described bejow. First 
we s h a l l  discuss  the  case where a diamond-shaped deformation occurs. 

Ne a r e  considering deformation occurring a f te r  the  buckling of a s h e l l ,  
but  s ince  as described abo-le, there  i s  already l i t t l e  ce r t a in ty  of a buckling 
load i t s e l f  occurring, it ,,auld be s t range  indeed t o  continue the  same pol icy  
as above i n  computing the  deformation after buckling. 
which have been computed in  t h e  past agree with the  c l a s s i c a l  values ,  and 
according t o  Karman and Tsien [32] the  deformation a f t e r  b-ickling i n  the  case 
of buckling due t o  the  compressive load on a cy l ind r i ca l  s h e l l  produces a de- 
f l e c t i o n  which is i n  the form of  a s i n e  curve both l a t e r a l l y  and longitudin- 
a l l y  but  when the  deformation i s  g rea t ,  it takes the  diamond-shaped mentioned 
above. laen  we use Ea/t, i n  place of  contract ion E i n  t he  ove ra l l  d i r ec t ion  
of the  ax i s ,  and W E t  i n  p lace  of t he  compressive s t rength  u ,  t he  re la t ionship  
between the  two of them i s  expressed as sho::n i n  Figure 1I2.19. Here, a i s  the  
diameter of  t he  cyl inder  and t is  the  sk in  thickness .  
graph ind ica tes  t h a t  when incre&sing the  load along OA i n  the  graph, point  A 
drops due t o  the  imperfections i n  the  t e s t  specimen, o r  on the o ther  hand, 
energy i s  supplied due t o  v ibra t ion  of t h e  tes t  apparatus,  and from a poin t  
which does not reach buckling point  A, the  load suddenly jumps i n  the  d i rec-  
t i on  indicated by the  dot ted l i n e  and s h i f t s  t o  a point  D f  low s t a b i l i t y .  
the case of  a loading method, i n  which the load is  var ied i n  s t ages ,  the d i rec-  
t i o n  of t h i s  dot ted l i n e  changes suddenly i n  the  horizontal  d i r ec t ion  i n  the  
graph; it changes rap id ly  i n  a v e r t i c a l  d i r ec t ion  when the  displacement of the  
end i s  var ied i n  s tages ,  and changes suddenly i n  a s l a n t  d i r ec t ion  i n  a case 
intermediate between these two (normally t h i s  belongs t o  the  csse when the  
e l a s t i c  deformation, e t c .  of the t e s t  apparatus is  taken i n t o  consideiation:.  
Karman maintains t h a t  the  tes t  r e s u l t s  record the numerical value of point  B 
which i s  the minimum value.  
with the average value of the t e s t  r e s u l t .  
ca l led  by Karman the lower buckling value. 

The buckling values 

According t o  karman, the  /17 - 

In 

This means t h a t  po in t  B aa/Et = 0.194 which agrees 
The value f o r  t h i s  point  9 i s  

I f  conditions are as described above, f o r  example 
s ince  both points  C and D a r e  i n  a s t a t e  of s t a b l e  
equilibrium, an unstable  point  of equilibrium, E 
should appear on l i n e  CD. In order  t o  jump t h i s  un- 
s t a b l e  oquilibrium po in t ,  considering t h a t  it becomes 
s l i g h t l y  lower due t o  the  imperfection of t he  t e s t  
piece,  nevertheless  we be l ieve  t h a t  a considerable 

s b  
0194 ---. - 

Figure 1.2.19 
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amount of energy must be supplied.  
po in t ,  I have given i t  the name of "vaulting theory". 
occurs, a i so  j.r t he  buckling of o ther  s h e l l s .  

Since we a re  considering a jump over t h i s  
A s imi l a r  phenomenon 

However, even considering the  f a c t  t h a t  tl-ere a r e  repor t s  [ 6 ]  t o  the  e f -  
f ec t  t h a t  the jumping phenomenon described i n  the  IntiDduction c l e a r l y  occurs 
i n  experiments i n  the  case of a t h i n  cyl inder  and a curved p l a to ,  we f s e l  t h a t  
it i s  groundlyss t o  viek it  as KarnJan Joes,  as downward lower buckling value.  
I t  i s  believed t h a t  it is  most va l id  t o  consider t h a t  the  buckling load i n  a 
pure cy l ind r i ca l  s h e l l  i s  simultaneously the  jump t r a n s i t i o n  load described 
above. I t  i s  a l so  surmised tha t  i t s  value i s  probably close t o  1 / 2  the 
c l a s s i c a l  value. Moreover, duz t o  the  imperfection of t he  test  s?ecimens, 
the value can be considered t o  drop and f o r  a d i r - ~ e r s i o n  t o  occur. However, 
a pos i t i ve  a s se r t ion  cannot be made s ince  an accurate  so lu t ion  ha3 not ye t  
been given. In any case, i n  t he  case of a s h e l l ,  we be l ieve  t h a t  i t  i s  cer-  
t a i n  t h a t  the  load f o r  a s t a t e  of eqai l ibr ium a f t e r  I- . .ckling drops. 

Summarizing the  explanation given above f o r  the  loads of deformation a f t e r  
buckling, very marked c h a r a c t e r i s t i c s  a r e  indicated,  i n  whiL-h the  buckling load 
i n  a b a r  is  aliilost constant ,  the  load increases  i n  3 f l a t  p l a t e ,  while i n  a 
s h e l l ,  t he  r e s u l t  i s  t h a t  the  load i s  reduced rap id ly .  Tnis can be considere3 
as t h e  c h a r a c t e r i s t i c  differences between bars ,  p l a t e s  and s h e l l s .  Of course,  
we a re  only ta lk ing  here of representa t ive  cases ,  but x' n it comes t o  spec ia l  
configurations o r  complex condi t ions,  these  cha rac t e r i s t i c s  become b lur red  ?d 
nothing can be done about i t .  An example of :his i s  the  f a c t  th5; a curvea 
p l a t e  with a small curvature has cha rac t e r i s t i c s  similar t o  t h a t  of a f l a t  
p l a t e .  

1.2.4. Buckling, Stability and Instability il: El - 'gy Theory 

Now l e t  us consider the  above buckling phenomena i n  tem.5 of energy 
theory.  A r e s u l t  o f  t h i s  i s  merely t h a t  we are viewing the  same f a c t s  from 
a d i f f e r e n t  point  of  view, but s ince  judgments of stability and i m t a b i l i t y  
must be based on considerat ions of trlergy theory,  ?he l a t t e r  must be taken 
i n t o  account. 
the  case when it i s  r e l a t i v e l y  easy t o  s e s  whbt type of changes i n  overa l l  
ener,v occur i n  the case accnmpanying the  buckling phenomenon. Considered 
generally i n  terms of energy, the  casn when t h e  potent iJ!  FIlerAy of the  intern: 
a1 and external  forces  ll is  an extreme value,  i s  t h e  s t a t e  of equilibrium. 

First l e t  us in3 ica te  the r e s u l t s  of  computations performed f o r  

/18 - 
an=o (1.2.25) 

In inf in i tes imal  deforma+jon t~ eory, i n  terms of the  l i n e a r  r e l a t ionsh ip  be- 
tween displacement, s t r a i n  and s t r e s s ,  t he  m a x i m u m  o f  the  displacements f o r  ll 
i s  o f  the  second order and geom?tr ical ly  forms a auadra t i c  parabola,  so  there  
is  only a s ing le  extreme value. 
so lu t ion .  
deformation theory,  the  re la t ionship  between displaccms. It and s t r d i n  c z i  no 
longer be c m i d e r e d  as l i n e a r ,  and the  s t r a i n  energy; i . e . ,  the  potent la1 
energy becomes a high order  parabola of the t h i r d  order  o r  above, and there  a re  

This cons t i t u t e s  - the s i n g u l a r i t y  of Kirchhoff's 
When it  comes t o  e l a s t i c  s t a b i l i t y  theory which deals  w i t 1 1  f i n i t e  
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two o r  more extreme value points .  I n  the  buckling pi-oblem, the  case whtn two 
o r  more points  of equilibrium are adjacent t o  each o the r  corresFonds t o  the 
point of b i furca t ion .  In only determining the  buckling load, the  amount of 
the degree of displacement is s t i l l  small even a t  the  Doint of b i fu rca t ion ,  
and, as has been explained already, a l i n e a r  re la t ionsnip  can be used and the  
solut ion is  r e l a t ive ly  simple. However, s ince  it is  a l s o  r e l a t i v e l y  easy t o  
determine the  s t a t e  a t  a point somewhat d i s t a n t  from t h e  point  of k.ifurcation, 
i n  terms of energy theory,  we s h a l l  consider it on t h i s  point  of  view. 
over, we s h a l l  proceed i n  our invest igat ion assuming t h a t  6ll  = 0 determines t h e  
point of  e@?ibrium, and t h a t  t!:ere e x i s t s  a s t a b l e  equilibrium with X = Vin. 
i .e . ,  d 2 i i  > 0. 

;dore- 

First we shall consider as an example the  case i n  which f l exura l  buckling 
occurs rlue t o  an axial compressive load i n  a rod. 
is large in  comparison with o ther  displacements, t he  elongation of  t he  cen- 
t e r  axis  of the rod i s  

Nhen the  rod de f l ec t ion  w 

(1.2.26) 

and we consider a range of  magnitudes of deformation such t h a t  t h e  bending 
curvature K is expressed by 

X 

(1.2.27) 

Next, assuming the  displacement a t  one end t o  be 0, and the  displacement a t  
t h e  o the r  end t o  be only i n  tale d i r ec t ion  of the  ax is  
age stress zx bar  sec t ion  is 

t h a t  is, e t ,  t he  aver- 

(1.2.28) 

and the  s t r a i n  energy A i  is as follows, with i as t h e  two-dimensional diameter 
of the  cross-sect ion and F as the  sec t ion  area 

(1.2.29) 

- 
When the  external  force i s  a compressive force,  P = pF = -axF, s ince  the  in-  
crease i n  the  po ten t i a l  energy of the external  force  is -(pF)(eL), the  overa l l  
increase i n  poten t ia l  energy i s  

Considering II as the r e s u l t  of  dividing t h i s  potei i t ia l  energy !I by EFL 

(1.2.30) 

(1.2.31) 
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llere we bii.;ll inves t iga te  the  deformation of a b a r  where t h i s  i s ,  from t h e  / 19 
condition fl = >!in. i n  the  v i c i n i t y  of  t he  buckling value o r  a value higher  
than this. 

{ssurning t h a t  one end of  t h i s  rod (x  = 0) hzs  a displacement of 0 at  the  
ro t a t ing  end, the  o ther  end (x = L) i s  a ro t a t ing  end, sus t a ins  the  axial com- 
pressive load P and is assumed t o  be able  t o  move only i n  t h e  d i r ec t ion  x. 
In such a case,  the  following two types can be considered as independent var- 
i ab l e s  [33] .  That i s ,  we w i l l  take e i t h e r  t he  displacement of end (A) o r  t h e  
external  force (E) as the independent var iab le .  

(1.2.32) i 1  Displacement where x = L, u(L) = -eL o r  

Conpressive external  force p = P/F 

Since we &re applying a hypothet ical  theory o f  displacement, we must fo l -  
low the  p a r t i c u l a r s  t h a t  a r e  involved. When employing va r i a t ions  of displace-  
ment, we a re  carrying out t he  va r i a t ion  i n  such a way t h a t  it is adapted t o  
geometry, idhen, as i n  case number 1, t h e  displacement of one end -eL is  given, 
t h a t  po in t  i s  not  moved. 
t o  one end, displacement i s  poss ib le  and the  work of the  ex terna l  force P6u 
en ters  the  ca lcu la t ions .  Also, t he  fact  t h a t  these  are extremes of value must 
be es tab l i shed  independently with respect  t o  both u and w.  
i a t i ons  f o r  u i n  equation (1.2.31) we have 

However, i n  case 2 ,  s i n c e  an ex terna l  force is  applied 

Then, from the  var- 

(1.2.33) 

The end condition i s  
(1.2.34) 

u(O)=O, u(L)=eL 0' lor ~<o)=o ,  cau/az+l/z. ( a u ~ / a Z y + F / ~ ~ , ~ - ~  . 
Carrying out va r i a t ion  cjf t he  same equation for w ,  we have 

These two simultaneous equations a re  not linear, bu t  they are not d i f f i c u l t  t o  
solve,  and from equation ( 1 . 2 . 3 3 ) ,  we have 

( 1 . 2 . 3 7 )  

- 
1 The l i n e  was drawn between the  two s ides  of  t h i s  i n  order  t o  cont ras t  the  

two types.  
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Inser t ing  t h i s  i n  equation (1.2.35) we obta in  

(1.2.38) 

The so lu t ion  i s ,  with eO/i2 = a2 

w= f sin az+g  COS az+ f,z+g, . (1.2.39) 

Kith respect  t o  f ,  g, f l ,  g , u(O), eo, the re  are s i x  end conditions 

u(O)=O, g+g,=O, g=O, j s : n  nL+f,L-O. ja'sin nL=0 (1.2.401 /20 - 

(1.2.41) 

when f l  = g l  = g = u(0) = 0 ,  one of t h e  following two i r .  obtained 

u=-c dr G ~ = : ~ I E ,  ~ = - - P I E - z  (1.2.42) 

There are two states of equilibrium, a s t r a i g h t  s ta te  where f = 0 and a bent 
s ta te  where f In the  s t r a i g h t  state, t h i s  is  determined by t h e  p or  e,  
but  i n  the  bent state,  i n  the  case of (A) where the  end displacement is con- 
s idered  an independent var iab le ,  f i s  determined by e ,  

0. 

.. J=l4 L'=c-e+ , (1.2.44) 

In case (B) where the  ex terna l  force of  the  end is considered an independent 
var iab le ,  p i t s e l f  i s  

p=ES*=p* (1.2.45) 

a l i m i t  value i s  given, which i s  not exceeded. In t h i s  manner, w e  f i n d  from 
energy theory t h a t  there  are two equilibriums, and two systems f o r  determining 
them. Since there  i s  a d i f fe rence  i n  t h e  form of t h i s ,  and t h a t  which is  t r e a t -  
ed by ordinary energy methods, thi ;  po in t  must be examined. 

As s t a t e d  i n i t i a l l y  r[ is  a minimum value; i . e . ,  6ll  = 0, 6211 > 0,  t h e  condi- 
t i o n  f o r  a s t a b l e  equilibrium. Moreover, t he  conditions f o r  determining accur- 
a t e l y  s t a b i l i t y  and i n s t a b i l i t y  from energy theory are as follows: 
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(1) The f a c t  t h a t  the  equilibrium is  s t a b l e  means t h a t  :he po ten t i a l  ener- 
gv i n  a l l  adjacent states of '-:forr!.:..,tion is  g rea t e r  than the value of 
the  case of equilibrium. 

(2 )  The fact t h a t  the  equilibrium i s  unst,ible means t h a t  a t  l e a s t  one 
m i n i m u m  adjacent s t a t e  of deformation i s  present ,  i n  which the  poten- 
t i a l  energy i s  smaller. 

(3)  That there  is  an unstable  equilibrium rneans t h a t  one minimum adjacent 
s ta te  of deformation is present ,  i n  which the  po ten t i a l  energy i s  of 
the  same magnitude, t h e  po ten t i a l  energy i s  g rea t e r  than the  o the r  
adiacen tates of  deformation, and t h a t  there  is absolutely no s t a t e  
nresr,;l- I Ihicl: i t  is  smaller. When t h i s  is the  intermediate s t a t e  
of e q u i l i 5 r i u c  i n  t h e  change from equilibrium s ta te  (1) t o  s ta te  (2) 
it i s  ca l l ed  thc  l i m i t  of  s t a b i l i t y .  

.. 
In order  t o  determine t h e  condition where II described above i s  Min., u + 

6u, and !J + 6w i s  subs t i t u t ed  f o r  w and ad jus t ing  f o r  t he  powers 6u, 6u.[poss-  
i b ly  a misprint] ,  and excluding anything above the  t h i r d  order ,  

(1.2.36) 

The f a c t  t h a t  t he  primary [ lst  order] term of 0 was already used i n  case of 
equilibrium. The s t a b i l i t y  condition is determined from the  secondary [2nd 
order] terms. 
t r ac t ion ,  according t o  equation (1.2.42) 

Using the  r e s u l t s  from 6 n  = 0, i n  the  case of  a s t r a i g h t  con- 

(1.2.47) 

Also, from the  curved s ta te ,  according t o  (1.2.43), we obtain 
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Xhen i t  comes t o  determining the  l i m i t  o f  s t a b i l i t y ,  t he  second va r i a t ion  i s  0.  
However, s ince  it does not become negat ive,  the  f a c t  t h a t  6211 = 0 means t h a t  i t  
i s  a minimum value.  In such a spec ia l  case, t h i s  i s  

6 (  8'a>=O. (1.2.49) 

This, i n  the  present problem i s  

so 

(1.2. SO) 

(1.2.51) 

( I .  2.53) 
6u=0, 8w=8f sin xz/L 

sat isf ies  the  end condition. Consequently, when 5f 0,  t h i s  i s  the  case of an 
unstable  equilibrium. Yoreover, from equation (1.2.51), t he  l i m i t  value of e 
i s  

*:=iflt*/L= 

meaning t h a t  ek = e* and the  b i fu rca t ion  poin t  of equi l ibr ium matches with the  
. /22 l i m i t  of i n s t a b i l i t y .  - 

The r e s u l t s  of determination of s t a b i l i t y  and i n s t a b i l i t y  a r e  

(1) s t a b l e  i f  t he  s t r a i g h t  deformation from (1.2.47) is e - Le*.  

(2) unstable  i f  the  s t r a i g h t  deforn%tion is  e > e*; i . e . ,  if 
fw = f s i n  TX/L is included, 62r; < '3. 

(3) a3 f o r  the  f a c t  t h a t  the  curved shape is s t a b l e  where e > e*, judg- 
ing from equation (1.2.48), tho port ion 

is  pos i t i ve  regardless  o f  t hc  shape assumed fL :  6w. Moreover, s ince  

A 

is a l so  added. I t  is c l e a r  t h a t  6211 a 0.  
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Ilere, using the  method of determining the l i m i t  of s t a b i l i t y  mentioned 
above, xe s h a l l  exanine t h e  r e l a t ionsh ip  t o  the ordinary energy methods. In 
ordinary cases,  t h i s  amounts t o  merely inves t iga t ing  proper t ies  a t  the s t a b i l -  
i t y  l i m i t ;  t h a t  i s ,  i n  such a case,  t he  t r a n s i t i o n  from a d i r e c t  form of de- 
formation t o  a buckling form of deformation, is invest igated.  In such a case, 
t h i s  amounts t o  e i t h e r  inves t iga t ing  changes only i n  the  intern31 energy where, 
as Jescr ibed above, the  displacement of t he  end is  f ixed ,  o r  t o  consider the  
work of t he  ex terna l  force ,  t ak ing  i n t o  account t h e  displacement of t h e  end. 
Deducting the t o t a i  amount of work u n t i l  t h e  s t a b i l i t y  l i m i t  i s  reached, con- 
s ider ing  t h e  energy newly applied a t  the  z t a b i l i t y  limits as A i  and .4a f o r  the  
in t e rna l  and external  forces ,  t h i s  is expressed a t  t he  s t a b i l i t y  l i m i t  by t h e  
folloliing equation 

Af-A.=O . (1.2.54) or 
I Ab=O 

W r i t k g  the contract ion a t  t he  s t a b i l i t y  l i m i t  -au/ax as eo and with the  stress 
as Po 

(1.2.55) 

In t h i s  eQuation on the  l e f t ,  t he  tern (aw/a~)~is not  present ,  as i n  :he case 
of equation (1.2.30). 
s t a t e ,  it is assumed t h a t  s t r a i n  energy due t o  elongation i s  not present  ( i . e . ,  
the  t o t a l  length does not change). However, f o r  t h i s  reason, it i s  assumed 
t h a t  the  end is displaced only 

In the  r i g h t  equation, even though t h i s  i s  a curved 

The condition of a s t a b i l i t y  l i m i t  (1.2.54) i s  s a t i s f i e d  f o r  a s p e c i f i c  
wix) ,  but  i n  o the r  forms of deformation 

or 
I Ai-&> 0 Ar>O 

Consequently, with t h i s  s p e c i f i c  w(x), A i  o r  Ai - A, becomes a minimum value.  
Therefore 

6A,=O O r  J(d,-&)=O. (1.2.56) 

That i s ,  a double requirement f o r  equation (1.2.54) and equation (1.2.56) ex- 
ists .  k i t t e n  i n  the  form of an equation 

- . . -  

(1.2.57) - /23  
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T h i s  equation i s  a second order  equation which is  of the  same order  as W. 

Moreover, these equations agree with equation (1.2.47) above i n  which the  con- 
d i t i o n  i s  t h a t  62E i s  minimum. 
ever, it i s  c l e a r  t h a t  t he  r e l a t ionsh ip  t o  the  second vari7:ion i s  c l e a r e r  i f  
the  approach described above i s  taken i n t o  account. However, i n  t h e  case o f  
the  present method, s ince  i t  i s  expressed by the  same equation, using the  in -  
f in i tes imal  displacement a t  t he  s t a b i l i t y  l i m i t ,  occasional ly  it i s  easy t o  
commit an e r ro r .  That i s ,  t h e  equation f o r  t he  usual energy method does not 
elnploy the  p r inc ip l e  of  a . - -pothet ical  displacement such as t h a t  described 
above, and i s  merely used f o r  determining the  s t a b i l i t y  l i m i t .  

The only d i f fe rence  is t h a t  6 w  here i s  w .  I!ow- 

The r e s u l t s  described above become very easy LO understand i f ,  ins tead  
of  using the va r i a t ion  method, t h e  problem i s  t 3  determine the  normal minimum 
values,  u t i l i z i n g  1:i tz 's  [34] method. R i t z ' s  equation, solving equations 
(1.2.33-36) is 

.. 
The po ten t i a l  energy II i n  t h i s  case is 

(1.2.58) 

so,  the  equation f o r  determining f and p i n  t h i s  s ta te  of  equilibrium derives  
from t h e  minimum condition f o r  e, f .  

I' \ - *  2.59) 

(1.2.60) 

Then, f o r  t he  s ta te  of equilibrium 

(1 J . 6 2 )  

S t a b i l i t y  i s  determined by the  second va r i a t ion ,  bu t  here  w e  s h a l l  do t h i s  by 
a second order  d i f f e r e n t i a l .  The value is  

(1.2.63) 
,. 

Therefore, the  s ta te  of equilibrium (1) i s  62n>0 where e >  e* and i s  s t a b l e ,  but  
where e < e * ,  it becomes 6211/3f2 = n2/2L2. (e* - e)  < 0 ,  and i s  unstable .  
s t a t e  o f  equilibrium (2) e x i s t s  where e > e* and s ince  .rr2f2/4L2 = e - e* a 2 i / a f  
> 0, it i s  s t ab le .  

The 
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In &-der t a  make the  r e s u l t s  of t he  above equation more e a s i l y  understand- i 

able ,  we s h a l l  compute the  s t r a i n  energy i. thus,  with a = e/e* 
1 

A 

so ,  with 6 on the  x ax i s ,  a a s  a parameter, and y = i i /e* '  on the  y ax i s ,  we 
obtain Figure 1 .2 .20 .  
i n  the  Wi/e**. This Is done i n  order  t o  make the  graph more e a s i l y  under- 
standable.  I t  can be e a s i l y  seen irom t h i s  graph, t h a t  where the  transforma- 
t i o n  f = 0, with a = 1 as limits, A .  var i e s  from minimum t o  maximum value,  
while where a > 1, the  place where 
where f 0, i s  clearly seen. 

The energ): port ion of the  external  force  i s  not included 

' 
1 t he  minimum value appears i n  t he  port ion 

c 
. 5  

This by i t s e l f  is not  very accurate ,  but 
it i s  proven by another method, t h a t  i t  agrees 
with the  r e s u l t s  described above, even i f  a 
la rge  displacement i s  taken i n t o  account, o r  
even i f  the  cor rec t  va r i a t ion  treatment i s  
used (4), t h a t  means t h a t  i n  the  f l exura l  
buckling of a ba r  with both ends r o t a t i n g  o r  
one 

? 4  
ci 

t :  
I 

end r i g i d  and the  o ther  end f r e e ,  

F i g u r e  1.2.20. (1) 

(2) Within the  range of a column 
deformation which causes a de f l ec t ion  
s t a b l e  as long as it i s  i n  a s t a t e  of 

deformation with uniform contract ion and 
no def lec t ion  ( i . e . ,  d i r e c t  form of de- 
formation) i s  s t a b l e  when the re  i s  less 
than a buckling load, bu t  unstable  when 
there  is more than a buckling load. 

length (excluding both ends) ,  t h e  form of 
with no i n f l e c t i o n  point  is constant ly  
equilibrium ( i . e . ,  t h e  form o f  buckling 

deformation with respect  t o  the  lowest buckling load).  

(3) The type of deformation which causes an i n f l e c t i o n  point  within the  
range of a column length i s  unstable ,  ( i . e . ,  t he  form of  buckling deformation 
with respect  t o  the  second o r  greatg buckling load above). 

I t  i s  easy t o  misunderstand t h i s  problem of s t a b i l i t y  and i n s t a b i l i t y  
s ince  it is easy t o  think t h a t  given buckling, there  i s  an immediate t r a n s i t i o n  
t o  an unstable  state.  If considered i n  terms of columns, t he re  i s  the  phenomen- 
on according t o  which the  buckling i t s e l f  may s h i f t  t o  a s t a b l e  eqililibrium as 
described above, bu t  i n  ac tua l  materials, and i n  the  case o f  an eccen t r i c i ty  i n  
the  slenderness r a t i o ,  as described below, t h e  y i e l d  phenomenon arises, and the  
buckling en te r s  t h e  i n s t a b i l i t y  region. Consequently, s ince  cases of i n s t a b i l -  
i t y  are observed immediately i n  the  v i c i n i t y  of  buckling i n  experiments, it i s  
reascnable t h a t  it is  easy t o  have the  misconception t h a t  buckling i t s e l f  moves 
i n t o  an unstable  s ta te .  
above, and it  is  ce r t a in  t h a t  it moves t o  a state of equilibrium, and we wish 
t o  impress t h i s  on the  read$r 's  mind. 

However, the  pure form of buckling is as described 
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Apparently there  a r e  no r e s u l t s  of carefu l  inves t iga t ion  of s t a b i l i t y  and 
i n s t a b i l i t y  in  t h e  case of p l a t e s  and s h e l l s .  There are discussions of the  case 
i n  which inf in i tes imal  buckling deformation occurs i n  the  v i c i n i t y  of the point  
of  b i furca t ion ,  but there  a r e  no discussions of s t a b i l i t y  i n  the  very large 
buckling deformations i n  bars .  However, i t  i s  easy t o  imagine t h a t  t he  conclu- 
s ions would be t h e  same as f o r  t he  bars described above. 

We s h a l l  descr ibe concretely i n  d e t a i l  t he  energy method as a numerical 
method of ca lcu la t ion  of  buckling load l a t e r  on, and here  we s h a l l  merely de- 
s c r ibe  the fundamentals. F i r s t  l e t  us give a general  considerat ion (3) t o  the  
general  p roper t ies  i n  the  case of determining buckling load by the  energy 
method in  p l a t e s  and s h e l l s .  We assume t h a t  due t o  some externa l  force system, 
the p l a t e  o r  s h e l l  undergoes plane-internal  stress r e s u l t a n t s  n 

and t h a t  the  s t r e s s  couples (Schnittmomente) M M M are a l l  zero. In /25 

order  f o r  such a s t a t e  t o  obtain,  i t  i s  necessary f o r  an appropriate  external  
force t o  be applied i n  t he  case of  an appropriate  contour condition. Other- 
wise, no buckli..g w i l l  occur such t h a t  a b i fu rca t ion  point  occurs.  Assuming 
t h a t  the s t a t e  sus ta in ing  nxI,  n and 19 
attempt t o  determine the  buckling load by investig:-tlng, i n  terms of energy, 
the case i n  which the s ta te  i n  which the  displacements u ,  v,  w are newly ap- 
p l i ed  as a buckling deformation forms a s t a b l e  e q u i l i b r i m .  

n XI' yI '  "xyI' 
XI' y I '  xyI - 

i s  t h e  i n i t i a l  s ta te ,  we s h a l l  
YI XY 1 

We assume t h a t  by v i r t u e  of t he  added displacements, u ,  v,  w ,  t h e  stress 
couples M bl 11 b l  land the  la teral  shear ing force Qx, are generated, and 
the  plane in t e rna l  s t r e s s  resul:-ants increase only by n 

a re  considering only the range i n  which these values are markedly smaller i n  
comparison with the  o r ig ina l  n 

d i t i ons  must be e s t a b l i s h e d f n  both the  i n i t i a l  s tate and f o r  t he  case i n  which 
an addi t ional  displacement i s  appl ied,  with only the  addi t iona l  s ec t iona l  in-  
t e rna l  forces ,  end conditions of t h e  same order  are s a t i s f i e d .  Although there  
is a constant so lu t ion  f o r  the  case i n  which the addi t iona l  displacement is 
zero ove ra l l ,  i n  the  case of a sSecia1 ex terna l  force value,  a f i n i t e  so lu t ion  
is  obtained, and t h i s  i s  a buckling load. 

QY However, w e  
x' y' xy' yx 

x' ny9 nxy. 

Moreover, s ince  the  contour con- 
X I '  "yI' "xyI' 

Expressing by AAa the  po ten t i a l  energy l o s t  by the  ex terna l  forces  due t o  
u, v ,  w, we wr i te  t h i s  i n  the  following manner 

Also, we w i l l  express the  increase i n  s t r a i n  energy A A i  as follows 

AA~=AA~"'+AA,'"+;1A1(5' + (1.2.65) 

the  indices ( l ) ,  ( 2 ) ,  and ( 3 ) ,  ind ica te  respec t ive ly  the  f i r s t ,  second and 
t h i r d  order  p a r t s  of u, v, and w .  Then, judging from t h e  above, s ince  we assume 
t h a t  the i n i t i a l  s t a t e  i s  a s t a t e  of equlibrium, 
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Since AAi (2 )  - *Aa(’)> 0 ,  t h i s  i s  s t a b l e ,  and with respect  t o  the  s t a b i l i t y  
l i m i t  

(1.2.67) 

Moreover, i n  order  t o  compute A A i ,  we wr i te  t he  plane i n t e r n a l  s t r a i n  i n  the 
i n i t i a l  s t a t e  as E E the  s t r a i n  due t o  addi t iona l  displacement as 

E €  and the curvature i n  the  center  plane as K ~ ,  K K and t h e  plane 

element of center  plane as dF 

XI’ yI’ YxyI’ 

x’ y’ Yxy’ Y’ XY’ 

(1.2.68) 
1 

dAc=sp<nzr w h r q U + n z u ~ T z v ) d F +  -i-s f (nrcz+ny cp + n r y ~ z y ) d ~  

++jf (&Kz + Mu +2 x.zu cZu> d F 

Assuming t h a t  the  re la t ionships  nx =  NE^, ..., Mx 1 D K ~ ,  obtained, and wr i t ing  
the  re la t ionship  between s t r a i n  component and displacement, using the  indices  
(l),  (Z),  ... with the  same m.ianing as above, we obtain 

ct=ezc’l+~,c*’ + . . ., . . . (1.2.69) 

L;=L;IC’) +&e> + . . . , . . . 

dA,C”=Ja + J,t+J.P (1.2.71) 

J1, J 2 ,  and J 3  are values t h a t  are determined by the  proper t ies  of t h e  material, 
t he  size of the  p l a t e ,  and the  form of buckling deformation, and J 2 ,  J 3  always 
have a pos i t i ve  value. 
above, 

Inser t ing  t h i s  i n t o  the  equation f o r  s t a b i l i t y  l i m i t  

(1.2.72) - A l a ‘ ” +  J1+ J*t+ J#=O 

and -AAa(2), and J1 are proportional t o  the  load, consequently there  a r e  both 
cases i n  which t h i s  i s  pos i t i ve  o r  negative.  When the  load i s  small ,  t he  l e f t  
s ide  is  always pos i t ive ,  and as the  load is  increased, cases arise i n  which t h i s  
condition is s a t i s f i e d .  HowevGr when the added displacement forms the  plane 
in t e rna l  s t r a i n ,  i . e . ,  when E 11’ = E ( I )  = ( l )  = 0 ,  equation (1.2.72) be- 

comes nAa (2) - J1 = J3t3, and the buckling load i s  proport ional  t o  the  t h i r d  
poxer of t. Moreover, the  form of buckling deformation becomes i r r e l e v a n t  t o  
the p l a t e  thickness.  

X Y yXY 

This i s ,  i n  the  case of the  buckling of  a f l a t  p l a t e ,  
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the  corrugated shape of the deformation is  determined by the external  configura- 
t i on  of the f l a t  p l a t e ,  and the f a c t  t h a t  i t  is  i r r e l evan t  t o  the  p l a t e  th ick-  
ness has already been noted above. 

In t h e  case of s h e l l s ,  it is d i f f i c u l t  t o  have a general  s i t u a t i o n  with no 
plane-internal  s t r a i n ,  and the  r a t i o  between J2 and Jg, due t o  the sk in  thick- 
ness of t comes t o  d i f f e r .  That i s ,  the  corrugated shape of the  deformation 
d i f f e r s ,  and when t is  small ,  t h i s  means t h a t  J3 is  la rge ,  i . e . ,  a deformation 
i s  formed i n  which t h e  number of corrugations i s  grea t .  Moreover, the  buckling 
load occasionally i s  proport ional  t o  the  square of the  skin thickness t ( i n  the  
ax ia l  compressive load i n  a cy l ind r i ca l  s h e l l ) ,  o r  proport ional  t o  2.5 the  
power of t ( the case of  the  tors iona l  load i n  a cy l ind r i ca l  s h e l l ) .  Consequent- 
l y ,  it is necessary t o  keep t h i s  i n  mind i n  determining the  buckling load of a 
she1 1. 

1 . 2 . 5 .  THE CASE OF ORIGINAL DEFLECTION 

Above, we have described theo re t i ca l ly  simple cases of buckling and f o r  
t h i s  reason, we have assumed even t h a t  the  a x i a l l y  compressive load i s  a pure 
center  load, t h a t  we had simple p lane- in te rna l  stress r e su l t an t s  i n  p l a t e s  and 
s h e l l s ,  and contrasted these with the  cases i n  which no curvature va r i a t ion  
(or  negl ig ib le  curvature var ia t ion)  occurred. However, s ince  it i s  an extreme- 
l y  d i f f i c u l t  t ask  t o  produce such a pure configurat ion,  o r  t o  apply a load t o  
the t r u e  center ,  it is  ne: ?ssary t o  consider t h a t  i n  ac tua l  cases,  t h i s  "purity" 
i s  l o s t  at l e a s t  s l i g h t l y .  Consequently, it is  absolutely necessary t o  take 
i n t o  cocsiderat ion the influences due t o  the  imperfections i n  the  members and 
load eccen t r i c i ty .  

In order  t o  express the  imperfections i n  the  members, we s h a l l  express t h i s  
by the  configuration of  a physical body, and we w i l l  assume t h a t  t he  configura- 
t i on  from the  beginning has,  t o  a small degree, a buckling deformation compon- 
en t .  
due t o  axial compressive load i n  a s t r a i g h t  ba r ,  we assume .Lhat from the  be- 
g iming ,  the  s t r a i g h t  b a r  is  s l i g h t l y  bent.  That i s ,  the  ba r  from the  beginning 
has a configuration which should a r i s e  due t o  buckling. In  such a case,  i n  t he  
re la t ionship  between the  deformation of the  body and the  load, t he re  i s  no case 
i n  which a b i fu rca t ion  poin t  a r i s e s  due t o  buckling load, but  s ince  the  form of 
buckling deformation gradually increases  i n  size from thebeginning, t he  curve 
with a cusp a t  t he  point  of b i furca t ion  w i l l  change i n t o  a smooth curve i n  the  
v i c i n i t y  of it. In terms of  equations,  t h i s  is handled as follow;: 

For example, i n  making the cont ras t  t o  t he  problem o f  f l exura l  buckling 

We assume t h a t  there  i s  a quant i ty ,  ca l l ed  here  the  o r ig ina l  Reflect ion,  
by which the  i n i t i a l l y  present  configuration deviates  from a "piire" s t a t e ,  and 
t h a t  t h i s  quant i ty  s a t i s f i e s  the  contour contiitions i n  t h e  problem of buckling. 
This can be expressed by the  sum obtained by multiplying an appropriate  coef f i -  
c ien t  by the configuration of deformation (eigen furc t ion)  corresponding t o  
buckling loads,  (eigen values) 1, 2 ,  .... That i s ,  expressing by w the  quanti-/27 - 
t y  by which the  b a r  deviates  from a pure condition, with c l ,  c2 as eonstants ,  
t h i s  i s  expressed as follows: 
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(1.2.73) 

vi o2 . . . a r e  t h e  configurations o f  defor..iation (eigen functions) :orrespond- w o l  ' 
ing t o  t he  f i r s t ,  second . . . buckling loads Pk l ,  Pk2 ,  . . . The fact t h a t  such an 

expansion i s  possible  i s  proved mathematically, and when wo i s  given, c 
a re  e a s i l y  determined by the  orthogonality between w 01' w 028 * * ' .  

pressing the  load as P,  

c 1' 2 

In se r t ing  t h i s  i n  t h e  equilibrium equation, we obtain t h e  following. FX- 

(1.2.74) 

H ( ) , G ( ) are d i f f e r e n t i a l  operators,  and are t h e  same as those which appear 
i n  buckling problems (see examples below). Hoireker, s ince  w w are t h e  

eigen functions with respect t o  P 
01' 02' ... we obtain k l '  'k2' 

(1.2.75) 

H ( s o , ) +  P , ,  G ( I C O I ) = O ,  e t i .  

Assuming t h a t  t h e  def lec t ion  i n  a ba .  whose i n i t i a l  d e f l e r i i o n  o r i g i n a l l y  was 
k 2  ... are constants) 1' i s  w = k c w (where k c1 , w o l  , 1 1 01 

Consequently s i m i l a r l y  f o r  i n i t i a l  w = c w + ..., can be expressed 01 1 01 + c2w_02 as 

P CIW,,+ ---c*7&*+ . - . P 
I#=------ 

PI, -P  2h-P 
(1.2.77) 

For example, i n  t he  case of  a s t r a i g h t  bar ,  i n  which Fnth ends are r o t a t i n g  and 
sustained, an a x i a l l y  compressive load, n( )=maJpLz,  G( )=I 

and s ince  PI,=m'n2EI/L', wo,,=sin rfitr1L 

when the  o r i g i n a l  def lec t ion  i s  

w.=cl sin ZI/L+C. sin "z/L+ . . . 
t he  de f l ec t ion  i n  t h e  case of load P i s  
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(1.2.78) 

Moreover, i n  tlle case of a f l a t  plat,., ,jit:i a r o t a t i n ?  circumference which FUS- 
t a in s  a cgmpressive load i n  2 i rec t ion  y, t h i s  i s  

Assuning tha t  i l l  d i rec t ion  Y t h i s  i s  only a half-wave, xsing n i n  p lace  o f  Pk k 

- rc2 , m x y  ;.oa=Sln- sin -- b L 

therefor,, assuming 

(1.2.79) /28  - 

(1.2.80) 

Thc def lec t ion  M i n  the  case of load n i s  given by t he  fcZ.?'nwing equation 
Y 

(1.2.8lJ 

In the case 0 7  d rod, Pkl < Pk2 < ..., s o  the  term woi n z m a l l y  becomes 

markedly la rger  than the  o thers ,  but  i n  the  case o f  a p la t e ,  the  .- '2r of magni- 
tude of nkm d i f f e r s  according t o  L,'b and s ince  the  s ize  comparison ,f these  is 
not too grea t ,  various configuratior.s develop due t o  the  i n i t i a l  o r ig ina l  de- 
f l ec t ion  configuration. [!owever, i n  any case, when t h e  load approaches t h e  
lowest buckling load, the  configuration of deformation corresponding t o  t h i s  
becomes superior ,  and i n  the  equation it approaches maximum. 

Ta.ing otily the  first term f o r  the case of a b a i ,  we obtain 

W = P C & P ~ , - P )  s i n t z ' t  

Assuming a maximum valiie f o r  w ,  i . e . ,  assuming t h a t  t he  def lec t ion  i n  the  center  
is  u 1' 

w,=PCJ:Pu.-P) (1.2.82) 

or ,  s ince  
r .=P,PtJP-  :I (1.2.83) 
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descr ibing w 1  with respect  t o  w l / P ,  i t  forms a s t r a i g h t  l i n e ,  and i t kcomes  
possible  t o  determine experimentally P k l  from the  slope of t h a t  l i n e  (107). 
This method can a l s o  be expanded t o  the  case of  a f l a t  p l a t e ,  but  s ince  the  
several  
t p  each o ther ,  ve cannot expect the  formaticn of  a per fec t  s t r a i g h t  l i ne .  
over, as described below, there  are problems i n  the  case of a ba r .  

values f o r  t he  buckling load such as those described above are close 
More- 

The above methods can a l so  be applied approximately when the  deformation 
increases  r e l a t i v e l y  grea t ly .  In  such a case, assuming t h a t  t he  configurat jon 
of the  buckling deformation hardly changes 3t a l l ,  t h e  form o f  H ( ) ,  G ( ) 
changes somewhat due t o  the  increase i n  load and deformation, and as a r e s u l t ,  
i n  such a case, the  value corresponding t o  t h e  eigen valiic Pkm is  determined by 
the  s i z e  of vOm or 6 and i s  assumed t o  be Pkm'. 
the  re la t ionship  between Worn and Pkm' i n  the  case of a pure cznter  load, i s  
understood. However, i n  t h i s  case, s ince  t h e  rule of  accumulation does not  
hold, i t  can only be applied t o  one type of  configurat ion of super ior  deforma- 
t ion .  For t h i s ,  assuming the  o r i g i n a l  def lec t ion  t o  be C ~ N ~ ~ ,  when the  above 
k l c l  is made 6 ,  assuming t h a t  t h e  eigen value becomes P k l '  (6 )  s i nce  

Then, it - 5  considered t h a t  

solving t h i s  f o r  P, w e  have 

( 1 .2.84) 

(1.2.85) 

Therefore, when the  r e l a t ionsh ip  between 6 ,  where c1 = 0, and Pkl '(6) i s  under- 
stood, t he  r e l a t ionsh ip  between 6 and ? i n  t he  case o f  o r ig ina l  de f l ec t ion  
clwol beconces 6/(6 f cl)  times P k l ' ,  so  as shown i n  f igu re  1.2.21, it is easy 
t o  determine 

When t h e  deformaticin progresses i n  t h i s  manner, 
even i f  o r ig ina l  de f l ec t ion  c1 is  present ,  it approa- 
ches t o  the  ex ten t  t h a t  it almost matches t h e  curve 
c1 = 0. 

t 
This ind ica tes  t h a t  t h e  same r e s u l t s  w i l l  

DJ 
: c  Le obtained, even i n  the  case of a rod, even i f  rel-  
I 
I a t i v e l y  prec ise  ca lcu la t ions  are performed using ' -- 

p. G' P Equation (1.2.16). When considering t h e  buckling 
load approximately 2s a problem, when the re  i s  nc 
o r ig ina l  de f l ec t i cn ,  !$hen t h i s  i s  given i n  t h e  foim Figure 1.2.21 

the  re la t ionship  hetrJeen P and 6 given the o r ig ina l  
by 

p=r,l-  (l+ca'P) 
6+C, 

(1.2.86) 

de f l ec t ion  clwol, i s  given 

(1.2.87) 

37 



when cl.s$, i t  is poss ib le  t o  use the  curve c1 = 0. 
possible  t o  determine the  values of Pk 
the rest r e s u l t s  and 6 2 .  
1.5.3). 

Using t h i s  f a c t ,  it is a l s o  
from t h e  re la t ionship  between P from 

This is  Yosiiki  Masao's 62 method (35) (see Section 

Now l e t  us consjder the inf luences i n  t h e  case when the  load i s  not  i n  t he  
pure center ,  but  i s  appl ied eccen t r i ca l ly .  
ba r  sus ta in ing  an a x i a l l y  a n p r e s s l v e  load, with both ends r s t a t i n g ,  and t h a t  a 
load is applied equally t o  50th ends with 2n eccen t r i c i ty  e. In t h i s  case,  
s ince  the  lateral force within the body is s t i l l  0,  it i s  poss ib le  t o  employ 
Equation (1 .2 .1) .  !+E t h i s  geiieral so lu t ion ,  a so lu t ion  should be 8. ::rived 
which would s a t i s f y  the  neri contour conditions.  

We assume t h a t  t he  case of a s t r a igh t  

%%en a s t r a i g h t  b a r  sus t a ins  an eccen t r i c  load, (x = 0) as the  center of  
the  rod, v i s  

(1.2.88) 
P 

.=e [ S e F - - 1 j ,  where EX 

The bending moment M is 

(1.2.89) 

The maximum de f l ec t ion  v and the  m a x i m i n  bending moment Mm are respec t ive ly  m' 
vm=e(sec (II LIZ-1) 

di.,=Pc sec a 

Figure 1.2.22 ind ica tes  t h e  r e l a t ionsh ip  between t h i s  v and P. m 

In such a case,  it is  poss ib le  t o  ca l cu la t e  
a lgebra ica l ly  as i n  t h e  case of Figure 1.2.9 f o r  
la rge  deformations after buck1 ing. The r e s u l t s  a re /30  
as shown by Figure 1.2.23. Consequently, even i n  
t h i s  case, as shown by Equation (1.2.87), t he  fact 
tha t  t h e  r e fa t ionsh ip  between P and Vm can be ex- 
pressed as a product of  t h e  two f ac to r s  due t o  an 
increase i n  t h e  e c c e n t r i c i t y  and deformation can be 

F i g u r e  1.2.22 e a s i l y  seen by comparing Figures 1 . 2 . 2 2  and 1.2.23. 

- 

- P/p, 

I 
, .  

- I I Q4 I I l - 4 - 4 4  1 
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Whcn the  degree of e c c e n t r i c i t y  a t  both ends of  t h e  rod a re  d i f f e r e n t ,  
assuming e - + d respec t ive ly  as t h e  degree of  eccen t r i c i ty  

(1.2.90) 

(1.2.91) 
siq a z  P JI= Pc  i Pd---- where a*=--- cos a I.12 s1n aL.12 * EI 

Cos a z 

as can be seen from t h i s  equation, when e 0,  from cos aL/2 = 0, when a = n/L 
i .e . ,  P = m2EI/L;-,  v ,  Y become m a x i m u m  and when e = 0 ,  from s i n  aL/2 = 0, when 
a = 2m/L, i .e . ,  ? - 4a2EI/L2, f o r  t he  first time v, Y become maximum. To con- 
s i d e r  t h a t  when the  values of v,  M become maximum, from the  type of  treatment 
given above, t h a t  t h i s  i s  a case of buckling load is s a t i s f a c t o r y ,  s ince  it 
matches the  normal buckling load, bu t  when e = 0,  i f  t h e  values do not  become 
four  times t h a t  of t h e  normal ones, it would appear t h a t  bukling has not  occur- 
red. However, t h i s  i s  a mis t ake ,  and if the  numerical equation is handled cor- 
r e c t l y ,  when ? = m2EI/L2,  buckling i;: t he  true sense o f  t h e  word occurs,  (9),  
(10). 
coe f f i c i en t ]  is appl ied as a so lu t ion  which satisfies t h e  contour condi t ions,  
i n  addi t ion t o  the so lu t ion  f o r  Eqmtion (1.2.90). 
v is  

Tha t ' i s .  even when e = 0, &d'P - T ~ L I / L ~ ,  A s i n  ax/L [A is an unstable  

Therefore, t he  so lu t ion  f o r  

(1.2.92) 

which means t h a t  t he  de f l ec t ion  o f  t he  form s i n  ax/L can occur i n  any magnitude. 
This means none o the r  than a t r u e  case of buckling. Zimmermann, i n  order  t o  ex- 
p l a i n  the  same thing,  proceeds fror. t he  statement t o  t h e  effect t h a t  t he  values 
change rap id ly  when e -t 0 and e = 0 is not  a r e a l i z a t i o n  of a ;?hysical phenom- 
enon (83). In any case, such a case is extremely easy t o  misunderstand and re- 
qui res  carefu l  a t t en t ion .  

We assume that. ic t h e  case of a rectangular  p l a t e ,  the  four  s i d e s  are ro- 
t a t i n g  s ides ,  and t h a t  t he  low e c c e n t r i c i t y  o f  t he  load end is  of t he  form 
(L- '-.*d) s i n  ax/b along the  load edge. 
i s  for  solving the  equat ions,  bu t  on the  o the r  hand, ext l  assuming any eccen t r i c  
d i s t r ibu t i -n ,  i f  t h i s  i s  expanded t o  t h e  s c r i e s  s i n  max/b, t h e  term m 2 does 
ncjt become very important. 

The reason such a d i s t r i b u t i o n  i s  employed 

A so lu t ion  f o r  de f l ec t ion  i n  stidt a case ir 

where 

(1.2.93) 
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In such a case, where i n  ny < 4.rr2D/b2 s ince  al, o2 become complex numbers, i t  
is  necessary t o  perform the  calci i la t ions using the  ap rop r i a t e  treatment.  

cos alL/2 = 0, and when d + 0 ,  when n m  = a2D/b-*(L/2b + 2b/L)2 from s i n  
alL/2 = 0,  w becomes i n f i n i t e l y  large.  However, i n  e i t h e r  casc,  tn: buckling 
occurs when n k = r2D/b2-(L/mb + I&/L)~ becoRes a minimum value. 
case,  when L / g  > a, t h i s  t r u e  buckling c m s t a n t l y  occurs ear l ier .  Moreover, 
around L/b > 3,  s ince  the  value of  n tecomes l a rge ,  t he  def lec t ion  due t o  
eccen t r i c i ty  becomes r e l a t i v e l y  sma l r  ind ica t ing  t h a t  t h e  influence of the  
end eccen t r i c i ty  i s  small. 
whjch are s l i g h t l y  d i f f e r e n t  from t h e  case of a bar .  Next, what can be under- 
stood from equation (1.2.90) and (1.2.93) above, is  t h a t  la rge  e ,  d i n i t i a l l y  
a re  super ior  deformations, bu t  afterwards,  from a c e r t a i n  po in t ,  a deformation 
becomes predominant which corresponds t o  a lower buckling lcad.  Consequently, 
i n  a rod there  are cases i n  which a deformation which i n i t i a l l y  is i n  t h e  shape 
of an S, suddenly c!;ange i n t o  a bow-shaped deformation. 
there  are cases i n  which the  reverse  s i t u a t i o n  obta ins .  

Mcre- 
over, as i n  the  case of a bar ,  i f  e + 0,  when n - IT !2 D/b2-(L/b + b/L)2 from vm - 

Also, i n  t h i s  

This means t h a t  these  points  i nd ica t e  proper t ies  

In the  case of a p l a t e ,  

Now t o  explain t h e  c3se i n  whirh the re  is simultaneously present ,  both 
o r ig ina l  def lec t ion  and eccen t r i c i ty ,  f o r  t h e  case of a rod. 
can become overlapping when the  de f l ec t ion  is small, so  t h a t  t h e  first term i n  
Equation (1.2.77) and Equation (1.2.90) overlap with each other .  In  the  case 
of an or ig ina l  def lec t ion  c1 s i n  ax/L, where there  i s  an equal e c c e n t r i c i t y  e 
at  both ends, i f  t h e  maximi  de f l ec t ion  vn i n  t'le center  is  

These two r e s u l t s  

(1.2.94) 

The r e l a t ionsh ip  between t h e  def lec t ion  and the  load, due t o  t h e  s i z e  of c l  and 
e, can be shown as i n  Figure 1.2.24. O f  spec ia l  note here is t h a t  t he  d i r ec t ion  
of def lec t ion  changes while it is  i n  t h e  process of reaching the  buckling load. 
This has been observed from experiments, over a long per iod of time, bu t  Zimmer- 
mann w a s  the  first t o  o f f e r  an explanation i n  terms of  superimposition of  t he  
o r ig ina l  def lec t ion  ana eccen t r i c i ty  (83).  

t' 
The fact  t h a t  when P I  Pk,  Vm = I! i s  responsible  

f o r  t h i s  phenomenon, and assuming t h a t  i n  equation 
(1.2.94), vm = 0, we obtain 

(1.2.35) 

The case of  curves 1 o r  2 i n  Figure 1.2.24 form the  
limits f o r  t he  value of  e / c l ,  and i n  the  equation 
Vm 7 0, but  t h i s  i s  a case of P = 0 and P = Pk. 
put ing e / c l  i n  such a case, icrhen 

Com- 

-0- YII=-S/Z'< C/C,<-Z/~= - ( ) . i s 3  (1.2.96) Figure 1 .2 .24  
it can be seen t h a t  the  def lec t ion  is  reversed. 
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The same thing a l s o  occurs i n  the  case of a f l a t  p l a t e .  Moreover i n  the /32 
case of a f l a t  p l a t e ,  i n  addi t ion t c  such a reversa l ,  i n  t he  case of  h < L/b 
< 6, due t o  eccen t r i c i ty ,  what was i n i t i a l l y  a curve-shaped deformation sud- 
denly changes, and an S-shaped deformation predominates. Thereupon, i n  the  
v i c i n i t y  of the  center  of the  p l a t e ,  what was init ial: , ,  def lec ted  may r e tu rn  t o  
0. Nhat should be noted i n  such cases,  is, as can be seen from t h e  above re- 
s u l t s .  rha t  the  load when t h e  d i r ec t ion  of t h e  de f l ec t ion  begins t o  change, is 
t o t a l l y  unrelated t o  the  buckling load. Sometimes, repor t s  are pi?hlished which 
do not take cognizance of t h i s  r e l a t ionsh ip ,  so caut ion must be exercised. 

Tile f ac t  t h a t  def lec t ion  o r  waves occur early i n  tests on Sars  and p l a t e s  
can e a s i l y  be explained by considering, as above, o r ig ina l  de f l zc t ion  or load 
eccent r ic i ty .  
loads. 

However, these do not  have a d i r e c t  r e l a t ioash ip  t o  buckling 

Even in  cases where the  load after pure buckling, as i n  p l a t e s ,  if consid- 
e ra t ion  such as Equation (1.2.87) a r e  taken i n t o  account, t h e  r e l a t ionsh ip  be- 
tween load and deformation can be handled simultaneously, y ie ld ing  a r e s u l t  
which does not d i f f e r  g rea t ly  from what has been described above. When the  
presence of o r ig ina l  buckling is  considered i n  such a manner, when a load edge 
i s  applied i n  a f l a t  p l a t e  i n  such a manner t h a t  it is Lltliformly displaced,  
even linder a buckling load, t he  e f f e c t i v e  width may become reduced. There are 
case- ' n  which t h e  e f f e c t i v e  width becomes less than the  ac tua l  width even with 
respect  t o  t e n s i l e  load ( 3 6 ) .  

Since it is q u i t e  d i f f i c u l t  t o  consider i n  general  t e r n  t h e  case of de- 
f l ec t ion  or eccen- --ic loads i n  s h e l l s ,  w e  s h a l l  j u s t  offer two or th ree  examples. 
Donne11 (26) perf ,nus ca lcu la t ions  considering o r i g i n a l  de f l ec t ion  i n  the  case 
of the ax ia l  compression i n  a cy l ind r i ca l  s h e l l .  
t h i s  was done i n  order  t o  determine the  buckling s t r eng th ,  bu t  it d id  not  ade- 
quately meet t he  pbject ives .  In the  case of a x i a l l y  symmetrical deformation i n  
ax ia l  compression 0.1 a cyl inder  s h e l l ,  due t o  lateral  s t r a i n  z t  t h e  ends, 
where the  cyl inder  radius  should have increased, t h i s  i s  presented due t o  f r ic-  
t i o n  with the  loa4 p l a t e ,  and Geckeler (37) ca lcu la t e s  t h e  f ac t  t h a t  together  
with the  load increase,  l a rge  corrugations appear near  t h e  ends. 
t h a t  the  deformation increases  as shown i n  Figure 1.2.25 and when t h i s  r e s u l t s  
i n  a bvckling load, it becomes i n f i n i t e l y  large.  

As w i l l  be described la te r ,  

This means 

The term buckling i s  used t o  r e f e r  t o  a l l  cases, not  only 
of pure buckling such as t h a t  described i n  t h i s  sec t ion ,  but  t o  
those i n  which there  i s  es tab l i shed  a r e l a t ionsh ip  between load 
and deformation, i n  which no b i fu rca t ion  poin t  occurs due t o  
inf luences a r i s i q g  from imperfections of various types,  but  
nevertheless  undergoes a process very c lose  to that of pure 
buckling. Consequently, when speaking i n  terms of  buckling 
i n  t h i s  s.jnse, even though thL limits a r e  not  e n t i r e l y  clear, 
s ince  i n  ac tua l  p rac t i ce  the  concept is  important, it is  con- 
s idered  inappropriate  t o  ignore buckling i n  t h i s  sense.  

41 



The problem of so-cal led buckling f lexure (Knickbiegung) a r i s e s  when from 
the beginning a ce r t a in  o r ig ina l  de f l ec t ion  or e c c e n t r i c i t y  is considerably 
la rge ,  or when not only ax ia l ly  compressive loads but  bending loads a r e  in-  
volved. 
than proport ional  t o  it and i n  buckling loads,  ind ica tes  a tendency t o  become 
maximum. Usually, when buckling f lexure  is i n  t h e  process of occurring, a 
s t r e s s  is formed which is  g rea t e r  than t h e  proport ional  l i m i t ,  t h e  e las t ic i ty  
coe f f i c i en t  o f  the  s h e l l  may change, o r  the  s h e l l  may be destroyed owing t o  
o ther  types of  buckling. 

The def lec t ion  is not proport ional  t o  the  load, bu t  becomes g r e a t e r  

1.2.6. BUCKLING ABOVE THE PROPORTIONAL L I M I T  

Now w e  consider a case i n  which t h e  r e l a t ionsh ip  between the  stress and 
s t r a i n  i s  no longer l i nea r .  
there  are many cases i n  which t h e  stress has such values.  

This i s  important beczuse i n  ac tua l  p rac t i ce ,  

In t h i s  case, the re  i s  a d i f fe rence  i n  the  e las t ic i ty  coe f f i c i en t s  i n  
terms of the  increase and decrease of stress as a property of t h e  materials 
(cor rec t ly  speaking, t h i s  cannot be  s a i d ,  bu t  f o r  convenience, w e  w i l l  assume 
t h i s  f o r  the  r e l a t ionsh ip  between stress and s t r a i n ) .  
ials, i n  the  case of tension o r  pure stress of compression, i n  the  case of an 
increase i n  stress, the  dJ/dc = E, i s  smaller than Young's Modulus E ,  and i t s  
value changes according t o  the stress sigma. 
crease i n  stress, it is equal t o  Young's Modulus E ,  (Figure 1.2.26). Conse- 
quently,  considering the  case when the  pure buckling occurs above the  propor- 
t i o n a l  l i m i t s ,  i n  t h e  case of a s l i g h t  bending, s ince  on the  in s ide  of t he  
bend the  compressive s t rength  increases ,  t he  e l a s t i c i t y  coe f f i c i en t  i n  t h a t  
por t ion  is  da/dE = E,, and on t he  outs ide  of  t h e  bend, s ince  the  compressive 
s t r eng th  decreases,  t he  e l a s t i c i t y  coef f ic ien t  i s  equal t o  E. Considered i n  
t h i s  manner and ca l cu la t ing  according t o  normal bending theory,  i n  the  case of 
a rectangular  cross-sect ion (h x b)  c a l l i n g  the  pos i t i on  of t h e  center  ax is  
h l  from the  in s ide  edge of  t he  bending, and h2 from t h e  outs ide  edge 

Usually i n  metal mater- 

/33  - 
However, i n  t h e  case of a de- 

(1.2.97) 

expressing the  f l exura l  r i g i d i t y  as ELI  where I = bh3/12), t he  values of Ek 
are given by the  following equation (38) 

(1.2.98) 4EE,  Et=---- 
( V E  +.\/E,)' 

Karman calls t h i s  E Knickmodul (we  s h a l l  t r ans -  
l a t e  t h i s  here  [ i n  japanese- - t rans la tor ' s  note]  as 
" re l a t ive  modulus of e l a s t i c i ty" ) .  
f i gu ra t ion  of t he  cross-sect ion is not a rectangle  
but  another configuration, t h i s  r e l a t i v e  modulus 

When the  con- 

Figure 1.2.26 
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equilibrium equation f o r  buckling becomes 
a 4 v  a'w EJ- + P p = O  82.' dr' 

(1.2.99) 

and where t h i s  is E below the  proport ional  l i m i t ,  it merely changes t o  Ek. 
Therefore, when 50th ends are r o t a t i n g  ends, t he  buckling load Pk and the  buck- 
l i n g  stress uk a r e  

X'ELI or # & = C = R ' E  P L P r = L ' ,  F where 1=- i 
(1.2.100) 

The r e s u l t s  are as shown i n  Figure 1.2.27. Tne s o l i d  l i n e  ind ica tes  the re- 
s u l t s  t e s t e d  by Karman on a s o f t - s t e e l  column c38). Computed from the  above 
equation, i n  t h e  v i c i n i t y  of  t he  y i e l d  poin t ,  as shown by t h e  dot ted  l i n e  i n  
the  graph, L / i  should once become 0. However, t h e  f a c t  t h a t ,  as shown i n  the  
graph, t he re  i s  a smooth rise i n  the  v i c i n i t y  of t he  y i e l d  poin t ,  as Hartmann 
has pointed out ,  i s  due t o  the  fact t h a t  t h e  por t ion  of  t he  stress which rises 
immediately a f t e r  bending begins i n  t h e  v i c i n i t y  of  t h e  y i e l d  poin t  (CD i n  
Figure 1.2.26) begins t o  have an effect, and the buckling s t r exg th  increases .  
When such a sho r t  column sus t a ins  an eccen t r i c  load, assuming t h a t  t he  r e l a t ion -  
sh i?  between stress and s t r a i n  i n  the  case of  an increase i n  compressive stress 
corresponding t o  the  degree of de f l ec t ion  followed an ac tua l  curve, it i s  poss- 
i b l e  t o  compute the  r e l a t ionsh ip  between t h e  average compressive stress um and 
the  def lec t ion .  

The r e s u l t s  t h a t  Karmann obtained i n  ca l cu la t ing  
f o r  various degrees of e c c e n t r i c i t y  i n  t h e  case where 
uk = 31.35 kg/m2 are shown i n  Figure 1.2.28 (18). 
Although there  i s  some problem i n  t1,e hypothesis 
i n  the  ca lcu la t ions  (see Section 1.4.16) below), it i s  ----\ considered t h a t  t he re  i s  not  a very la rge  e r r o r  i n  the  
r e l a t ionsh ip  between load and de f l ec t i a r  
l a r ,  there  i s  l i t t l e  e r r o r  i n  the v i c i n i t y  of in f in -  
i t e l y  la rge  values of  am. 
examples of computations, i n  t h e  case of buckling 
g r e a t e r  than the  proport ional  l i m i t ,  when there  is no 

Q 

L!L 
In par t icu-  

j34 - As can be seen from t h e  
Figure 1.2.27 

eccen t r i c i ty ,  t he  load decreases markedly when t h e  buckling begins,  and when 
the re  i s  eccen t r i c i ty ,  t he  tendency i s  the same as t h i s .  However, it can be 
seen t h a t  the  maximum values occur, and t h a t  the  maximum values are reduce& 
markedly owing t o  thrJ amount o f  eccen t r i c i ty .  If t h i s  i s  compared with Figure 
1.2.22 and 1.2.23 f o r  t he  case below the  proport ional  limits, the re  i s  a g rea t  
difference and i n  t h i s  event,  t he re  were no cases i n  which the  load decreased. 
However, even i f  U k  is below the  proport ional  l i m i t ,  when t h e  de f l ec t ion  in -  
creases ,  s ince  a por t ion  appears i n  which the  compressive stress exceeds the  
proport ional  l i m i t ,  it can u e  predicted t h a t  maximum values are present .  
over, i n  t h a t  case, a configurat ion occurs such as shown i n  Figure 1.2.29 ana 
even when there  i s  a maximum value i n  t h e  v i c i n i t y  of t h i s ,  t he re  is a r e l a t i v e -  
ly s l i g h t  va r i a t ion ,  and the re  i s  no rapid change such as those shown i n  Figure 
1.2.28. 

More- 
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F i g u r e  1.2.28 
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F i g u r e  1.2.29 

the  rel.a',ive modulus of e l a s t i c i t y ,  t he re  are some 
who propose d i r e c t l y  employing E,. In tes t  r e s u l t s ,  
t h i s  i c  wpported by the  fact  t h a t  t h e  r e l a t i v e  
modulus of  e l a s t i c i t y  becomes smaller  than Ek and 
is  c lose  t o  E, (84). 
buckling s t r eng th  has jeen  determined by tes ts ,  
using Equation (1.2.100) i n  a converse manner, it 

\ .-.-e 

4 1 ~ 0 ,  when t h e  curve f o r  the  C - bOOSh 

- 

Consequently, i n  t he  case of the  tes ts ,  when 
the  buckling s t r e s s  ak is above and below the  pro- 
por t iona l  limits, the  method of def lec t ion  d i f f e r s  
g rea t ly ,  being very rapid below the proport ional  
l i m i t  and being r e l a t i v e l y  gent le  and having a 
configurat ion close t o  t h a t  of a J ine  wave. while 
above t h e  proport ional  l i m i t  ir: becomes bent i n t o  
a shape such t h a t  i t  is  rap id ly  ' 'snqljed" i n  the  
center .  

There a r e  sone peopls who believ: t h a t  t he  
load becomes a maximum value as above, when the 
maximum stress i n  t h e  center  sec t ion  reaches the 
y i e l d  poin t ,  bu t  as Hartmann has s h w n  i l l  ac tua l  
ca lcu la t ions  [SJ, t h i s  i s  not  t rue .  

Karmar.n determined, from the  above calcula-  
t i ons ,  the  r e l a t ionsh ip  betwerc o k  i n  the  case 
where e = 0.005h, and X = L / i ,  and ind ica ted  t h i s  
i n  a graph such as t h a t  i n  Figure 1.2.30. The 
graph shows t h a t  t he  e f f e c t  of e c c e n t r i c i t y  i s  
very g rea t  when ak i s  b2tween t h e  proport ional  
l i m i t  and the  y i e l d  p i n t .  Moreover, the  fact  
t h a t  almost a l l  of che values from test r e s u l t s  
are performed w i t l t  a center  load are between 

e = 0.005h and e = 0 ,  ind ica tes  t h a t  t h e  above approach is q u a ~ ~ i i + a t i v e l y  cor- 
rect. Although ca lcu la t ions  and t e s t s  have been ca r r i ed  out by t h i s  type of 
method f o r  various sec t iona l  configurations and materials, t!iis approach has 
always been shown t o  be cor rec t .  

I n  the case of  p l a t e s ,  ca lcu la t ions  have not  been ca r r i ed  out f o r  the  case 
when the buckling load i s  g rea t e r  than the  proport ional  l i m i t ,  such as i n  bars .  
However, when the stress i n  an orthogonal d i r ec t ion  becomes small, it i s  poss- /'5 
i b l e  t o  ca lcu la te  t h i s  using KarmanIs re la t ive modulus of e l a s t i c i t y  mentioned 
above. Morewer, i n  the case of a p l a t e ,  t he re  are problems occurring af ter  
buckling, bu t  when s t r e s s e s  g rea t e r  than the  proport ional  l i m i t  operate ,  it i s  
an t ic ipa ted  t h a t  the drop i n  e f fec t ive  width w i l l  be very pronounced. In fact 
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i n  Dickinson and Fische l ' s  t e s t s ,  (39) i n  a r e l a t i v e l y  th ick  p l a t e  where b / t  = 
49, i n  t h e  case of a high buckling s t r e s s  as shown by l i n e  A i n  Figure 1.2.31, 
the  e f f ec t ive  width i s  shown t o  drop much mare rap id ly  than a normal curve 
(curve B i n  t he  f igure) .  

In the  case of deformation a f t e r  buck- 
l i n g ,  when cases a r i s e  i n  which the  s t r e s s  be- 
comes g rea t e r  than t h e  proport ional  load in-  
s i d e  the  p l a t e ,  corrugations remain due t o  
buckling deformation, even after removing the  

(40). 
s ince  when t h e  degree of permanent buckling 
becomes g rea t e r  than a ce r t a in  l i m i t ,  i t  i s  
undesirable.  (See Section 1 . 2 . 1 2  below.) 

. - k / b - w &  load. We s h a l l  ca l l  t h i s  permanent buckling 
This has become an objec t  of research 

- Dmk..Uw- 

- G b  

Since i n  s h e l l s ,  t he  stress va r i e s  i. 
two d i r ec t ions  i n  t he  center  plane,  t he  rela- 
t ionship  between stress and s t r a i n  i n  the  

Figure 1.2.31 

p l a s t i c  region i n  such a case becomes necessary. However, it should not  be as 
simple as i n  the  case when the tension o r  compressive stress operate  i n  only a 
s ingle  d i r e c t  ion. 

Geckeler uses the  r e l a t i v e  modulus of e l a s t i c i t y  Ek determined by Karman 
f o r  t he  case i n  which a cy l ind r i ca l  s h e l l  sus ta in ing  i n  a x i a l  compression under- 
goes ax ia l ly  symmetrical buckling deformation, c a r r i e s  out h i s  computaticns 
considering t h a t  i n  the  d i r ec t ion  of t he  circumference, a modulus of  e l a s t i c i t y  
E i n  which the re  i s  no change i n  Young's Modulus, obtains .  
t i ona l  l i m i t ,  he  shows t h a t  ak is proport ional  t o  the  m, t h e  wave length 

decreases,  being proport ional  t o  the  With respec t  t o  the  same 
problem, Kuraiiishi Masatsugu (41) viewing the  problem i n  terms of the  addi- 
t i o n a i  s t r e s s e s  i n  the d i r ec t ion  of the axis and the  circumference, computed 
the  buckling s t r e s s ,  allowing t h a t  it is due t o  E, = da/dE i n  the  sec t ions  
which protrude outwards and t h a t  it follows Youna's Modulus i n  the  concave 
sect ions.  By doing t h i s ,  he f e l t  t h a t  an optimum approximation would be &- 
ta ined.  As a r e s u l t ,  i n  generdl,  the  buckling s t r e s s e s  were shown t o  be pro- 
port ional  t o  Ek/E, and t o  approximate the  tes t  values c lose r  than Geckeler's 
r e s u l t s .  
buckling deformation, usual ly  only h a l f  a wave protrudes,  and p r a c t i c a l l y  no 
concavity occurs. 
t i o n ,  when there  i s  a progression of one convex deformation, the  load decreases.  
However, when, due t o  deformation,the cyl inder  wall becomes bent ,  and t h i s  bend- 
ing "p i les  up", t he  loads again increase  and become contiguous t o  each o ther ,  
the  second buckle appears, r i s i n g  t o  almost the  same load as i n  the beginning, 
. a d  then the same thing i s  repeated. 

Above the  propcr- 

(37). 

Moreover, he was ab le  t o  explain the  f a c t  t h a t  i n  t h i s  type of 

In addi t ion,  i n  the  case of t'lis type of buckling deforma- 

Apparently not very many ca lcu la t ions  have been ca r r i ed  out f o r  t h e  case 
i n  which when the  stress i n  the  case of other  types of huckling deformations i n  
cy l indr ica l  s h e l l s  rises above the  proport ional  l i m i t  ̂. t he  buckling s t r e s s  drops. 
Mor aver ,  general ly ,  when there  a re  problem concerning above the  proport ional  
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l i m i t  when t r e a t i n g  t h e  r e s u l t s  of buckling tes ts ,  these problems must not be 
overlooked. Otherwise, accurate r e s u l t s  w i l l  not  be obtained. For example, the 
author considers t h a t  Sechler (42) ,  fa i ls  i n  h i s  t r ea tnen t  of t he  r e s u l t s  of 
f l a t  p l a t e s ,  because he does not take t h i s  problem i n t o  consideration. 

Tnis buckling stress has been calculated (43) f o r  the  case i n  which the  
e l a s t i c i t y  law i s  non-l inear ,  such as i n  cas t  i ron ,  as a prob1er.i similar t o  
t h a t  which occurs above the  proport ional  l i m i t .  This is  important, depending 
on the  type of mater ia l  involved. 

1.2 .7 .  MAXIMUM LOAD AFTER BUCKLING /36 
After buckling has occurred, o r  i n  the  case of  eccen t r i c i ty  o r  i n i t i a l  

def lec t ion ,  the  question as t o  the  degree t o  which a load can be r e s i s t e d  a f t e r  
the deformation has progressed, is  an extremely i n t e r e s t i n g  question with regard 
t o  s t r u c t u r a l  members. 
above the buckling load described above, cannot be exTected i n  ordinary mater- 
ials with p r a c t i c a l  dimensions. Moreover, the naximum load w i l l  drop somewhat 
due t o  eccen t r i c i ty  o r  o r ig ina l  def lec t ion ,  but  i t  drops g rea t ly  above the  pro- 
por t iona l  l i m i t ,  and can be regarded as hardly dropping a t  a l l  below the  propor- 
t i o n a l  l i m i t .  
a r e  obtained as indica ted  i n  Fisure  1.2.30 i n  the  previous sec t ion .  

When 8 bar  sus t a ins  axial compression, a load which i s  

In cases which can be regarded as ordinary center  load, r e s u l t s  

I t  i s  expected t h a t  t h i s  is  t h e  same i n  t h e  case of o ther  types of buckling 
i n  a bar ,  so  general ly  t h e  buckling load value itself is used as t he  maximum 
load after buckling i n  a b a r  (of course, t he  zone of p l a s t i c i t y  i s  a l s o  taken 
i n t o  considerat ion) .  Hcwever, what must be ca re fu l ly  noted i n  t h i s  case,  is 
t h a t  i n  the  event of  a t h i n  sec t ion ,  a buckling appears which is  not  i n t r i n s i c  
t o  t h a t  of bars ,  bu t  t o  t h a t  of p l a t e s  o r  s h e l l s .  
c a l l e d  e i t h e r  loca l  buckling o r  wall buckling, and care must be exercised i n  
t h i s  matter s ince  there  a r e  times when e r ro r s  w i l l  o c a r  due t o  i t s  not having 
been taken i n t o  consideration. Moreover, i t  i s  poss ib ie  f o r  t o r s iona l  buckling 
i n  addi t ional  t o  ordinary f l exura l  buckling t o  occur i n  columns sus ta in ing  
compression. When the  to r s iona l  buckling occurs under a low load, s ince  it be- 
cclmes markedly smaller than what i s  normally consLdered t o  be buckling s t rength ,  
it reqdi res  a t t en t ion  (44) .  
it requires  spec ia l  >? ten t ion  i n  the  case of  suo! sec t ions .  

In bars ,  t h i s  is normally 

Since t h i s  may occur only i n  open t h i n  sec t ions ,  

Figure 1 .2 .32  

In t h e  case of p l a t e s ,  computations f o r  maxi- 
mum load such as i n  b a r s ,  a r e  not  made. In the 
simplest  c-se of rectangular  p l a t e s  sus ta in ing  a 
compressive load i n  one d i r ec t ion ,  judging from 
r e s u l t s  of t e s t s ,  what i s  indicated i n  Figure 
1.2.32 occurs,  t h i s  f i gu re  ind ica tes  the  case of 
Duralumin (29) (45) .  Whcn below the  proport ional  
l i m i t ,  whereas the  buckling stress i s  proport ional  
t o  the  square of t / b ,  the maximum average comprcss- 
ive  s t rength ,  i . e . ,  t he  buckling s t rength ,  i s  pro- 
port ional  t o  t / b .  In o the r  words, the maximum load 
is  unrelated t o  b and r e s u l t s  i n  being proport ional  



t o  t2. This has been conflrmek % experiments (85).  Abwe the  proport ional  
limits, there  is  scarce ly  any d i f fe rence  between the  bu:kling stress and the  
buckling s t rength ,  i . e . ,  the  maximum average compressive s t rength ,  and of  
course, is  markedly lower than the  buckling s t r e s s  i n  the case when it i s  
assumed tha t  the  e l a s t i c i t y  modulus does not  change (chain l i n e  i n  f igure)  
(45) * 

In a rectangular  p l a t e  sus ta in ing  a shear  load, the  r a t i o  between the  maxi- 
mum !-ad arid the  buckling load apparently i s  even higher  than what  i s  described 
above, but no c l e a r  r e s u l t s  have been obtained i n  t h i s  regard. I t  has besn in-  
vest igated as the  so-cal led theory of a semi- tensi le  f i e l d .  
a p l a t e ,  i t  becomes r a t h e r  d i f f i c u l t  t o  an t i c ipa t e  the  maximum load with r e -  
spect  t c  various types of buckling. 

In such a case of 

- Jhc5-inp stren@,'flat p$ide,/buckling 
in t e s mee anwon 1 t 

Figure 1.2.33 

In the  case of s h e l l  buckling, gen- 
e r a l l y  sirr.-> t h i s  i s  t r ea t ed  as t h e  
theory of vaul t ing  o r  jump t r a n s i t i o n ,  
the  buckling load shodld be regarded as 
the  m a x i m u m  load. P.en,  when a curved 
rectangulzr  p l z t e  s ~ s t a i n s  a compressive 
load i n  the  d i r ec t ;  of  t he  ax is ,  due 
t o  bendinq i n  orthogonal d i r ec t ions ,  
there  a re  cases o f  increase and of de- 
crease ;n lozd after b lck l i iz .  Conse- /37 
quently,  even i f  ope attempts t o  ad jus t  
the  t es t  r e s u l t s ,  they appear as i n  
Figure 1.2.33 (9) .  
than 0 . 1 -  0 .2 ,  t he  m a x i m u m  load is 

- 

When b / ro  i s  less 

larger than the  buckling load, but  when the  curvatvr: becmes  g rea t e r  than t h i s ,  
the  buckJing load and maximum load become almost equivalent ,  and appear t o  be 
as a load of the  size of buckling load i n  a cy l ind r i ca l  zii211. 

There h3.ve been many attempts t o  ca l cu la t e  the  maximum load f o r  Liars, 
p l a t e s  and s h e l l s  inc lus ive ly  by following the  hypothesis t h a t  i n  order  t o  de- 
termine t h i s  maximum load, it should be t r ea t ed  as a load i n  which the  maximum 
s t r e s s  forms a load which i s  the  y i e l d  point .  

In the  case of a bar ,  t he  maximum averpge compressive s t rength  am is de- 
termined by the following equation with t h e  e c c e n t r i c i t y  e as i n  Southwell (463 
o r  Smith's equation. 
from the neut ra l  axis t o  the  most remote edge f ibe r .  

Here, ay i s  the  y i e l d  point  stress, hl i s  the  d i s t a ,  :e 

(1.2.101) 

Moreover, assuming the so-cal led o r ig ina l  def lec t ion  such as t h a t  i n  the  equa- 
t ions  of Perry o r  Robertson (46) as c1 s i n  ax/L, t he  f a c t  t h a t  t he  m a x i m u m  aver- 
age compressive s t rength  am can be computed by t he  following squation shows t h a t  
it belongs t o  t h i s  c l a s s .  
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In t h i s  manner, t h e  values of  e or c1 are adjusted i n  order  t o  agree with 
the test r e s u l t s .  
l y  disregarded i n  this case even when above t h e  proport ional  limit. 
it becomes poss ib le  t o  have a r e l a t i v e l y  good agreement with the  test r e s u l t s .  
However, as explained above, t h i s  method i s  not t heo re t i ca l ly  correct. 

Moreover, t he  changes i n  modulus of e l a s t i c i t y  are complete- 
lhereupon, 

The method which Karman attempted with respect t o  a rectangular  p l a t e  with 
a i l  s ides  ro ta t ing ,  sus ta in ing  a compressive load i n  one d i r ec t ion ,  is as f o l -  
lows. A p l a t e  width such t h a t  the compressive s t rength  along the  s i d e s  after 
buckling exact ly  becomes the  buckling stress, i s  considered as t he  e f f e c t i v e  
width (This is  based on Kaman’s equation 1.2.21) given above f o r  e f f e c t i v e  
width. 
l i m i t s  are disregarded. 
point ,  the computations are ca r r i ed  out ,  assuming it t o  fora the m a x i m  load 
(29). Thereupon, w e  obtain 

O f  course, changes i n  the  modulus of e l a s t i c i t y  above the  proport ional  
Khen the  stress d o n g  t h e  s i d e s  becomes t h e  y i e l d  

(1.2.103) 

The r e s u l t s  from t h i s  are indicated by t h e  dot ted  l i n e  i n  F i g u r e  1.2.32. 
i nd ic s t e  a considerable d i f fe rence  f r o m  t he  s o l i d  l i n e  which is close t o  the  
test resu l t s .  From t h e  test r e s u l t s ,  as described abeue, in the che  irhere 
om < aP, a form is obtained such t h a t  up is used i n  p lace  of ay i n  t h e  above 
equation (45) and where am > a p ,  t he re  is a complete deviat ion f r o m  t h e  s t r a i g h t  
line. 
of Karman’s in order  t o  determine the  stress d i s t r i b u t i o n  (47). However, as can 
be seen by comparing with F i g u r e  1.2.32, t h e  r e s u l t s  are t h e  same as with Kar- 
man. 

They 

Yamamto Mineo and Kondo Kazuo have attempted t o  use t h e  same approach 

In any event,  i n  both bars  and s h e l l s ,  t he  changes i n  modulus of e l a s t i c i t y  
above the  proportional l i m i t s  arc disregarded, and the  assumption is made that 
when p a r t i a l  maximum stress becomes the y i e l d  point ,  t h i s  i s  the  maximum load. 
However, it i s  ce r t a in  t h a t  such presupposit ions are untrue,  and can be allowed 
only i n  the  event of  r e s u l t s  which are of good numerical approximation. Conse- 
quently, they should not be used i n  the  case of  a considerable numerical diverg- 
ence. 
has the  conventional values,  t he  la t ter  are much higher  than the  t e s t  values,  
even i n  cy l ind r i ca l  s h e l l s  sus ta in ing  a compressive load, following Donnell’s 
computations i n  la rge  def lec t ion  theory, are of t he  same nature  (26). In t h i s  
case, s ince  not very s a t i s f a c t o r y  values are obtained i n  terms of r e s u l t s ,  it 
becomes necessary t o  eventual ly  use an experimental equation. 
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Attempts t o  make correct ions f o r  t he  fact t h a t  when the  buckling stress 



1.2.8. BUCKLING I N  REINFORCED MEMBERS 
AND COMBINED MEMBERS 

Ihe buckling load and buckling s t rength  of  bars ,  p l a t e s  and s h e l l s ,  drops 
considerably when the  length and breadth are la rge ,  so i n  order  t o  prevent t h i s ,  
a re inforcing member (ca l led  a s t i f f e n e r  or ?? t i -def lec t ion  member)is added, 
so t h a t  t he  mea5er i s  divided i n t o  nzrrow sec t ions  and the  buckling load is 
increased. Let us consider t he  e f f e c t s  of t h i s .  

In the  case of bars ,  t h i s  means i n s t a l l i n g  a supporting point  between them, 
but  when the  r i g i d i t y  of the  support po in ts  is of a p a r t i c u l a r  magnitude g r e a t e r  
with respect to  the  def lec t ion ,  t he  buckling load of the  b a r  comes t o  have t h e  
same value as a ba r  i n  which the  space between the  support po in ts  is ca l l ed  the  
buckling length,  i.e., t he  length between supporting poin ts  has a ro t a t ing  end 
at both ends. (48). -In t h i s  case, when the  r i g i d i t y  of  t he  support po in ts  is 
smaller than t h i s ,  t h e  buckling lenoth becomes g r e a t e r  than t h i s ,  causing the  
buckling load t o  drop. Calculations have been m a d e  for such a case, i n  which 
the  ro t a t ing  r i g i d i t y  of t he  support point  is also taken i n t o  consideration. 
This is the same as t he  problems involved i n  c d i n e d  meders i n  which t h e  bars  
between each span are connected by support po ip ts ,  and an elastic r c s i s t ance  is 
applied with respect  t o  t h e  def lec t ion  and ro t a t ion  at the  support  po in t  (SI. 
For t h i s  reason, re inforced members i n  t h i s  sense can be handled as p a r t  o f  t he  
problem involved with combined meuhers. 

When the  number of support po in ts  is increased, a b a r  is obtained having 
elastic support o f  uniform d i s t r ibu t ion ,  the?, when sus ta in ing  an ax ia l  compres- 
s ion,  and a f l exura l  buckling is generated, as i n  t he  case of def lec t ion  buckling 
of a f la t  p l a t e ,  it turns  out  t h a t  t he  formation of  several wave forms owing t o  
the  r i g i d i t y  of  t he  elastic support and the  dimensions of  t he  b a r  causes a mini- 
mum buckling load (49), (SO). !*en there  are many support po in ts  involved, t h i s  
i s  frequent ly  handled i n  terms of approximate values.  

In the  case of p l a t e s  and s h e l l s ,  one can consider t he  i n s t a l l a t i o n  of re- 
inforced members, both longi tudinal ly  and l a t e r a l l y .  
of a rectangular  f la t  p l a t e  with four  ro t a t ing  s ides ,  with sustained compres- 
s ion  i n  a longi tudinal  d i rec t ion ,  it can be expected t h a t  it is more advantage- 
ous t o  i n s t a l l  re inforced members longi tudinal ly  than l a t e r a l l y ,  considered i n  
terms of t he  re la t ionship  between the  aspect r a t i o  (length and breadth r a t i o )  
and the  buckling stress. In the  case of  a longi tudinal  re inforced member, it 
assumes p a r t  of t he  d i r e c t  load, and i s  advantageous from t h i s  po in t  of view. 
However, t h i s  i n  itself poses d i f f i c u l t i e s .  When it comes t o  s h e l l s ,  t he  prob- 
lems with such reinforcement are not simple and have not been t r e a t e d  i n  much 
d e t a i l .  Problems of such reinforcement have been discussed only using approxi- 
mation (S l ) ,  or i n  t he  case of t he  closeness of re infcrc ing  members i n  f l a t  
p l a t e s  and s h e l l s ,  t h i s  is t r ea t ed  i n  terms of  or thot ropic  p l a t e s  and s h e l l s  
as described i n  the  next sect ion.  

For example, i n  t he  case 

To t he  extent  t h a t  i n  the  above cases ,  t he  port ions t h a t  a r e  pa r t i t i oned  
of f  by t h e  re inforcing members a re  considered t o  be f la t  p l a t e s ,  when speaking 
about s h e l l s  which have many re inforc ing  members, or p la t e s  themselves, even 
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a f t e r  t h e  buckling load, it is  possible  t o  increase the  load as  i n  the  case of 
a f l a t  pla?e.  Ultimately, the e f f e c t i v e  width between the  re inforc ing  member 
and the  p l a t e  w i l l  become the  same, forming a configuration which sus t a ins  an 
ax ia l  compressive load as a bar ,  and can be considered t o  r e s i s t  u n t i l  it is 
ruptured by t h e  buckling. 

it'hen the attachment of the  re inforc ing  member i s  a discontinuous coupling 
as i n  t h e  case of r i v e t s ,  t he  e f f e c t  of t h e  reinforcing member becomes small, 
and s ince  there  is no support between the  r i v e t s ,  t he  buckling load of t he  p l a t e /39  - 
decreases, and t h e r e  are cases where buckling between r i v e t s  may occur. 
over, depending upon t t z  t i m e ,  there  are cases i n  which the  e f f e c t i v e  width 
a f t e r  buckling may rapidly c!ecreare. 
reconsider what buckling w i l l  be crucial i n  t h i s  respect .  

More- 

Consequentlv, it i s  necessary t o  ser ious ly  

There are s t ruc tuzes  o r  members which can be considered as constructed from 
an assembly of simple bars ,  p l a t e s  and s h e l l s ,  which are the  bas i c  members t h a t  
we have been discussing up t o  t h e  previous sect ion.  S t ruc tures  having re inforc-  
ing members may be considered f r o m  +'.is point  of  view, as combinations of  p l a t e s  
or s h e l l s  with bars .  Constructio.1; corrsisting of a combination of bars ,  include 
continuous beams, frame construct ions and r ig id  j o i n t  construct ions,  e t c .  A 
combination of f la t  p l a t e s  alone forms a s t r u c t u r e  such as Fal tewerk  (folded 
p l a t e  s t ruc tu re )  or "plane w a l l . ' .  

'Ihese b a r  combinations can be c l a s s i f i e d  as follows: 

(1) Hinged frames. We assme t h a t  a l l  j o i n t s  are hinged. In such a case 
even when w e  consider t h a t  each member sus t a ins  only an a x i a l  force,  and bend- 
ing moment is not operating, when there  is a load o the r  than the  deformation 
caused by the  expansion of  t he  member due t o  t h i s  a x i a l  force ,  it becomes poss- 
i b l e  f o r  o the r  types of buckling deformation t o  arise (4) ( 8 8 ) .  The simplest  
example of t h i s  is shown i n  Figure 1.2.34. 
cated by the  dot ted l i n e s ,  i s  transformed i n t o  the  shape sho..n by the  s o l i d  l i n e ,  
by buckling defomation.  
hinged frames, limits each member t o  being s t r a i g h t  and t o  a pure cen t r a l  load, 
but ,  i f ,  as a more p r a c t i c a l  approach t o  the  problem, o r ig ina l  def lec t ion  and 
eccent r ic  loads a r e  taken i n t o  consideration, t h i s  would mean t h a t  buckling 
would occur a t  a much lower load than the  conventionally given buckling load, 
so caution must be exercised i n  such an approach. 

A t  first,  what had the  shape ind i -  

The conventional so lu t ion  f o r  buckling loads of such 

(2) Rigid j o i n t  frames. These are s t ruc tu res  i n  
However, which a l l  j o i n t s  are considered t o  be r i g i d .  

i n  t h i s  case,  we can c l a s s i f y  the  problem i n t o  three  
types depending upon how we take i n t o  consideration the  
displacement of t he  j o i n t s  and va r i a t ion  i n  member i.1 / / / I length.  

(a) We assume t h a t  the  j o i n t  is not displaced. 
Consequently, t he  length of t he  member, i .e.,  t he  d i s t -  

/ I /  & ance between j o i n t s  does not vary. 

Figure I .2.34 
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(b) J o i n t  displacement i s  allowed, bu t  va r i a t ion  i n  member length is  
disregarded. 

(c) We take i n t o  consideration both t h e  displacement of t h e  j o i n t  and 
the  va r i a t ion  i n  member length.  

For example, when considering displacement i n  t h e  d i r ec t ion  of def lec t ion  of t he  
support point  i n  a continuous beam, i iomally w e  obtain (b) . 
In addi t ion,  as a p r a c t i c a l  problem, t h e  case shown i n  Figure 1.2.36 belongs t o  
(b).  However, considered i n  general ,  they a l l  a r e  examples o f  ( c ) ,  but  it is  
extrer\ely rare when such a treatment i s  given, and conversely, i n  t he  overwhelm- 
ing  majority of  cases, ca lcu la t icns  for buckling loads of  r i g i d  j o i n t  frames are 
based on hypothesis (a) (86). Ho'lrever, as a r e s u l t ,  s ince  t h i s  i s  not  always 
the  safe th ing  t o  do, from a p r a c t i c a l  po in t  o f  view, much more considerat ion 
must be given t o  the  problem. For example, i n  t he  case o f  a construct ion such 
as t h a t  shown i n  Figure 1.2.37, t h e  danger increases  more. 
a l s o  belong under t h i s  c l a s s i f i c a t i o n  so it is  absolutely necessary t o  perform 
ca lcu la t ions  based on hypothesis (c).(4)(87). 
t u re s ,  t he  inf luence o f  t h i s  load defamation is manifested (115). 

(See Figure 1.2.35). 

Ladder-type columns 

Even i n  o the r  r i g i d  j o i n t  s t ruc -  
- /40 

Figure 1.2.35 Figure 1.2.36 Figure 1.2.37 

(3) Frames with e l a s t i c  coupling. This i s  t h e  case i n  which the re  i s  a 
p l a s t i c  coupling, i n  which t h e  coupling between t h e  members a t  each j o i n t  is 
ne i the r  a hinge nor a r i g i d  j o i n t .  A simple case o f  t h i s  is the  case i n  which 
the  va r i a t ion  i n  t h e  angles gf  i n t e r sec t ion  between members is proport ional  t o  
the  moment t ransmit ted (87). This can a l s o  be considered f o r  t h e  r o t a t i o n  and 
displacement of elastic suppcrt ,  o f  support  po in ts .  

For the  above cases, the re  i s  no p m t i c u l a r  problem with whether the  s t ruc -  
tu re  i t se l f  is s t a t i c a l l y  determinant or not .  However, t he  methods of ca l cu la t -  
ing s t a t i c a l l y  indeterminant s t r u c t u r e s  are a l l  appl ied t o  the  method f o r  de te r -  
mining t h i s  buckling load. 
j o i n t  s t ruc tu res ,  t o  determine a method f o r  t he  treatment i n  t h e  cas2 when the  
stress becomes g rea t e r  than t h e  proport ional  l i m i t ,  cons t i t u t e s  an important 
problem when determining ac tua l  s t r eng th  through ca lcu la t ions ,  and f o r  t h i s  
reason two or th ree  methods have been reported (89) (90) (See Section 1.4. 15).  

Moreover, i n  the  case o f  t he  ca lcu la t ion  of r i g i d  

With regard t o  the  case i n  which a folded p l a t e  s t r u c t u r e  made from a 
combination of f l a t  p l a t e s  sus t a ins  a compressive load i n  the  d i r ec t ion  of i t s  
folds,  so lu t ions  have been made (45) for the  case i n  which no considerat ion is 
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given t o  displacement of  t h e  corners cons t i t u t ing  the  fo lds ,  except f o r  a t  t h e i r  
ends, assuming t h a t  the  continuation i n  the  lateral  d i r ec t ion  is  s imi l a  t o  a 
r i g i d  j o i n t  d i i c h  t ransmits  t h e  moment without t h e  angles of i n t e r sec t ion  chang- 
ing. In those s t ruc tu res  with appropriate  dimensions, it is shown t h a t  even i f  
they are oper, t h e i r  buckling load hardly drops a t  a l l ,  i n  comparison with a 
case of a closed cross-sect ion configuration. I t  i s  q u i t e  d i f f i c u l t  t o  perform 
ca lcu la t ions  i n  t h e  case of f l a t  p l a t e s  having re inforc ing  members, taking i n t o  
account general ly  the  displacements or the  ro t a t ion  o f  t h e  corners.  
when these coupling l i n e s  are r i v e t s ,  buckling between r i v e t s  (116) corrugation 
buckling, etc. occur i n  addi t ion  t o  t h e  inf luence from the  r i g i d i t y .  

Moreover, 

The s implest  and most widely-used combination of s h e l l s  i s  the  corrugated 
p l a t e .  The ove ra l l  buckling i n  t h e  corrugated p l a t e s  has a property c lose  t o  
an or thot ropic  f la t  p l a t e ,  however, one must pay heed t o  the  fact t h a t  i n  the  
case where a x i a l  compression is  sustained,  t h e  buckling becomes considerably 
smaller i n  comparison with [ i n  proportion to ]  t he  buckling load of t h e  number 
of closed cyl inders .  
of a corrugated p l a t e ,  s ince  t h i s  takes  t h e  shape i n  which t h e  conditions on 
t h e  longi tudinal  s i d e  are such t h a t  t h e  slope does not  change, bu t  the  lateral 
force is 0 ,  t he  buckling load drops. Such a fact must be taken i n t o  account 
ca re fu l ly  i n  t h e  case of  a s t r u c t u r e  cons is t ing  of t h e  coupling together  o f  
curved p l a t e s .  Below (Section 1.6.4), we s h a l l  discuss  the  s p e c i f i c s  of such 
a case. 

Considering t h i s  i n  terms of  t he  curved p l a t e  of  one p a r t  

I t  should a l s o  be noted t h a t  buzkling occurs due t o  i n t e r n a l  pressure  i n  
items made r r o m  t h e  coupling of  two spher ica l  s ec t ions  (27) e x l i p t i c a l  s h e l l s ,  
and curved cy l ind r i ca l  tubes.  

1.2.9. BUCKLING I N  ANISOTRUPIC BARS, 
PLATES AND SHELLS 

There a re  cases i n  which t h e  anisotropy of t h e  material i= l f  i s  t r ea t ed ,  
but ac tua l ly ,  from a microscopic poin t  of view, these  are more frequent ly  con- 
s idered as homogeneously anisotropic .  
forced concrete,  s teel  cables ,  p l a t e s  with re inforc ing  members, s h e l l s ,  and 
corrugated p l a t e s  with a f i n e  p i t c h  p e r t a i n  t o  these.  

Lumber, p l a s t i c s  having f i l lers,  re in-  

As f o r  t he  property of  anisotropy, t h e r e  is not  necessar i ly  a match between 
the  d i rec t io- i  of t he  p r inc ip l e  stresses and the  d i r ec t ion  of t h e  p r inc ip l e  
s t r a i n s .  There are cases i n  which, s ince  sheer  s t r a i n ,  t o r s ion ,  etc. occur due 
t o  compression and bending, buckling progresses,  bu t  no d i s t i n c t  point  of b i fur -  
cat ion appears, i .e. ,  as i n  t h e  case of  i n  o r i g i n a l  def lec t ion .  Moreover, ade- 
quate caution must be exercised s ince  a r a t h e r  unexpected type of buckling may 
occur causing f l exura l  buckling due t o  t h e  development o f  t o r s ion  due t o  tension.  
An example of t he  l a t t e r  is kinks i n  electric \ 7 - ~ s  and steel cables.  

What is most of ten  t r ea t ed  i n  the  li *cure i n  the  pas t  concerning aniso- 
tropy is  cases of longi tudinal  and lateral or throtropy i n  p l a t e s  and s h e l l s .  
Such a case, i f  def lec t ion  buckling occurs due t o  compression or shear  load, 
even if the  longi tudinal  and lateral anisotropy are replaced, and even i f  t he re  
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is  a d i f fe rence  i n  the  corrugations t h a t  occur, they have the  property t h a t  no 
differences i n  buckling load are caused, and f o r  t h i s  reason show i n t e r e s t i n g  
r e s u l t s  (91). When a shear  load is applied t o  a rectangular  f l a t  p l a t e ,  having 
diagonal anisotropy, two opposing d i r ec t ions  can be conceived i n  the  d i r ec t ion  
of the  shear  load, from the  r e l a t ionsh ip  with t h e  s t rong  d i r ec t ion  i n  which 
there  is anisotropy. 
buckling load (9). However, it can be imagined from two o r  t h ree  tests t h a t  the  
maximum load does not d i f f e r  very much due t o  t h i s  mutual opposit ion.  

By v i r t u e  of t i i s  there  i s  a pronounced d i f fe rence  i n  the  

When a contour condition is given i n  an an iso t ropic  body. a t t e n t i o n  i s  
necessary, because depending on d i f fe rences  i n  contour condi t ions,  e .g . ,  (a) 
where the  ex terna l  force  i n  the  d i r ec t ion  of t h e  normal i s  0 on the  s i & o f  
a rectangular  f l a t  p l a t e  sus ta in ing  compression i n  one d i r ec t ion  and (b) where 
the  displacement is 0, a considerable d i f fe rence  develops i n  the  plane in t e rna l  
s t r e s s e s ,  even before  buckling occurs,  and t h i s  w i l l  inf luence the  buckling 
load. 

1.2.10. BUCKLING LN THICK OR MASSIVE BODIES 

\tihat we have been t r e a t i n g  up t o  now has been s lender  bars  o r  t h i n  p l a t e s  
or s h e l l s ,  o r  combinations of these,  i n  whim t h e  dimensions i n  a t  least one 
d i r ec t ion  are considerably smaller than the  dimensions i n  the  o the r  d i r ec t ions .  
However, as we noted e v m  i n  t h e  Introduct ion,  buckling does not  occur only i n  
such bodies,  and there  i s  the  p o s s i b i l i t y  of buckling occurring i n  semi-infin- 
i t e  bodies, i n f i n i t e  bodies with holes  i n  them, massive bodies,  th ick  bars ,  
th ick  p i a t e s  and s h e l l s .  

Up t o  the  present  time, t h i s  type of buckling problem has scarce ly  been 
discussed. 
i n  the  case of a f l a t  p l a t e  sus t a in ing  a plane-internal  load. 
volume force as Xo, Yo, and the  stress within the  body as uxo, p, ‘I 
following equilibrium equation i s  s a t i s f i e d  by inf in i tes imal  de ormation theory.  

Here as an example of t h i s ,  we s h a l l  consider i n  general  buckling 
Expressing the  

the  $yo’ 

(1.2.104) 

B r , r @ ~ + d ~ m / a  Y+ Ya=O 

We s h a l l  assume t h a t  t h e  deformation which occurs i n  t h i s  case is i n f i n i t -  
esimal and can be neglected.  
displacement t o  occur, as ide  from t h i s  s ta te  of  equilibrium, expressed by u1, 
v i ,  w l ,  t he  buckling load i s  determined from the  load i n  such an event,  and buck- 
l i n g  occurs. 
displacement t o  be axI ,  a y l ,  ~ ~ ~ 1 ,  i f  we determine the  forces  operat ing an the  
plane element dx dy i n  order  t o  ca l cu la t e  the  s ta te  of equilibrium, we obtain 
Figure 1.2.38. 
from the  force  i n  d i rec t ion ,  x, y ,  z, t he  following equation i s  es tab l i shed ,  
taking i n t o  considerat ion Equation (1.2.104), and ignoring the  c l ea r ly  i n f i n i t -  
esimal quant i ty .  Here QX1, QyJ i s  t h e  addi t iona l  lateral  shear  force ,  and t 
is p l a t e  thickness.  

If w e  assume t h a t  i t  i s  possibk f o r  a new buckling 

Assuming the  stresses which are applied due t o  t h i s  addi t iona l  

Assuming t h a t  Xo and YO are not  r e l a t e d  t o  the  dis@acement, 
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Assuming 

(1.2.107) 

(1 .2.108) 

Q u a t i o n  (1.2.105) can he transformed as follows: 

These equations are (1.2.110) f o r  use of  u l ,  VI and 
(1.2.111) f o r  w1.  For t h i s  reason, when the  contour 
conditions are mutually i r r e l e v a n t  f o r  u l ,  v1 and w l ,  
t h i s  so lu t ion  can be obtained separa te ly  f o r  u l ,  v1 and 
"1. 
v1 + 0, and w 1  

0, u1 8 0 ,  v1 9 0. 

In t h i s  case, a so lu t ion  o f  t h e  form w 1  = 0,  u1 + 0, 
0 ,  u1 = 0,  v1 = 0,  i s  obtained. How- 

That which con- 

Figure 1.2.38 

ever,  the case is also  poss ib le  where w 1  
s ide r s  only the  sec t ion  i n  equation (1.2.111) matches t h e  normal equation f o r  
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a f l a t  p l a t e .  The problem here  is a so lu t ion  of t he  form w1 = 0 ,  

Since E uxo, ayi , T ~ ~ ~ ,  t he  term with E i n  t he  'above equation becomes 
large,  but s ince  i n  equation c1.2.111) the  element Et2/a2 of  the  first term, 
with a a s  p l a t e  width i s  of the  same size as uxo . ayO, T~ o ,  it  becomes very 
easy f o r  t h i s  ordinary buckling problem t o  occur, meaning ghat wave-shaped 

. i r r e g u l a r i t i e s  a r e  formed. However, i n  equation (1.2.110) s ince  we consider 
t h a t  only the  f i rs t  term is  much l a rge r  than the  o thers ,  i f  the  o ther  terms 
a re  disregarded, buckling cannot occur. However, i f  t h a t  which is  enclosed 
i n  parenthesis  i n  the  f irst  term i s  very small, t h i s  becomes a quant i ty  com- 
parable with the  t h i r d  term. 
Kappus merely touches on t h i s  problem i n  h i s  paper (15). 

Such a case cons t i t u t e s  the  present  problem. 

We can consider as contour conditions a1 = 0, TI = 0 o r  u1 = 0,  v1 = 0. 

However, t h i s  i s  qu i t e  d i f f i c u l t  from equations i n  such a 
Moreover, we wish t o  determine the  eigen values of  uxo, uyo, T~~~ from the  
above equations. 
form. 
so  a so lu t ion  f o r  it should be obtained. 
t o  plane stress, and a similar equation .can be found f o r  t he  s ta te  of  plane 
s t r a i n .  Hayashi Shigeru has indicated t h a t  it i s  poss ib le  t o  determine the  
buckling values i n  such cases as lumber, espec ia l ly  where the  value of G i s  
small, s ince  even i n  the  equation of t he  form of  equation (1.2.110), the  f i rs t  
term is of  the  same s i z e  as the  o the r  terms (52). 

However, t h i s  type of problem i s  considered necessary i n  ac tua l  p rac t i ce ,  
Moreover, t h e  above form corresponds 
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Moreover, t he re  is cons idera t le  doubt as t o  whether i n  such problems, t he  
i n i t i a l  deformation may be disregarded. 

1 ? . 1 1 .  NATURAL STRESS AND BUCKLING 

Occasionally, na tu ra l  s t r e s s e s  ( a l so  ca l l ed  o r ig ina l  s t r e s s ,  i n i t i a l  
stress, thermal stress, e t c . )  are present  within a body, which are not due t o  
ex terna l  forces ,  bu t  a r e  due t o  various f ac to r s ,  f o r  example, t o  conditions a t  
the  time of forging, cast ing,  o r  o ther  processing, assembly o r  jo in ing ,  due t o  
shrinkage and swel l ing caused by hea t  and moisture,  o r  due t o  p a r t i a l l y  under- 
going p l a s t i c  deformation. 

In such a case, what i s  first considered i s  whether buckling arises i n  the  
body due t o  na tura l  stress. For example, p a r t  of a cast object  may be broken 
due t o  buckling. 
what i s  ca l l ed  "s t ra in"  meaning t h a t  from the  beginning it has i r r e g u l a r i t i e s  
i n  i t  which cause buckling aue t o  compressive stress, even if there  i s  no bend- 
ing moment present  as an i n t r i n s i c  na tu ra l  stress. I t  is poss ib le  f o r  a f l a t  
p l a t e  t o  undergo buckling i n  the  case o f  even a s l i g h t  r ise i n  temperature, if 
it i s  r i g i d ,  so t h a t  t he  contour displacement i s  0. 

Moreover, t he re  are cas4s i n  which a f l a t  p l a t e  undergoes 

Next, the  case can be considered i n  which d i f fe rences  i n  the  buckling 
stresses a r i s e  due t o  the  presence of na tu ra l  stress. For example, when the re  
e x i s t s  a na tura l  stress from compression from the  beginning, t h i s  causes a 
decrease i n  the  buckling stress. Even i n  the  case of  buckling between r i v e t s ,  
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i t  can be expected t h a t  t h i s  r e f e r s  t o  the  na tu ra l  s t r e s s  a t  the  time of r i v e t -  
ing.  By conversely taking &.antage of t he  inf luence of t h i s  na tu ra l  stress, 
it is possible  t o  increase the  buckling load i f  f i r s t  a na tura l  tenion stress 
i s  imparted. 
used f o r  lumber (53). In t h i s ,  a na tu ra l  tension s t r e s s  i s  f i rs t  inparted,  i n  
order  t o  prevent buckling due t o  heat  stress when sawing. 

Hayashi Shigeru has ca lcu la ted  the  tensioning applied t o  a saw 

1 .2 .12 .  REPEATED LOAD AND bUCKLING 

When a member has a very small degree of o r ig ina l  de f l ec t ion ,  or an eccen- 
t r i c  load is  operat ing on i t ,  i f  it sus t a ins  a s t r e s s  g r e a t e r  than the  propor- 
t i o n a l  l i m i t  l oca l ly ,  owing t o  a la rge  degree of deformation, even i f  a buckling 
load i s  not a t ta ined ,  it i s  na tu ra i  t ha t  t he  r e s idua l  de f l ec t ion  which remains 
af ter  the load has been removed t o  be g r e a t e r  than the  o r ig ina l  def lec t ion .  
Consequently, when such a load is  repeated many times, t h e  o r ig ina l  def lec t ion ,  
i . e . ,  the  r e s idua l  def lec t ion  from the  immediately preceding load gradually in-  
creases ,  and as a r e s u l t ,  t h e  maximum load which can be withstood gradually i s  
reduced, rupture  i s  cmsed ,  o r  l oca l  cracks develop, making the  member unsui t -  
able  f o r  use. 

In the  case of a bar ,  where there  i s  l i t t l e  res idua l  s t r a i n ,  t he  number of 
r epe t i t i ons  required f o r  rupture  t o  occur owing t o  the  f l exura l  Luckl ing  
s t r eng th  under a compressive load i s  qu i t e  la rge ,  and under the  normally exist-  
i n g  frequency of such r epe t i t i on ,  it does not  have t o  be taken i n t o  considera- 
t ion.  
high, the  sa fe  r e p e t i t i o n  frequency drops considerably s o  it  i s  necessary t o  be 
t r ea t ed  as a problem. 

However, when the o r ig ina l  def lec t ion  i s  r a t h e r  la rge ,  or t he  load is 

In the  case of a p l a t e ,  t he  o r i g i n a l  def lec t ion  can be comparsd t o  the  
p l a t e  thickness ,  and s ince  it i s  r a t h e r  la rge ,  i t  is  very easy f o r  t he  above 
phenomena t o  occur. 
as a prcblem i n  the  case of a rectangular  p l a t e  sus ta in ing  a compressive load 
in one d i r ec t ion  (40). Moreover, t h i s  i s  undesirable i n  the  ou te r  p l a t ing  of 
a i r c r a f t ,  s o  research on methods t o  prevent it is being conducted, and ac tua l ly  /44 
is a problem which is considered very ser ious ly .  
. a te  the degree of magnitude of permanent buckling from examples ~f tests (40). 
Figure 1.2.39 shows the  re la t ionship  between t h e  edge member stress and the  
def lec t ion  (2 times t h e  amplitude) with the m a x i m u m  load edge member stress 
as a parameter i n  a case where the  load has dropped after loading t o  a p a r t i c -  
u l a r  load ( the  value a, indicated i n  the  f igu re  for t he  edge member s t r e s s ) .  
Figure 1.2.40 ind ica tes  the  r e s u l t  o f  expressing the  r e l a t ionsh ip  between t h e  
load (expressed by t h e  maximum edge member stress a,) and the  permanent buckling 
in the  case where the value of t he  load when reading only t h e  permanent buckling 
i n  such a case, i s  no: only 0, bu t  i s  measured using a load of a p a r t i c u l a r  mag- 
ni tude (UO) k i t h  a0 as a parameter. 
but  judging from the  increase i n  orig-.ial def lec t ion ,  when a load of g rea t e r  
than a p a r t i c u l a r  degree has been applied,  i t  can be predicted t h a t  t he  increase 
i n  def lec t ion  w i l l  become marked owing t o  repeated loads.  

This i s  ca l l ed  permanent buckling andis gzneral ly  t r ea t ed  

- 
Figures :.2.39 andL2.40 ind i -  

In t h i s  tes t ,  there  i s  no repeated load, 
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Edge member stress ba (IbVin') 

F i g u r e  1 .L.39 Figure 1.2.40 

'&at must be noted i n  the  case of  an increase i n  t h e  de f l ec t ion  of such a 
f l a t  p l a t e  i s ,  as shown by the  txxamples i n  Figure 1.2.41, where t h e  jrowing 
wave forms a r e  a s i n e  cur-:a of  c lose t o  2 cycles ,  t h a t  t h e  deformation C ,  
which is  a combinatior. of t h e  two s i n e  waves, 4, B, pfogresses ,  and consequent- 
l y  the  large o r ig ina l  de f l ec t ion  gradually increases  a t  t h e  end sec t ion .  

It was poss ib le  t o  a sce r t a in  from the  
above, t h a t  rupture  i s  induced by repeat ing 
the  load which accompanies buckling. 
rupture  due t o  static load, it is  poss ib le  t o  
consider t h a t  whereas shea:: s t rength  o r  sepa- 
r a t i o n  s t rength  cons t i t u t e  t he  l i m i t  with re- 

spect  t o  t e n s i l e  load, whereas Suckling determines the  streiigth with respec t  t o  
compression load, and whereas, i n  t he  event of  a repeated load, In t e n s i l e  loads,  
e t c . ,  fa t igue  determines the  s t rength ,  i n  comprsssive loads,  buckling i n  the  
broad sense of t he  term becomes t h e  s tandard f o r  s t rength .  Considered i n  t h i s  
manner, rupture due t o  ordinary s t a t i c  loads i s  an extremely i n t e r e s t i n g  prob- 
lem. 

As , for 

Figure l .2.41 

1.2.13 DYNAMIC LOADS AND BUCKLING 

.Uthougli it i s  ce r t a in  t h a t  buckling phenomena a l so  occur i n  the case of 
the appl icat ion of a load dynamically, no success has y e t  been achieved i n  
theo re t i ca l ly  t r e a t i n g  pure buckling, 
p l a t e  o r  s h e l l ,  we proceed from an equation which assumes an o r ig ina l  def lec-  
t i on  o f  a constant degree. Expressinn this o r i g i n 1  d.eflection by VO,  i n  the  
case of a bar,  we proceed from 

When a dynamic load is  applied t o  a ba r ,  /45 
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(1.2.112) 

lhis is a l s o  t r u e  f o r  t he  case of a p la t e .  
f igurat ion (eigen functi.oy) oL' buckling deforaat ion which s a t i s f i e s  p r o f i l e  con- 
d i t ions ,  where the  orlgi-. -; def lec t ion  vo is given. w e  obtain 

Now, expanding t h e  sum f o r  t h e  con- 

(1.2.113) 
..=c~W.1+CIcb+ 

and we compute the  def lec t ion  by P ( t )  f o r  each term. Some people consider t he  
case i n  r.,ich P is a constant value (54)(SS), or handle t h i s  as a case i n  which 
P = P l t  or P is a t r i a n g l e  with respect  t o  t i m e ,  or var i e s  according t o  a s i n e  
w r v e  (56)(57)(58). When Po < 
pkl, when a ce r t a in  length of time is mairttained, a value is reached which is 
equal t o  twice t h a t  of a static load. 
moved, but t h i s  can a l s o  be calculated.  
crease t o  any degree along with time. 
buckzing deformation p-ogresses correspdndiltg t o  a high buckling load, which 
is not F,1 but above P With regard t o  t h i s  po in t ,  such deformation is re- 

load, s ince  it becomes t h e  most mar' f phenomenon, depending upon conditions,  
it must be taken i n t o  consideration. In addi t ion,  an inves t iga t ion  has been 
car r ied  out  on the  case where t h e  load is eccen t r i c  (59). Moreover, resea-ch 
has been conducted on var ia t ions  in t he  cycle of the lateral v ib ra t ion  of a bar ,  
when it sus ta ins  a staric ax ia l  load (60).  

H 3 r e  t h e  m a x i m  value of v becomes t h e  prblem. 

Vibration occurs when t h e  load is re- 
When PO > Pkl ,  t he  de f l ec t ion  can in-  

Then, according t o  t h e  loading ra;e, 

. 
j ec ted  as unstable i n  ki t e case of  a s ta t ic  load, but  i n  the  case of a dynamic 

As f o r  o ther  types of problems, the  case i n  which a p a r t i c u l a r  mass col- 
l i des  with the  end of a bar  a t  the  p a r t i c u l a r  ve loc i ty  has been t rea ted .  
t he  mass is extremely large,  t he  end of  t he  b a r  i s  displaced at  a constant ve l -  
ocity.  In such a case, according t o  experimental inves t iga t ion  (?17), it turns  
out t h a t  ar. axial force three  times grea t e r  than the  s ta t ic  buckling value oc- 
curs. 
entered. s ince  the  p l a s t i c  deformation is retarded due t o  thecf fec t  of t he  
load veloci ty ,  it has been observed t h a t  t he  buckling load a l s o  increases .  
the mass is f i n i t e ,  various cases arise depending upon the  magnitude and vel- 
oc i ty  magnitude. This problem of co l l i s ion  i s  extremely d i f f i c u l t .  Depending 
upon conditions, t he re  are cases i n  which the  co l l i d ing  mass swings back sever- 
al times (61). 
a wave form remains due t o  p l a s t i c  deformation (56). 

b%en 

When the  slenderness r a t i o  i s  small, and t he  region of p l a s t i c i t y  i s  

When 

In the  case of a ba r  nu.ting ar,d stri;.ing a f i r m  wall, f requent ly  

S t a b i l i t y  problems have a l so  been d e a l t  with, for t h e  case i n  which a load 
is applied by vibrat ion.  
i n  t h e  vibrat ion due t o  the  axial load i n  t he  case of a i r ibrat ing b a r  has a l s o  
been investigated.  Even i f ,  i n  t h i s  case. the  load h G  a cmsiderably  higher 
value than the  buckling load, i f  the  time is  shor t ,  t h i s  ind ica tes  t h a t  t he re  
is no great  danger present  (56). 
t o  a vibrat ing bar ,  t he  buckling load drops, owing t o  the  v ibra t ion  (62). 

That case i n  which consideration is given t o  {ariation 

Moreover, when a static axial load i s  appl ied 
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Aside from t h i s ,  cases i n  which changes i n  the  operating ex te-na l  forces  
occur accompanying displacement deformation may cause se l f - exc i t ed  v ibra t ion ,  
and f o r  t h i s  reason are  accompanied by unstable  phenomena. 
col lapse of t he  Takoma Bridge i s  an exemplification of t h i s  problem (63)[64). 

For example, the  

1.2.14. PROBLEMS WITH RESPECT TO 
T I M E ,  AND BUCKLING. 

?here are cases i n  which the  deformation of materials changes depending 
upon time o r  t h e i r  h i s tory .  
previous sec t ion ,  changes i n  y i e ld  point due t o  load ve loc i ty ,  problems w i t h  
creep, t he  Bauschinger e f f e c t  and hys te res i s .  Moreover, t he  re la t ionship  of 
these t o  buckling has a l s o  been inves t iga ted  t o  some exten t .  
it becomes possible  t o  determine increase i n  buckilng deformation due t o  creep, 
i f  w e  assume t h i s  t o  be a property of  creep (65). 

These include p l a s t i c  deformation described i n  a 
- 1'46 

For example, 
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CHAPTER 3 

E L A S T I C  S T A G I L I T Y  PROBLEMS OTHER THAN BUCKLING 

As was mentioned 111  t he  introduct ion,  it is  poss ib le  f o r  phenomena o ther  

In addi t ion ,  t he re  i s  Kar- 
than  buckling t o  be involved i n  e l a s t i c  s t a b i l i t y  problems. 
t r ea t ed  of these are "jump t r ans i t i on"  and y ie ld .  
man's jump t r a n s i t i o n  theory which w a s  introduced i n  order  t o  explain the  buck- 
l i ng  of s h e l l s  (32). We s h a l l  descr ibe t h i s  b r i e f l y .  

The most widely 

1.3.1. YIELD 

This problem was f i rs t  t r ea t ed  i n  Brazier ' s  computations f o r  t he  case i n  
which a s t r a i g h t  t h in  cyl inder  sus t a ins  a bending load (66). Generally, when 
something having the  shape of a bent tu@e (paFt of a Torus) sus t a ins  bending, 
as Karman has shown i n  h i s  inves t iga t ion  (67), from t h e  t i m e  when t h e  load is 
inf in i tes imal ly  small, it is not poss ib le  t o  employ t h e  in f in i t e s ima l  deforma- 
t i o n  theory. 
(1  + 12A2)/(10 + 1212) times t h a t  i n  t h e  inf in i tes imal  deformation theory 
(where X = Rt/a2, t is skin thickness,  a is  tube radius ,  R is  bending rad ius) ,  
t he  smaller the  bending radius  R becomes, t he  g rea t e r  is t h e  reduction i n  the  
f l exura l  r i g i d i t y .  Beginning from Brazier's work on a s t r a i g h t  tube, i f  we 
determine the  r e l a t i m s h i p  between t h e  curvature 1 / R  i n  t h i s  case and t h e  bend- 
ing moment M, we obtain what is shown i n  Figure 1.3.1 i n  which the re  is one 
m a x i m u m  value i n  the  curve. 
ing moment 4 is calculated as follows: 

Moreover, s ince  t h i s  forms a f l exura l  r i g i d i t y  which is  

The m a x i m u m  bending moment, i.e., t h e  y i e l d  bend- 

(1.3.1) 

The deforination of the  cross-sect ion of the  tube i n  t h i s  case shows a defcrma- 
t i on  i n  the  d i r ec t ion  of t he  circumference i n  v = 1/9.a cos 8,  and a displace-  
ment i n  the  radius  of w - 2/9.a s i n  2 8 ,  
is indicated i n  t h e  form of a pseudo e l i p s e  i n  which the  radius  has increased 
and decreased only 2/9. 

i n  t he  c i r c u l a r  sec t ion  a deformation 

Heck  (68) s imi l a r ly  computes the  case of a 
In bent tube with an e l l i p t i c a l  cross-sect ion.  

t h i s  case, i n  t he  event of bending around the  sho r t  
ax i s ,  t he  radius  of curvature of  t he  wall i s  small- 
e r  than the neu t r a l  axis. A t  t he  most d i s t a n t  
f i b e r ,  conversely there  are cases i n  which a more 
dangerous sec t ion  may occur on the  ins ide  wall sur -  
face than i n  the  most remote f i b e r .  

Figure 1.3 .1  
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The calculat ions of Brazier and Heck above determine values f o r  y i e ld ,  but  
i n  each case, t he  r e s u l t s  of tests, except i n  spec ia l  cases ,  show t h a t  ordinary 
buckling, i n  which waves can occur on the wall surface,  occurs p r i o r  t o  t h i s  
y i e ld  load. That is, i n  tests, it dces not  go as far as t h i s  y i e l d  load. Since 
the  buckling theo re t i ca l  values according t o  c l a s s i c a l  theory are too high, the  
above y i e ld  load is  lower than the  buckling theory value and c lose r  t o  t h e ' t e s t  
values.  However, I personally f e e l  t h a t  it i s  necessary t o  consider t h a t  buck- 
l i ng  ac tua l ly  does occur as a phenomenon. That is, i f  i t  is  poss ib le  t o  cor- 
r e c t l y  ca lcu la te  t he  buckling load, it w i l l  be much lower than the  y i e l d  load 
above. However, of course one should take i n t o  account t h e  fact t h a t  t he  . 
s t r e s s  d i s t r ibu t ion  ins ide  the  sec t ion  va r i e s  somewhat from the  inf luence of 
such as has been described above. 

/47 - 

Even i n  square tubes and o the r  t h in  sectioned objec ts ,  when a bending load 
is  sustained, s ince  the  f l exura l  r i g i d i t y  decreases with an increase i n  the  
bending curvature,  t h i s  phenomenon can be considered. 

Ikeda Tsuyoshi has calculated and t e s t e d  (69) the  fact t h a t  evec when a 
thin-skinned tube i n  the  form of a square o r  e q u i l a t e r a l  t r i a n g l e  sus t a ins  
tors ion ,  t h i s  y i e ld  phenomenon a l so  occurs. 

Moreover, t h e  m a x i m u m  load i n  the  case of f l exura l  buckling due t o  the  
ax ia l  compressive load o f  a s t r a i g h t  bar ,  described i n  t h e  p rev ioschap te r ,  
has a m a x i m u m  value f o r  t he  def lec t ion  load curve when the  load is above the  
proportional l i m i t ,  and even when it i s  helow t h a t  l imi t .  
po in t  there  is no pos i t ion  of equilibrium, c l e a t l y  t h i s  is a case of y i e l d  load. 
\at is, the  buckling s t rength  of a colurnn can be sa id  t o  be the  y i e l d  load. 

Since from t h a t  

1.3.2. JUHP TRANSITION 

This occurs when, owing t o  prc?g;-ess&ve deformation, t h e  equilibrium load 
becomes a maximum and a minimum, and whm the  load is var iously changed, rapid- 
l y  a great  change i n  deformation occurs where t h i s  maximum or minimum value is  
present ,  and the  state of equilibrium c:mges rapidly.  We s h a l l  call  t he  case 
of a maximum value the  "ascending jump t r a n s i t i o n  load" and t h e  case of a min- 
imum value, the  *'descending jump t i a n s i t i o n  load". The problems occur only i n  
;a case of a rise o r  drcp i n  the  load, a d  i n  t he  case of a change i n  load, i n  
l the opposite d i r ec t ion ,  there  is no pro; lem. 

1 
I 

't A famous example of t h i s  i s  shown i n  
Figure 1.3.2, i n  which a g i rde r  with a small 
curvxture sus ta ins  a lateral load of  unifarm 
d i s t r i b u t i o n  from i t s  convex s i d e  ( I ) .  The 
re l a t ionsh ip  5etween the  def lec t ion  i n  the  
center  ( a l )  and t h e  load q i s  as shown i n  
Figure 1.3.3. 
where m = 1 / 2  during ascension, t he  jump 

+ . & ! ? - ~ - -  --- --____- --- 
.. 

Figure 1.3.2 Using as an example the  curve 

t r a  . , i t ion  occurs from point  A t o  B mfd then during descension, it occurs 
from point  D t o  E. Moreover, as the  f h n  of the  center  l i n e  of t he  g i rde r  be- 
comes a l / a  5 0, the  convex curve occurs e i t h e r  above or beloK. T h e f o r e ,  when 
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A-tR, W E ,  t h i s  re la t ionship  rapidly reverses .  

(1.3.2) 

Since the  value of u i n  the  case of an ascend- 
ing or descending jump-transit ion load is  

2 (1-9n) (1.3.3) 
ma 

Figure 1 . 3 . 3 .  

When m < 1/4, the  descending jump-transition load is  negative,  and when the  
load drops, even i f  q = 0, t he  curve remains i n  the  lower, convex form. 
fore ,  i f  q is not niade less than 0, there is no jump t o  the  upper convexity. 

There- 

This type of jump phenomenon a l s o  occurs i n  o ther  cases. For example, it 
is  c l ea r ly  observed when an ex terna l  fo*e is caused t o  operate  uniformly on a 
c i r c l e  inwards or upwards, (22) or when a c i r c u l a r  p l a t e  or spher ica l  s h e l l  
with a uniform small curvature,  sus ta ins  an external  force.  Also, when a 
cy l indr ica l  s h e l l  sus t a ins  an axial compressive load, and when diamond-shaped 

have occurred, is as explained above. 
i r r e g u l a r i t i e s  develop, t he  f a c t  t h a t  t h i s  jump t r a n s i t i o n  is considered t o  - /48 

1.3.3. VAULTING THEORY 

Kaman advances to  explain the  f a c t  t h a t  t he  test values f o r  buckling due 
t o  axial compression i n  a cy l indr ica l  s h e l l ,  o r  ex terna l  pressure on a spher ica l  
s h e l l ,  a r e  much smaller t h m  the  t l e o r e t i c a l  values.  The name t tvaul t ing theory" 
is not Karman's term, but w a s  invented by the  present  author f o r  convenience. 
This r e f e r s  t o  the  fact t h a t ,  f o r  example, i f  w e  assume t h e  r e l a t ionsh ip  be- 
tween the  maximum concavi tycdue t o  the  ex terna l  pressure p of a spher ica l  
s h e l l ,  and the  compressive s t r e s s  u due t o  external  pressure,  t o  be expressed 
as i n  Figure 1.3.4 (92). 
reached, it passes from point  C through B and then jumps t o  E ,  E 1  or  E2 When 
the load does not change, it changes hor izonta l ly ,  changes v e r t i c d l y  whe.1 the  
contract ion does not  change, and changes diagonally i n  the  case when there  i s  
a constant re la t ionship  between the  load and contract ion,  and s h i f t s  i n  the  
d i rec t ion  of E, E l ,  o r  E2. When the  magnitude lI of the  ove ra l l  po ten t i a l  ener- 
gy i n  the  case when the  change follows t h i s  route  CDE, is described with re -  
spect  t o  contract ion 
That is, a t  points  C, E ,  t he re  i s  a statlt? equilibrium whereas a t  point  D, 
there  is an unstable s t a t e  of equilibrium. 

While A i s  the  buckling load, before  t h i s  value is 

E ,  we should obtain t h a t  which is shown i n  Figure 1.3.5. 

In order t o  go beyond poin t  D, a supply of energy from outs ide i s  necessary. 
I t  is  assumed t h a t  t h i s  energy i s  supplied by v ibra t ion  during the  t e s t .  The 
difference i n  height between t h i s  C and D becomes somewhat smaller due t o  imper- 
fect ion i n  the  t e s t  sample, t h a t  is, t h e  o r ig ina l  def lec t ion ,  eccen t r i c i ty  of 
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Figure 1.3.4 Figure 1.3.5 

load, and non-homogeneity of t he  proper t ies  the  material, and it is  consid- 
ered tha t  it is easy f o r  t h i s  vaul t ing t o  be caused. Consequently, one should 
consider t h a t  t he re  i s  s u f f i c i e n t  p o s s i b i l i t y  f o r  t h i s  phenomenon t o  take 
place. 

Karman has given a r a t h e r  reasonable explanation of vaul t ing i tself ,  but  

He calls the  load a t  the  minimum point  B i n  t he  curve i n  Figure 1.3.4, 
what needs t o  be f u r t h e r  discussed is what is  the  t r ea tnen t  occurring a f t e r  
t h i s .  
t h e  lower buckling value and considers t h a t  t h i s  is t h e  value t h a t  is recorded 
as t he  buckling load i n  the  case of t h e  tests. 
with the  test values i n  Kannan's computation r e s u l t s .  
occasionally the  r e s u l t s  agree, but  i s  theo re t i ca l ly  an unlogical approach. 
This point  w a s  already discussed at the  end of Sect ian 1.2.3 i n  d e t a i l .  That 
is, t h i s  type of problem, i f  it were poss ib le  to perform correct ca lcu la t ions  
should be considered i n  such a form t h a t  t he re  is an agreement between the  buck- 
l i n g  load and the  ascending jump-transit ion load when the re  i s  a value which 
agrees with the  test values.  
we can say t h a t  i n  t h i s  regard, Karman's approach i s  in t e re s t ing .  

Moreover, t h i s  value agrees well 
This w a s  derived because 

However, s ince  vaul t ing theory i tself  can e x i s t ,  

1.3.4. COMBINATION OF VARIOUS TYPES OF PROBLEMS I N  E L A S T I C  S T A B I L I T Y  

I t  i s  no t  necessar i ly  the  case t h a t  t he  various types of problems i n  elas- 
t i c  s t a b i l i t y  t h a t  have been described above w i l l  occur s ing ly ,  without r e l a -  
t i o n  t o  anything else. Sometimes two or more phenomena w i l l  occur simultane- 
ously,  or another phenomenon w i l l  become applied while one of these phenomena 
is taking place,  or t he re  may be a t r a n s i t i o n  t o  a new phenomenon. 

- /49 

For example, i n  such cases as when an e l l i p t i c a l  tube sus t a ins  a bending 
load, deformation may increase due t o  the  y i e l d  phenomenon, bu t  before a m a x -  
imum load is  reached, buckling may occur, causing rupture.  
computations (68)  f o r  such a case, t he  r e l a t ionsh ip  between the  second config- 
ura t ion  and the  l i m i t  of e l a s t i c  s t a b i l i t y  is as shown i n  Figure 1.3.6. This 
f igure  notes the  value of C w i t h  respect  t o  the  cross-sect ion 's  eccen t r i c i ty ,  
k2 = (a2 - b2)/a2 where a ,  b a re  long and shor t  r a d i i  

According t o  Heckt's 

E 2  o,=c- -- - 
1-u' p 
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Cases have a l so  been inves t iga ted  i n  which, i n  tne  case of  an e l l i p t i c a l  

Then the  load increases ,  and f i n a l l y  buckling occurs where 
tube sustaining axial compression, t he  buckling occurs f i r s t  where the  i n i t i a l  
curvature i s  small. 
the  curvature i s  great  (70). 

p 
VR 

In the  case of-Torus with a broad width, as shown i n  Figure 1.3.8, t he  re- 
la t ionship  between the  center  load P i n  the  outer  d i r ec t ion  and the  deformation 
indicated by the ro t a t ion  Y of  the  cross-sect ion i s  calculated as shown i n  Fig- 
ure  1.3.9 (22). A t  first, the  shape is one i n  which the  radius  merely increases ,  
but  where a t  point  A there is  a load Pk, t h i s  is a buckling load which changes 
t o  a deformation with a ro t a t ion  1,  and at the  same time i s  a load causing jump 
t r ans i t i on  t o  pos i t ion  B which is  t h e  pos i t ion  of reversa l  where y = 180'. 
Moreover, when the  load is caused t o  drop from t h i s  state, a t  first the  radius  
merely contracts ,  but when ro t a t ion  is begun at poin t  C, a t  t he  same time, it 
jumps t o  point  D. 
buckling load and the  jump-transition loads. Moreover, when the  load i n  t h i s  
case is s l i g h t l y  eccent r ic ,  it merely forms the  jump-transit ion shom i n  Figure 
1.3.10. I f  it becomes poss ib le  t o  cor rec t ly  t and le  theo re t i ca l ly  the  buckling 
of a cy l indr ica l  s h e l l  sus ta in ing  an a x i a l  compression, it would probably a l so  
belong t o  t h i s  pa t te rn .  

In t h i s  manner, t h e  two poin ts  A, C a r e  simultaneous, t he  

- /SO 
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Figure 1.3.8 Figure 1.3.9 Figure 1.3.10 
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DETERMiNAT 

Determination of 

CHAPTER 4 

ON BY CALCULATION OF C R l T  CAL BUCKLING VALUES 

buckling load, as already 
In such a problem of determining eigen values.  

described i n  Section 1 . 2 . 2 ,  is 
a case, when t h i s  is  a simple 

member, t he  eigen values a r e  determined by a d i f f e r e n t i a l  equation, or what is 
the same thing i s  determined by various o ther  methods. In t h e  case of a frame 
s t ruc tu re  which is  a combination of  bars ,  the main problem i s  t o  f ind  a s o l u t i o n  
of determinants of coe f f i c i en t s  of a simultaneous equation of  t h e  same order  
from the  beginning. 
t he  same thing. 

In addi t ion there  are various o ther  methods devised t o  do 

When it comes t o  problems af ter  buckling, problems i n  y i e ld ,  jump t r a n s i -  
t i on  and x l l t i n g ,  s ince  the re  a re  many cases i n  which equations are used which 
a re  not l i nea r ,  and which t o  some degree introduce f i n i t e  deformation theory,  
it is  d i f f i c u l t  t o  descr ibe t h e i r  method of so lu t ion  i n  general  terms. More- 
over, s ince  there  are various d i f fe rences  i n  t h e  degree t o  which f i n i t e  defor- 
mation theory is applied,  depending upon the  researcher  and the  objec t  of inves- 
t i ga t ion ,  we feel t h a t  it would be appropriate  t o  touch on ea& of  these  ind i -  
vidual ly ,  and f o r  t h i s  reason w i l l  not  deal with them at  t h e  moment. However, 
methods f o r  ca lcu la t ing  the  buckling s t r eng th  of a b a r  do have something i n  
common with our presentat ion,  so  they are addedat the end of t h i s  discussion. 

The descr ipt ion of  numerical computation methods fcr  the  eigen values i n  
Sections 1.4.2 t o  1.4.14 beloiv i s  obtained pr imar i ly  from the  co l l ec t ion  made 
by Collatz  (71). 
bers  cons is t ing  of  ba r s ,  such as continuous columns, trusses and frames ( R a h -  
man's), we w i l l  only describe r e l a t i v e l y  new spec ia l  methods. 

In the  methods f o r  determining buckling loads i n  combined mem- 

Generally i t  first becomes poss ib le  t o  determine e las t ic  s t a b i l i t y  and 
eigen values only af ter  specifying t h e  type of  buckling deformation involved. 
Consequently, i n  the  case when it is  poss ib le  f o r  an unspecif ied type of buck- 
l i n g  deformation t o  be present  a t  a low load, t he  r e s u l t s  of i n i t i a l  calcula-  
t i ons  of it can have no meaning a t  a l l  in  ac tua l  p rac t i ce .  I t  i s  necessary t o  
keep t h i s  po in t  constant ly  i n  mind. 
things as the  to r s iona l  buckling i n  the  case of an a x i a l  compressive load on a 
bar.  

For example, t h i s  would involve such 

The r e s u l t s  presented below, up t o  Section 1.4.14 determine t h e  buckling 
load i n  the case where it i s  below t h e  proport ional  limits. That is, i n  the  
case of a bar ,  t h i s  merely amounts t o  ca lcu la t ing  Euler ' s  buckling load i n  a 
column. For sec t ions  where t h i s  i s  move t h e  proportiorral l i m i t ,  it is  neces- 
sary e i t h e r  t o  use an e l a s t i c  coef f ic ien t  i n  place of e, o r  t o  make an approx- 
imation using an average value,  t ak ing  t h i s  i n t o  consideration. Since t h i s  is 
qu i t e  d i f f i c u l t ,  it has not  ye t  been adequately explained t o  t h i s  da te .  
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1 . 4 . 1 .  METHOD OF ANALYSIS 

This method involves f ind ing  a general  so lu t ion  which deals  d i r e c t l y  with 
the  d i f f e r e n t i a l  2quaticns i n  Section 1 .2 .2 ,  t reats t h e  eigen values as con- 
s t a n t s ,  and includes indeterminant coef f ic ien ts .  By including t h i s  i n  homo- 
geneous end conditions,  a primary homogeneous simultaneous equation i s  obtained 
f o r  the  indeterminant coe f f i c i en t s .  As a condition f o r  obtaining a so lu t ion  
where a l l  of these indeterminant coe f f i c i en t s  do not  simultaneously become 0,  
we assume the coe f f i c i en t  determinant (S) t o  be 0.  This i s  solved as an equa- 
t i on  with eigen values t r ea t ed  as constants.  The eigen v:.i,ies are determined, 
and then the eigen funct ions,  i . e . ,  t he  form of deformatio,\ ,  i s  deterinined from 
the  so lu t ion  of the  d i f f e r e n t i a l  equatior. I S )  a t  t h a t  time. This method has 
been used f o r  several  d i f f e r e n t  cases 

1 .4.2. COMPAR I SON METHOD 

We s h a l l  consider a column as an example. When the  cross-sect ion of a 
column chRnges, the  buckling load is necessaxily l a r g e r  than t h e  buckling load 
of a column made with the  weakest cross-sect ion and should tt smaller than the  
buckling load i n  a column constructed with the  s t ronges t  cross-sect ion.  More- 
over, when the compressive load d i f f e r s  due t o  the  pos i t ion  of the  cross-sec- 
t i ons ,  the  buckling load should be smaller  than t h e  value in  the  case when the  
compressive load is  considered t o  be uniformly equal t o  i t s  maximum value.  
Described i n  terms of an equation, t h i s  ,is as follows: 

Di f f e ren t i a l  equation f o r  buckling of column. When 

E I $ g + P v = O  (1.4.1) 

assuming P t o  be constant,  the  change i n  the  a x i a l  force is assumed t o  be in-  
cluded i n  E I .  Then, a t  a l l  po in ts  x, when the  r e l a t ionsh ip  

obtains ,  and wr i t ing  the  eigen valites faom 

E I , w + P t = O ,  6% EIo=+Pv=O 6% (1.4.3) 

as Pkur pko# respec t ive ly ,  when they have been determined, the  eigen value pk 
i n  equation (1.4.1) becomes 

(1.4.4) 
Ptuf;PL5.PkO 

the  method of comparison u t i l i z e s  t h i s .  
value f o r  EI,, EIo, 

In p a r t i c u l a r ,  when using a constant 
a r e  imnediately understood, t h i s  i s  espec ia l -  

l y  useful .  Now l e t  is  i n  s l i g h t l y  more general  terms. 
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In the  case of e l a s t i c  s t a b i l i t y ,  t he  following type of d i f f e r e n t i a l  equa- 
t i o n  frequently appears : 

Here k2(x ) ,  K ~ ( x ) ,  ko(x) ,  p(x) are functions only of x, and a re  determined i n  
accordance with the  problems. The value of A f o r  ob ta in ing  a so lu t ion  f o r  y ,  
where iden t i ca l ly  it is not 0 ,  i s  t h e  eigen value,  and the  so lu t ion  f o r  y i n  
t h i s  case is an eigen function. In x d e r  of magnitude, we s h a l l  assign sub- 
s c r i p t s  t o  A ,  e .g. ,  A I ,  A2 ..., and we s h a l l  write Equation (1.4.5) i n  more 
generalized form, as follows : 

(1.4.6) 

When what i s  compared with t h i s  i s  

&cQ1+&C-=o 

L[ J ind ica tes  t h e  d i f f e r e n t i a l  operator.  

L* &I+ IP* c.’ =O 

We assume t h a t  t h e  eigen value A,* f o r  t h i s  d i f f e ren t i a l  equation i s  under- 
stood. 
t i ons ,  when 

Then, f o r  an a r b i t r a r y  func t ion’+  which sat isf ies  t h e  contour condi- 

J (‘0 L * @ ) d z Z s V  L c P 1 d z  (1.4.7) 

obtain ( these  in t eg ra t ions  ind ica t e  those ca r r i ed  out  f o r  t h e  e n t i r e  region of /52 
x. 
t h e  eigen value in i n  equation (1.4.6) forms t he  r e l a t ionsh ip  

- When no t  s p e c i f i c a l l y  mentioned below, the  in t eg ra t ion  has t h i s  meaning), 

(1.4.9) 

As an example, we s h a l l  take t h e  case of where we assume t h e  contour condition 
t o  be  the  r o t a t i n g  end f (0 )  = f(1) = fll(0) = f”(1) = 0 with 

- - .  

crj”I”+,l Pf =O 

corresponding t o  a non-uniform sec t ion  and non-uniform compressive force.  

?. 10) 

Then, assuming the  upper and lower limits of r and p t o  be ro, ru; pol 
PUB i . e . ,  

o < r . s r s r p ,  O < P . S P ~ P D  

t he  d i f f e r e n t i a l  equation that should be compared i s  t h a t  f o r  a uniform cross- 
sec t ion  and uniform compressive load. 
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Ctuf/?"+Ap,f =o, C t o f ~ T ~ + l Z ) I 1  f =o 
and s ince  it i r .  understood t h a t  these eigen values a r e  

assuming fn* = s i n  nnx/l with 

the  upper and lower l i m i t s  o f  the n th  eigen value An coxesponding t o  equation 
(1.4.10j i s  determined. 

In the  case of p l a t e s ,  i n  addi t ion  t o  t h i s  method, when an already known 
problem i s  a t t a ined  by varying the  domain, e t c . ,  it i s  poss ib le  t o  make a 
comparison by expanding t h i s  approach. 
and i n  t h e  end of Section 1.4.4, an i n t e r e s t i n g  appl ica t ion  of  the  method is 
given. 

Table 1.4.1 gives examples of t h i s ,  

1.4.3.  SUCCESS I V E  APPROX I M A T l  ONS, RAYLE I G H ' S  EQUATl ONS 

This is  the  method f o r  determining A 1  i n  the  case where, as a more gener- 
a l ized  form of Equation (1.4.6) above, dhe d i f f e r e n t i a l  ;perator  M [ ] is  in t ro -  
duced i n  place of p, 

(1.4.11) 

i . e . ,  a method f o r  determining the lowest eigen value.  
made, it i s  poss ib le  t o  f ind  second order  and higher  eigen values .  
begin by determining the  lowest eigen values and eigen functions.  

I f  spec ia l  e f f o r t s  a r e  
We s h a l l  

We s h a l l  begin from a completely a r b i t r a r i l y  se lec ted  function Fo(x). That 
is ,  f o r  FO only, i t  i s  not necessary t o  sat isfy the  boundary conl i t ions .  
by solving an equation of t h e  form 

Then 

(1.4.12) 
L C F . , ~ + J I  CFl,-rJ=O 

. .  . 
f o r  -!le functions f l ( x ) ,  F2(x), ... F,(x), we continue with successively n = 1, 
2 . . . .  
conditions.  then, assuming the nth apprcxximate value of a1 t o  be AI(") 

In t h i s  case,  it is necessary f o r  F 1 ,  F2 ... F, t o  s a t i s f y  the  boundary 

- 
Then it can be proved t h a t  fat , , 1 w 2 , , 1 1 c 3 2 .  . . ~ , l l c n - ~ ~ ~ , , l : n ~ ~ ~ l  In t h i s  manner, 

the upper l i m i t  of A B  i s  found and we proceed' ex t r ac t ing  A1 . I 

In  t h i s  case 
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taking the point x = x,,, when Fn has a maximum value in place of the above 
integral, there are a s e s  in hhich it is also possible to obtain a good approx- 
imation with 

(1.4.14) 

ElOreover, the Fn obtained in this manner is an approximation equation for the 
eigen function. 

when in the form of Equation (1.4.6), M [F] = DF and when p is a continu- 
ous positive function, this becomes a problem. In this case, beginning f r o m  
FO, we determine Fl, F2, ... F, from 

then, from 

(1.4.16) 

the approximation value of l1 is determined in the same way as in the case of 
Equation (1.4.13). Equation (1.4.16) is none other than that which is called 
normally Rayleigh's equation. However, in this case, it is calculated inoue- 
diately from an arbitrary function, F1 which satisfies the boundary condition 
and not as a successive approximation. That is, we shall write this as follows. 

(1.4.17) 

Moreover, in Equation (1.4.16) even numbered indices are used p2, . . . , and 
those with odd numbered indices are assumed to be determined as follows. 

(1.4.18) 

Whereupon we obtain c c 1 2 p c 2 / t r 2  - * 2 c c r r 2 1 ~  
_ -  

The upper limit of AI can be understood from the above, but normally the 

P-7 - &+!_ 

following squaiion is used d - -  determine its lower limits. 

A i L . ~ m + a -  - .-I (1.4.19) 
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'Ihis 12  is s u f f i c i e n t  as a rough approximation t o  the  lower limit of the  secon- 
dary eigen value X2 but a t  least it should be 12 > L I ~ + ~ .  

this rough approximation, 12,  it is convenient t o  use the  r e s u l t s  of t he  corn- 
parison methods i n  the  previous sect ion.  For example, i n  t he  case of t he  prob- 
lem f' 4 ( 1  + x) f = 0, f (0) = f (1) = 0 ,  s ince  1 I_ 1 + x 5 2,  t he  eigen 
value i n  t h i s  problem should be between fl. + A f  = 0-and f: + 2Xf = 0. 
fore t h i s  i s  1./2 n2m2 5 - Xa I - n2m2. 

In O i J e r  t o  obtain 
/54 

There- 
From these  r e s u l t s ,  t he  rough approximations 

O h X S  

S--zr 

S--d.. 

7 ~ -  10 24-3 z' 

are as shown i n  t he  folloSing tab le .  

TABLE 

2 -a*==6.5197 (0.5 %) 
3 
20,3=6.667 (1.8 %) 

6.617 (1.0 96)  

6.5506 (0.03 96) 

.4.1 

-- 
Eigen value lower L i m i t  Upper L imi t  

19.73 (-25 #) 

44-41 (-2696) 88.83 (49 96) 
! 

The f igures  i n  parentheses i n  the  t a b l e  ind ica t e  t h e  d i f fe rence  i n  percent 
f r o m  t he  t r u e  values. As can be seen by t h i s ,  t he  approximation is  too rough 
when attempting t o  determine approximate values by the  comparison method, but  
t he  1 2  i n  t h e  computations of  Equation (1.4.201 above is s a t i s f a c t o r y  with such 
a value. 

Now t o  give an example of t h e  ca lcu la t ion  of t he  approximate eigen values 
f o r  t h i s  problem. F i r s t  w e  introduce Rayleigh's equation. When we s e l e c t  for 
F1 i n  Equation (1.4.17), t h e  following form, the  approximate values w i l l  be as 
shown i n  the  r i g h t  column and t h e  percent of  error is indicated i n  parentheses. 

TABLE 1.4.2 

(I .4.17), (1.4.18) 
8 17 135 - 
2 90 17 &as=-+ -=--7.98 (20 K) 
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From the above examples, when 12  = 19.73 is  used, t he  lower l i m i t  is determined 
and s ince  

we obtain 6.635 2 - A 1  2 5.975. 

f o r  Fo, s ince  F1 = (7x - lox2 + 3x3)/60, s ince  from Equations (1.4.17), (1.4.18) /55 
and (1.4.19) - 

2 In order  t o  obtain a s l i g h t l y  more s a t i s f a c t o r y  form, making Fo = x - x 

- 
- _  

.\ 
IO5 -6.56% (0.2 

1 p,=-2.-*- .-- -__- 
5'25 - 16 

This becomes 6.5441 L h l  6 6.55053, which is  a s u f f i c i e n t  value f o r  engineer- 
ing problems. 
mined proceeding from F1. 

When & accuracy b e t t e r  than t h i s  i s  des i red  F2 should be deter-  

I t  is not absolutely necessary t o  determine t h a t  F1 is produced from 
Fn - 1 according t o  Equation (1.4.12) from the  so lu t ion  of a d i f f e r e n t i a l  equa- 
t i o n  following normal methods, and sometimes it can be done by graphic so lu t ion ,  
or  by Mohr's method, o r  even Green's function o r  Cauchy's funct ion,  may be used. 

Let us describe b r i e f l y  how t o  determine Green's funct ion G(x, s ) .  We 
assume t h a t  t he  given d i f f e r e n t i a l  equation is of  t he  following shape 

(1.4.20) 

As conditions on Green's function G(x,s). 

(1) except when x = s,,L[G(x, s ) ]  = 0 

(2 )  where x = s, the  d i f f e r e n t i a l  coef f ic ien ts  f o r  G(x, s) and up t o  the  (n - 2)  
t h  order due t o  i t s  x a re  f i n i t e  and continuous. 

(3) thr. d i f f e r e n t i a l  coef f ic ien t  f o r  t h e  (n - 1) order  due t o  x i s  x = S, i s  
discontinuous and where x -+ s ,  it is  
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When the  above Z(x, s)  is  determined, the  determination of Fn by Equation 
(1.4.9) becomes a5 follows, with x within t h e  range of  0 and 1. 

When Grean's function ha; been determined, when f inding the  lower l i m i t  o f  
the  first oree:. eigen value, i f  we compute 

s ince  
r=al-=+a,-=+ . . . > il-*+a3-* 

when we de te in ine  pn+l where pn+l > 1 1  

~ Therefore, assuming 

it i s  poss ib le  t o  ca l cu la t e  with 

P n - P n + i  
Pn+l--Rl<J,--l-- 

(1.4.23) 

- /56  

(1.4.24) 

(1.4.25) 

For example, employing a beam supported a t  both ends as an example f o r  
determining G(x, si, 21 d4y/dx4 = w(x), bu t  considering only t h e  lef t  s ide ,  
where x < s - 1 / 2 ~ ,  x > s + 1 / 2 ~  
y1 = al  + blx + c1x2 + d1x3, y2 = a2 + b x-+  c2x2 + d2x3 then, from condition (2) 

E 1  d3y2/dx3 = E 1  d3yl/dx 
y = 0, d2y/dx2 = 0, where x = 0 and x = 1, the  above constants ,  a l ,  b l ,  . . ~ 2 ,  
d2 should be determined. 
i s  w(x) and t h e  concentrated load W(x) comes t o  be given by 

s ince  E 1  d4y/dx4 = 0 .  we allow respec t ive ly  

where x = s .  y2 = y1, dyg/dx = dyl/dx, d 3 y2/dx2-= d2y1/dx3, i n  condition (3) 
+ 1, i n  addi t ion as a terminal condition, introducing 

Then, t he  def lec t ion  due t o  t h e  d i s t r i b u t e d  load which 

There a re  cases i n  which Cauchy's functions are more converient than Green's 
functions.  
ing  Fn by successive approximation is  

When Cauchy's function H ( s ,  x) is used, t he  equation f o r  determin- 
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(1.4.26) 

This O(x) i s  a general  so lu t ion  f o r  L[y] = 0 and t h e  constant was de ter -  
mined so t h a t  it met t h e  terminal conditions.  

Cauchy's function H ( s ,  x) w a s  determined by the  following conditions with 
respect t o  Equaticin (1.4.20). 

(2) where x = s, the  d i f f e r e n t i a l  coe f f i c i en t  for H ( s ,  x) and up t o  the  (n - 2)  
t h  order  due t o  i t s  x are 0. 

The d i f f e r e n t i a l  coef f ic ien t  dn-' H/dxn-l of t he  (n - 1) order, due t o  
x satisfies the  following equation where x = s .  

(3j  

(1.4.27) 

As an example, we l i n e a r l y  vary t h e  f lexura l  r i g i d i t y .  
which a uniformly d i s t r ibu ted  longi tudinal  load operates on a column with one 
end f ixed and the  o the r  end f r ee ,  w e  have the  problem of determining the  eigen 
value i n  

Taking the  case i n  

Therefore, L[x] = xd2v/dx2 + dv/dx, and the  general so lu t ion  is v = A log x + B. 
Therefore, both H(s, x) and O(x) are of  t h i s  form. From condition (2) ,  H ( s ,  s)  = 
0 ,  i . e . ,  A log s + B = 0. /57 
therefore ,  A/s = -l/s, consequently A = -1, B = log s so H ( s ,  x) = log s - log x y  
and ul t imately the  equation f o r  t he  successive approximation i n  t h i s  case i s  

From condition (3) where x = s,  dH(s, x)/dx = -l/s, 

Fm(Z)=dm 1- Z + & f j ;  cqg S - b g  Z) I K - x ( S )  d3 
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Continuing t h i s ,  we obtain 

As ar. example of  a graphic so lu t ion ,  t h e  d i f f e r e n t i a l  equation and the  terminal 
conditions,  are as follows. 

EI#y/d9+Rpy=O, Zd e y=O 

F i r s t ,  assuming y = Fo, we descr ibe t h e  curve pFO/EI. 
t h i s  Fl"  + Fo*p/EI = 0, i s  ca r r i ed  out  by graphic  methods. 
mine what is ca l i ed  i n  ordinary graphic dynamics as the  bending moment when 
there  i s  a d i s t r i b u t e d  load Fop/EI. 
and repeat  t h e  determination of F2. 

The in t eg ra t ion  of 
This means t o  de te r -  

We descr ibe F1p/EI from th isF1  in tegra ted ,  
Then, t h e  following values are computed. 

The ca lcu la t ion  o f  t h i s  i n t eg ra t ion  may be ' c a r r i e d  out  e i t h e r  graphical ly  
or  by Simpson's method. We assume t h a t  t h e  r e s u l t s  are, f o r  example 

%=1S. 57 l/EI@, a l = l .  615 Z'/(EI,)', a2=0. 1407 Z'/(EI,)a , 

f l , = ~ a , = l l .  50 EI#, p,=a&2=11.45 ET# 
Then 

Now with the  rough lower l i m i t  o f  ~2 as 12, computing from EIoY' + Ay = 0, 
assuming 12 = 4n2E10/12 , s ince  p2 - A 1  
11.48 E10/12,  becomes the  approximation so lu t ion .  

0.01 E10 /12 ,  11.47 E I O / l  A 1  2 

f J I X V D  Next le t  us consider t he  determination of t he  
second and t h i r d  order  eigen values.  
i s  necessary t o  prciceed from t h e  case where the  i n i t i a l -  
l y  assumed funct ion F,-J does not  contain t h e  cons t i tuents  
o f  first oi' o the r  low order  eigen functions from the  be- 
ginning. 
t he  cons t i tuent  first order  eigen functions from the  
hypothesized Fo. 
first order  normalized eigen function is $1, u t i l i z i n g  
the  orth.,galness o f  t he  eigen funct ion,  it i s  necessary/58 
t o  use as t he  funct ion o f  the first approximation 

In t h i s  case, it 

For t h i s  reason, it i s  necessary t o  exclude 

For t h i s  reason if we assume t h a t  t he  

- 

Figure 1.4.1 
(1.4.28) 

s ince  t h i s  is an approximation equation, t h i s  means t h a t  t he  first order  eigen 
function component i s  not  excluded, and each time t h a t  F1, F2 ... i s  determined, 
it is  necessary t o  insure  t h a t  by t h i s  procedure the  first order  eigen function 
component is excluded. Then, by means of t h i s  pu r i f i ca t ion ,  i n  t he  approximation 
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equation the  orthogalness with the  first order  eigen function i s  constant ly  
guaranteed. By t h i s  method, i f  t he  eigen values are determined by the  same 
method as t he  case o f  t he  first order eigen values described above, one ap- 
proaches the  t r u e  value (72). 

1.4.4. ENERGY METHOD, R I T Z ' S  METHOD, 
RITZ-TIMOSHENKO METHOD 

I t  i s  considered t h a t  what i s  ca l l ed  t h e  R i t z ' s  method (34) was developed 
i.n the  following manner. 
i s  a d i f f e r e n t i a l  equation with t h e  L[+] + AM[$] = 0 of  Equation (1 .4.10) .  
This forms Euler ' s  equation f o r  t h e  problem of va r i a t ion  expressed by: 

For example, under the  boundary condition where there  

(1.4.29) 

Assuming t h a t  F is the  so lu t ion  of  (1.4.29), by the  comparative funct ion 
= f + EO considering as far as t h e  square o f  E t h i s  becomes 

dl(p)=I( /+Erl)--I(f  ) = E  jl  (Mf )+1JK f ])rZ++boundary. I (1.4.30) 

This II shoi:ld s a t i s f y  the  bo&ry conditions which only assumes t h e  "boundary 
condition" term t o  be 0. 
t i on ,  the  E terms become 0, and extreme values are obtained. 

> 

condition term 
+6'C I+**. 

Then, when f i s  t h e  sq lu t ion  of  t he  d i f f e r e n t i a l  equa- 

In  the  case of problems i n  e las t ic  dynamics, t he  problem of extreme values 
i n  Equation (1.4.29) t h a t  coincides with t h e  problem which i s  expressed by the  
theorem of  hypothet ical  displacement ind ica t ing  a minimum po ten t i a l  energy, o r  
t h e  theorem of  a minimum s t r a i n  work. 

For example, when the  o r ig ina l  d i f f e r e n t i a l  equation is the  following 
self-fol lowing type equation which i s  t h e  same as Equation (1 .4.5) ,  

The form of  equation (1.4.28) becomes as follows 

extreme values 

That which q should s a t i s f y  as a contour condition i s  

(1.4.31) 

(1.4.32) 
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Then, the comparison function $ = f + ~ r )  sat isfies only the  same boundary con- 
d i t i ons  as E .  In R i t z ' s  method, t he  comparison function $ i s  determined i n  such 
a manner t h a t  I(+) approaches extreme values as much as possible ,  and normally 

/59 the  equation expressed below i s  used. - 
.L 

o= c v s u m  (1.4.34) 
U d  

I t  is assumed t h a t  $, satisfies t h e  following conditions:  

(1) I t  satisfies the  necessary conditions f o r  rl above. 

(2)  The in t eg ra l s  SLIC--.]~~, ~ ~ c ~ ~ 3 a +  within the  l i m i t s  o f  p o s s i b i l i t y ,  

can be d i f f e ren t i a t ed .  For example, i f  D i s  a first order  d i f fe ren-  
t i a t i o n ,  i s  continuous, and a t  least it ca; be s p a t i a l l y  d i f f e r e n t i -  
ated.  

(3) They are mutually l i n e a r l y  dependent. 

as ?unctions of the  va r i ab le  cu,  we determine Now, considering I [  s C V  s.] 
1wl 

the  extreme values i n  t h i s  case. Consequently, 

(1.4.35) 

In t h i s  case, s ince  I[$] is of  t he  second order  f o r  $, Equation (1.4.35) becomes 
l i n e a r  f o r  c and takes  t h e  form 

U 

(1.4.36) 

Then, i n  order  f o r  a l l  cy not  t o  be 0,  s ince  t h e  determinant must be 0,  

...... 

...... 

(1 .4.37) 
=O 

and t h i s  i s  the  case where aVP = apu and byp = bpy. 
solvnd considering the  equation f o r  A ,  if its roots  are arranged i n  order  Of 
magnitude, approximate values can be - .  obtained .. f o r  _ .  the  . eigen values where 

If t h i s  matrix equation is  

LaCmf;L8Cm>sL80Os. . . 6 L m C m >  
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Then returning t o  Equation (1.4.36), t he  r a t i o  between each of the  cy cor- 
responding t o  each eigen value i s  determined, and the  approximate eigen fmc- 
t ions  a r e  determined. 
scc t ion  1.4.6. 

We s h a l l  give an example of t h i s  f o r  the  l a t t e r  p a r t  of 

Determination of eigen values by the  abcve equations (1.4.35) o r  (1.4.36) 
i s  ca l led  the  energy method. Moreover, those methods which depend on the  system 
expressed by Equations (1.4.44)and (1.4.45) described below a r e  ca l l ed  the  R i t z -  
Timoshenko Method and Timoshenko has used t h i s  method extensively i n  determining 
the  buckling loads o f  bars  and p l a t e s  (1) .  By doing t h i s  he i s  simply determin- 
ing values which are r e l a t i v e l y  c lose  t o  a s t r ic t  so lu t ion .  

Now l e t  us c i t e  examples i n  the  case of column problems using the  R i t z -  
Timoshenko Method. We consider t he  case i n  which both t h e  cross-sect ion and 
the  load vary. We assume t h a t  an external force a t  one end P i s  operating, 
and t h a t  intermediately a force p which va r i e s  continuously i s  i n  operat ion.  
Then, the axial force  S(x) i n  a cross-sect ion x i s  

- /60 

(1.4.38) 

and it  i s  poss ib le  t o  express P = wPo. 
deviat ing from a s t r a i g h t  condition, t he  s t r a i n  energy V is 

Considering a s l i g h t l y  bent condition 

(1.4.39) 

assuming t h a t  1 / p  = d2v/dx2. 
t h a t  t he  poin t  of appl ica t ion  of the  ex terna l  force drops. 

Loss i n  p o t e n t i a l  energy is  caused due t o  t h e  fact 
Assuming t h i s  t o  be 

T 

Therefore, the  overa l l  po ten t i a l  e n e r p  5 i ,  

(1.4.40) 

(1.4.41) 

However, t . i s  energy takes i n t o  account in f in i tes imal  displacement ALI*om a s ta te  
of s t r a i g h t  contract ion,  so  assuming t h a t  t h i s  i s  i n  a s t a t e  of equilibrium, 
V - T = 0 .  

I*. EI ( z )  (d'v/W)'dz- S (z )  (ddv/EZ)'dz=O (1.4.42) 
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Introducing a correct  value €or t h i s  v, and determjning the  minimum value 
of PO, the  buckling load is  determined. 
ing 

However, t h i s  v(x) i s  unknown. Assum- 

u=c1Cp1(:)+64%C~)+ - 
(1.4.43) 

The $(x) s a t i s f y  t h e  terminal Conditions f o r  each, and approach the  expected 
deformation. 
i t e  progression, they are determined i n  such a way t h a t  they converge. ... are unknown progressions,  but  we assume V - T = 0 and make our  se l ec t ion  
such t h a t  Po becomes minimum. 
V - T 

When they are mutually linear and independent, and are an in f in -  
c l ,  c2 

Since v(x) i s  an approximate equation, ac tua l ly  
0 and an excessively la rge  value is  obtained f o r  Po. 

v=v(cl, cr, . . .), T=Po * p ( C 1 ,  . 
The r e s u l t s  of using t n e  aDove runction ii.-z1.4S? are as ' fol lows,  considering 
S(x) = PO*S(X)/PO. 

p,=V(Cs, c,;. * ) / Y ( C , ;  C.# ' J Z  

From t h i s ,  by V - T = 0, when the  minimum values are determined 

(1.4.44) 

(1.4.45) 

Consequently, n f i r s t  order  simultaneous equations of t he  same order  are 
'obtained with respect  t o  end va lueso f  c. Then, assuming c,/cl = a,, (n - l ) ,  , 

f i r s t  order  simultaneou? equations are obtained with respect  t o  (n - 1) a,. 

- /61 

This should be solved, a, determined and Pk calculated.  _ .  

Below we give two examples of t h i s  method, 

(1) In the  case of a dead weight anJ terminal load with one end f ixed and 
the  o ther  end free, using x ?= 0 as t he  f ixed poin t ,  with the  weight pe r  
u n i t  length g ,  we obtain S(x) = P + g ( l  - x) .  
shape f o r  v 

We .ssume t h e  following 

v = c ( ~ o s ~ x / ~ I + ~ c o ~ ~ ~ ~ z / ~ I )  

This does not  satisfy the  terminal conditions but  s ince  i t  d i f f e r s  only by a 
constant from t h a t  whi.ch s . r t i s f i e s  these conditions,  it is i r r e l e v a n t  i n  l a t e r  
calculat ions.  Then,calculating V ,  T 

Y=c' ET (1 +81 a') x'/64 la 
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Where, assuming P/gl = y 
1+81 a* k' EI p=- - 8 1' 0.5+4.5aJ+(0.  1457+0.6079a+2. 1487aa)/r 

- .  

When solving fo r  a ,  making t h i s  P minimum, dP/da = 0,  a' + (0.4019 + 1.4621y)a - 
0.01235 = 0 ,  therefore ,  assuming g = 0, y = 03, a = 0, and t h i s  ag-ees with 
Euler ' s  equation. 
which agrees with the  known case.  
1.90 E I / 1 2 .  

When P = 0, y = 0, a = 0.0287, (g1)k = 7.84 E1 /12  i s  obtained, 
When P = g l ,  y = 1, a = 0.0066, Pk = (g l )k  = 

(2) In  the  case of dead weight and terminal load, with both ends ro t a t ing ,  
We assume f o r  one end assuming x = 0 ,  S(x) i s  the  same as i n  the  above eyample. 

t he  following shape f o r  V so t h a t  we s a t i s f y  v = 0,  v" = 0,  when x = 0,  x = 1. 

Computing from t h i s ,  V ,  T 

Y=c1EI(1+16 a')n'/4ZS 

T=c'P ( 1  + 40') ny/4 I +c'g (1 + 1.8012 a 4- 4a') 1?/8 

Since V = C,  with P = y-gl  
. - . .  . 

I E I  14-16a' 
'=T - l + h * + ( O .  5TO. 9006a+2a2)/T 

where dP/da = 0 ,  a2 + (0.8327 + 1.6655y)a - 0.0625 = 0. 
and a = 0,  t h i s  becomes Euler ' s  equation. 
= 1.88 $ E I / 1 2  = 18.56 E 1 / l 2 .  
E I / 1 2 .  

When g = 0, when Y = m, 

Whe? P = 0,  y = 0,  a = 0.C.093, (g1)k 
When P = g l ,  y = 1, a = 0.02477, and Pk = 6.95 

Moreover, when adopting t h i s  method, s ince  there  are cases when it is easy 
t o  determine the  lower l i m i t  using the  comparison method i n  Section 1.4.2, l e t  
us explain d i r e c t l y  an example of t h i s  appl icat ion.  

We s h a l l  use an example i n  which a column of uniform cross-sect ion with 
Assuming t h e  form of the  

- /62 
both ends ro t a t ing  sus ta ins  a s p e c i f i c  a x i a l  load. 
deformation t o  be v = c(13x - 21x3 + x4) ,  

T=P/2 jl (dt~/&>&po1lT 17/70, V=RI!2 - 
Therefore, Pk < 168/17.EI/12 = 9.8823 E I / 1 2 .  However, wnen the re  i s  a non- 
uniform cross-sect ion from one s ide ,  since EI(x)d2v/dx2 + Pv = 0 ,  i f  

I(s) V) -- v / d ' v / d z ' ~  l ' + h - Z 1  

the  above hypothesized deformation occurs. 
case i s  512/4 where x = 1/2 .  
t o  I when it is  uniform, s ince  t h e  column with t h e  non-uniform cross-sect ion,  
according t o  the  above equation i s  a weaker one than t h i s  uniform column given 

The rightmost maximum value i n  t h i s  
Therefore, assuming t h a t  t h i s  value i s  equivalent 
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any cross-section, it has a smaller buckling value than t h e  uniform column. 
Therefore, assuming 

I Cz)=4 Io(p+ls-s')/5 I S ,  y=c ( l a & -  3 +.'I 

Inser t ing  t h i s  i n t o  the  equilibrium d i f f e r e n t i a l  equation 

4s 'fierefoL.e p=-- EI,/i'=9.6 EIoJLs (45 EI,/5Lz--Y) u=O, 5 

Since t h i s  uniformly is qecessar i ly  smaller than anything with a cross-section 
IO 

3.6 EIIL' < PL < 9.8S2.j 61/L2 

I t  i s  poss ib le  t o  determine t h e  accuracy o f  t h i s  by comparing it w i t ,  t hc  

s t r i c t  so lu t ion .  
z'EI/:?=9.Sti96 EIiL' 

i .4.5. G A L E a K I N ' S  METHOD 

The s t a r t i n g  poin t  is 
r a t h e r  than CP is  expressed 

The comparison function is 

t h e  same as i n  t h e  R i t z  method, but t h e  so lu t ion  f 
approximately as follows. 

(1.4.46) 

s e l ec t ed  from within t h e  range expressed by Fquation 
(1.4.46j. 
Next, an attempt i s  made t o  b r ing  the  r i g h t  s i d s  of Equation 0.4.46) as clqse 
as poss i5 le  t o  the so lu t ion  f (x) . That i s ,  a.c;ming V = f +€TI, an attempt i s  
made t o  have the  first order  term o f  t: 0. 
na t e ly  with r l .  
(73). 

Also, tile function TI i s  a l s o  deterinined from wi th in  t h i s  range. 

Then, " 1 ,  1 2 ,  ... Yn are used a l t e r -  
Then, i n  p lace  of R i t z ' s  equation, i~ takes Galerkin's form 

(1.4.47) 

A s  f o r  t he  term f o r  t he  boundary conditions,  now Y, must s a t i s f y  only t h e  bound- 
ary conditions which a r e  the  same as f: That is ,  both 

m 
f=  2 C V P U  

L -1 

must s a t i s f y  the  boundary conditions.  
t e r a  i n  Equation (1.4.47). 
a re  as follows. 

Otherwise, t h e r e  w i l l  be an addi t iona l  
Consequently, t h e  conditions which Y, must s a t i s f y  

(1) A l l  boundary conditions must be s a t i s f i e d .  

(2) In tegra t ion  is poss ib le  only t o  the  ex ten t  t h a t  L ( I , )  and M (Y,) a re  
formed. For example, when L [ J is  of t he  second order ,  it is  necessary f o r  
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I, t o  at least have a coittinuous first order and spatially continuous second 
order differential. 

(3) They must be linearly independent. 

When this is compared with Ritz's nethod, Equation (1.4.47) is more con- 
venient practically than Equation (1.4.35) in the previous section. However, 
as for the conditions which are added to I,, conditions (1) and (2) in this 
ssction are more important. In such a case, conditions ( l ) ,  (2) in previous 
section are satisfactory, but given conditions (1),(2) in this cection, they 
are unsatisfactory. For example, where f" + Af = 0, when f(- 1) = f(1) = 0, 
assuming I1 = 1 - 1x1, "2 = (1 - ixI)x, tFe conditions in the previous section 
are satisfied, but since the conditions in this section are not satisfied, 

- /63 

Equ:tiGn (1.4147) cannot be used. If we 

0, I= -JF,LCP.Yr, 

Galerkin's equation becomes as follows 

I 

C Ca,w-Abpm) e, =o, - 

make the following abbreviations, 

(1.4.48) 
6, I =sp,JT,P") & 

(1.4.49) 
0=1,2, 0 ., 

From this, we write the root of A in the equat'o 
determinant of magnitude L1(m), L2(m), ..., 
Rayleigh's values. 

in which the coefficiert 
men, LI(1) agrees with 

1.4.6. GRAEWEL'S METHOD 

(1.4.50) 

'Ihe eigen value 11 in the successive approximation method in Section 1.4.3 
has the following method, proceeding frum Equations (1.4.17) , (1.4.18) in that 
sect ion. 

- j w  LcwIdz  

,f P UP dz 
11=hlinp2(w)=Min- - 

(1.4.51j 

(1.4.52) 

In this case, we employ Equation (1.4.52), and assuming that w has the form in 
the Equation (1.4.46), if we determine the conditions where for c1, c2, ... cm, 
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we have a minimum value of p 2 ( w ) ,  this form Galerkin's method. 
tc this, employing Equation (1.4. Sl) , assuming 

In opposition 

(1.4.53) 
I 

w= c.H.(z) 
a-1 

We assume that ",satisfies conditions ( l ) ,  (2), (3) in Section 1.4.5 and for 
cl, c2, . . . %, if we determine the condition where ~1 (w) is minimum, we obtain 
Grammel's equation, described in this section. 
of Equation (1.4.51) as N, 2, if we minimize ~1 

Now, writing the denominators 

.- . 

Therefore 

Sitlce the two terms inside the parentheses in the szcond term are equivalent 

or 

(1.4.54) 

(1.4.55) 

This is similar to Galerkin's approach, but ia place of Galerkin's Yp it has U 

form in which L(Yp)/p is used. 

an appropriately selected function nv(x) and from the relation 
Actually, the method used by Grammel t o  form an equatio? (93) begins from 

--L<F. j=p  9. 
(1.4.56) 
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by integrat ion,  Y, should be determined. 
understood, the calculat ion should proceed from 

Moreover, when Green’s function is 

men,  it is  not necessary forr l , to  s a t i s f y  t h e  boundary conditions. 
Equation (1.4.55) becomes 

Then, 

p=1.2. -. R 
Taking only the  first term of tnis, it becomes 

(1.4.58) 

(1.4.59) 

and agrees with the  Equation (1.4.Sl) cited abovz. iiwever, t h i s  Y 1  w a s  com- 
puted f r o m  Equation (1.4.57). 

Now w e  s h a l l  give examples €or the  three  methods of  R i t z ,  Galerkin, and 
Grammel discussed h o v e .  We s h a l l  employ t h e  same problem as i n  t he  case o f  
t h e  successive approximation method. That is. the  d i f f e r e n t i a l  equation and 
contour conditions are 

- /65 

f”+l( l  +z) f  =o. f (O)=f (1)=0 

In o ther  words, t h i s  i s  the  case of L[+ J = $ I 1 ,  p = (1 + x) . 
In Ritz-Galerkin’s method 

- -  
The roots  of  t h i s  determinanc are L,=C. 51846 (0.001 %), L.=26.8316 (1 %) 
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(b) Y = c l ( x  - x2) + c2(x - x3), the determinant is 

o =  

L1=6.634 (1.3 ?a, t=%. 59 (8 9a 

I 42+mu 61+%7 u 

64f5S7 u 2770 9 9 + 4 #  33 

Computing this by Grammel's method 

(a) Using a rough equation, withvl= 1, '12 = x, determining '4'" from Equa- 
tion (1.4.56), assuming that the contour conditions are satisfied, '4'1 = (4x - 
3x2 - x3)/6, '4'2 = (3x - 2x3 - x4)/12 and computing from Equation (1.4.55), and 
making the substitution A = 16a, the determinant is 

5 3 7  
2 15 6 3 0  

5 3 7  7 9 9  

-+----s 
o = !  31 

-+- 12 14Ou 

From this root, if we compute L1 

Ai=L1(*'=6. 5567 (0.1,06), A*=LaC"=26.937(2W 
. .. // 

(c) From '11 = sin TTX, '4'1, = -pn1, assuming 'Yl(0) = Y1(1) = 0 

p1= (1 +z> sin a z }  /x2+2 (cos r 2- 1 +2z)/lra 

/66 
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(d) From q l  = s i n  ~ T X ,  112 = s i n  2 ~ r x  

as can be understood from t h i s ,  i n  Grammel's e:pation, the  approximation is a 
s tep  b e t t e r  than tha t  of Ritz-Galerkin. 
the method of successive approximations. However, f o r  t h i s  reason, consider- 
able labor and calculat ions a re  required f o r  such an improvement on the  method 
of  successive approximation. 

This can be seen even i f  one considers 

1.4.7. TEMPLE, WEINSTEIN AND TREFFTZ-NEWING METHODS 

(1) Temple's Method. This method satisfies the  boundary conitions f o r  w ,  
i n  the  case of the  form of Equation (1.4.7), i . e . ,  when L[+] + hp$ = 0, and 
se lec t ing  a r b i t r a r i l y  a function which nowhere throughout the  range becomes 0, 
we u t i l i z e  the fact t h a t  the upper and lower limits of the  lowest eigen value 
are  determined by 

(1 -4.60) 

This has been proposed by many people, and Temple has generalized on it, (74). 
Consequently, when one proceeds by using Fn(x) i n  the  case of a successive 
approximation f o r  w ,  it is possible  t o  gradually restrict the  in te rva l  between 
the upper and lower l i m i t s .  

Kiesling (75) has proposed making an equation which includes a parameter 

However, 
k i n  t h e  equation for  w and u t i l i z e s  f o r  the  lower limit a maximum due to  the  k 
in [- L[w(k)]/pw(k)Imin and an min due t o  k i n  [-L[w(k)]/pw(k)],,. 
it is  necessary t o  restrict the  region of k wfthin the  range which w satisfies 
the  above conditions. 

For example, where E 1  d2v/dx2 + Pv = 0, first we assume v and when we 
proceed t o  determine by the method i n  Section 1.4.3, v2 from d 4' v2/dx2 = -P /EI*  

V I ,  the  following re la t ionship  is  established. 
(1.4.61) 

Using vi = 461x(1 - x)/12 as an example, i n  the  case of a uniform cross- 
sect ion,  we obtain 
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Using vl, vl, s ince  

Taking the  maximum and minimum of t h i s  

r 
19 RI 

9-6 E1 <P. <1' (1.4.62) 

Moreover, taking ~ 2 / ~ 3  

Using the  m a x i m u m  and minimum values of t h i s ,  

9-83 E'I <p ,  <-3i- 10 EX 
I' 

The lower l i m i t s  i n  t h i s  case crut be determined by assuming the  cen t r a l  deflec- 
t i on  t o  be 61, 62, 63 ,  ... i n  t he  case of VI, v2, v3, ... and by assuming 
Lll = 62,  62 - 63.  . 

The approximation i n  t h i s  method is not very good. According t o  Equations 
(1.4.17) and (1.4.18), with 

Therefore 

EI 
I' #*=--9.870768 al=- 7: 9.ss235, 

Moreover, s imi l a r ly  t o  t h i s  case, when one ca lcu la tes  t he  lower l i m i t  from 
Equation (1.4.19), with l2 = 39.2, t h i s  is 9.860708 EI/12. 

As a r e s u l t ,  even i f  only V I ,  v2 are used 

9.86705 EI/l'<P~<9.870Oi EI/P 

Compared with the  above equation (1.4.62), it can be s a i d  t h a t  t he  accuracy is  
completely incomparable. 

(2) Weinstein's Method (76). When the  problem is  ti-e same as i n  the pre-  
vious sec t ion ,  i n  the  form L[$] + XpJl = 0, s e l ec t ing  an a r b i t r a r y  constant 
which w i l l  s a t i s f y  the  boundary condition w ,  and ca lcu la t ing  
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(1 .4.63) 

I t  can be s a i d  t h a t  between R - F T  and R + J p2 - RZ , there  i s  at least 
one eigen value A (value c loses t  to  R ) .  
to  A 1  than t o  X2, by o ther  methods, it becomes poss ib le  t o  use R - r p 2  - R' as /68 
the  lower l i m i t  A;. 
function. However, it can be used evzn f o r  a high order  eigen value. 

When it can be seen t h a t  R is c lose r  

However, t h i s  method fails  i f  w i s  not  c k e  t o  an eigen 

(3) Trefftz-Newing's Method f o r  Determining Lower L i m i t s  (77). Similar ly  
as above, we determine R, p (where p 2 R 2 11) 

g= 1 - R / i  (1.4.64) 

Moreover, we s e l e c t  rough approximations for the  lower l i m i t s  11 = 11(1), 1 2  
with respect  t o  AI, A2. Here it must be . t h e  case t h a t  22 > R. Then by the  
following equation, it is  possible  t o  improve t h e  lower l i m i t  by l l t l ) ,  11(2) 

'hen 

(1.4.65) 

(1.4.66) 

is obtained. 

1.4.8. METHOD US I NG INTEGRAL EQUATl ONS 

I f  one expresses the  eigen value pzoblem described above i n  terms of an 
in t eg ra l  equation, t h i s  becomes the  problem of solving 

(1 .4.67) 

This kernel K(s, t )  can be wr i t ten  immediately i f  Green's funct ion is  known. 
For example, i n  t he  case of a simple problem, t h i s  becomes as follows 

(1) When the  d i f f e r e n t i a l  equation is  f" + Apf = 0 and the  boundary con- 
dit i0r.s  a re  f (0 )  = f ( a )  = 0 
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P (4P (0 t(a-s) (s(la-a)--P) 
6 0  

m a ,  t )  =- 
(3) Yiien the  d i f f e r e n t i a l  equation i s  t h e  same and the  boundary conditions 

a re  I <o~=f’(o)=f(o)‘=f~(o)o=o 

(4) Similar ly  , when the  boundary conditions are f<O)=/’(o)=~”(~)=f/~~(~)~~ 

The above K(s, t )  are with respec: t o  s ‘ l t ,  and it is easy t o  determine t h a t  
which corresponds t o  s 5 -- t from its symr,etricity. 

- /69 

The above i n t e g r a l  equations should be solved following t h i s  method. In 
order  t o  convert t o  the  in t eg ra t ion  t o  a sum by breaking up t h e  e n t i r e  region 
i n t o  pa r t s ,  it is  poss ib le  t o  use such accurate  equations as t h e  broken l i n e  
equation, Simpson’s equation and others, 
tion, one must no t  sk ip  the poin t  where the  kernel i s  s = t. There are o the r  
methods of so lu t ion  f x  the  i n t e g r a l  equations which can be used, and they are 
omitted here. Moreover, when the  d i f f e r e n t i a l  equation i s  of  a complex form, 
OF espec ia l ly  i f  it i s  a p a r t i a l  d i f f e r e n t i a l  equation, t h e  problem of de te r -  
mining Green’s funct ion itself i s  q u i t e  complicated. 

However, rahen us ing  an accurate equa- 

1.4.9. FINITE DIFFERENCE METHOD 

This method can be used f o r  any l i n e a r  d i f f e r e n t i a l  equations,  and is very 
e f f e c t i v e  i n  general  appl icat ion.  In  p a r t i c u l a r ,  i n  problems of p l a t e s ,  which 
involve eigen value problems and p a r t i a l  d i f f e r e n t i a l  equations,  even when 
d i f f i c u l t i e s  are encountered using o the r  methods, t h i s  method has t h e  advant- 
age t h a t  i n  some way it can be used t o  %ind an answer. 

Dividing the  region between x = a, x = b i n t o  n equal p a r t s ,  we proceed 
from 

h=(b-a)/n (1.4.68) 
- -  

and assume t h a t  t h e  terminal conditions are given f o r  x = a, x = b. 
write the  eigen funct ion values z t  

We w i l l  

z,=o+ih (i=O, 1.2, - * 0 ,  n) 
(1.4.69) 

89 



f o r  each point  of d iv is ion  as f ( x i )  = f i .  
equation i s  

Assuming t h a t  t he  given d i f f e r e n t i a l  

Lcv~+lJIccpl=o (1.4.70) 

I f  we compose a f i n i t e  d i f fe rence  equation Sased on X i ,  a prima=.y simultanzous 
equation i s  es tab l i shed  with respect  t o  the unknown number F i .  For t h i s  reason, 
we replace th.;. d i f f e r e n t i a l s  by t he  f i n i t e  d i f fe rence  t a b l e  of t he  first approx- 
imation. That i s  

(1.4.71) 

In  t h i s  case, io indica tes  t he  upper l i m i t  of the  e n t i r e  region containing the  
points  of  d iv is ion  i n  t h e  problem of t h e  pth order  d i f f e r e n t i a l  coe f f i c i en t  o r  
g(x). Moreover, c takes i n t o  account the  e f f e c t  due t o  p and i t s  d i f f e r e n t i a l  

" t h i s  mp o r  c, i n s e r t s  them i n t o  a d i f f e r e n t i a l  equation and writes FJ\ i n  place 
of g(Xi), and then f o r  1,-writes A as the approximate value,  the  int inded f i n i t e  
d i f fe rence  equation can be obtained. Then, i t  i s  poss ib le  t o  rewrite the  bound- 
ary c!?r.Biiions as f i n i t e  d i f fe rences .  For example, i n  p lace  of  f ' ( b )  = 0, one 
writes F,+1 - Fn- l  = 0.' As a r e s u l t ,  i w i l l  be outs ide  of i =0, i = n, but from 
the  terminal condi t ions-and the  f i n i t e  d i f fe rence  equatimwhere i = 0 o r  i = n, 
by el iminat ing F-1  o r  F n + l ,  it is  poss ib le  t o  e s t a b l i s h  the  (n + 1) simultane- 
ous equation f o r  t he  unknown from Fo t o  Fn. A multiple-ordered equation i s  ob- 
ta ined  f o r  A by means of the  conditions f o r  obtaining a so lu t ion  i n  which every- 
th ing  from t h i s  Fo t o  F, is  not  0, and with i t s  determinant as 0.  

i:ynf is the approximate value of t he  p t h  order  eigen value. 

conditions a t  one end, by successively ca l cu la t ing  the  equation, assuming t h a t  
i n  t h i s  case the  determinant i s  not  0, and t h a t  i n  addi t ion t o  the  terminal 
conditions at  the  o ther  end, F1  and o ther  values are a constant such as 1. 

- /70 

. coe f f i c i en t  on the  same thing. I f  one excludes the res idua l  terms expressed by 

Arranging 
o lu t ions  i n  order  of magnitude, hl(n) , .h2(n) ,  i s  obtained, and t h i s  

There i s  a l s o  a method f o r  ad jus t ing  .". so  t h a t  it s a t i s f i e s  t he  terminal 
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In addi t ion,  two methods can be used t o  increase the approximation i n  t h i s  
method by means of t h i s  f i n i t e  d i f fe rence  equation. 

(1) By making the mesh more f i n e l y  d i f f e ren t i a t ed .  

(2) By using a high order  approximation equation. 

When the mesh i s  made more f ine ly  d i s t r ibu ted ,  we assume t h a t  t he  r e l a t ion -  
sh ip  betweon n and A,(n) becomes 

1, -e/." (1 .1 .72 )  
& mk. 

with c and a as ccnstants ,  and when n i s  increased, it is  poss ib le  t o  determine 
the  value which i s  considered t o  be c loses t  t o  Xp.  

However, general ly  when using t h i s  f i n i t e  d i f fe rence  equation, caution 
must be exercised s ince ,  depending upon the  type of problem, and the  method 
f o r  e s t ab l i sh ing  the  approximation equation, d i f fe rences  may a r i s e ,  i .e . ,  the  
approximation may approach the  t r u e  value from above, o r  from below. 

I t  is  poss ib le  t o  give as an example the  following, when employing a high 
order  approximation equation. 

403 h' +--m, 0040 

As i n  the  case of t he  first approximation, a simultaneous f i n i t e  d i f fe rence  
equation is  obtained f o r  F i  
be able  t o  e l iminate  them as described above, t he  terminal por t ion  cannot but 
be s a t i s f i e d  by the  first approximation. "his method i s  conveniert, s ince  the 
coe f f i c i en t s  a r e  cor rec t  without having t o  increase the  degree of the  a lgebra ic  
equation f o r  f inding A ,  when r a i s i n g  t h e  approximation by t h i s  method. 

In t h i s  case, F-l ,  Fn+l a p p e a ,  bu t  i n  order  t o  
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In the case of p a r t i a l  d i f f e r e n t i a l  equations i n  p l a t e  problems, t h e  g r i d  
points  ( X i ,  yk )  a r e  determined i n  the  same manner as abade, i . e . ,  

z=ze+ih,  y=yo+kZ ( i ,k=O,  f 1. * * >  (1.4.74) 

The points  indicated by xo, go) and length h,  1 can be f r e e l y  se lec ted ,  bu t  
i n  view of the  boundary conditions,  it i s  convenient t o  car ry  out the  determina- 
t i on  so  t h a t  the approximation is sa t i s f ac to ry ,  and the  boundary coincides as 
close as possible  t o  the  g r id  points  men;ioned above. As above, t he  approxima- 
t i on  value of the  eigen function f ( x ,  y) a t  poin t  (x i ,  y i )  i s  F i k .  
t h i s  case, when wr i t ing  the  f i n i t e  d i f fe rence  t ab le ,  the-operatim is  s impli-  
f i e d  i n  the following "displacement operators!! (Verschiebunksoperator) Ex, Ey 
a re  used. 

Then, i n  

These operators were determined by 

E,$(%, y)=g(Z+h.  y), ErF(,A=Fl+l,t (1.4.75) 

(1.4.76) E,g(z, Y ) = ~ ( X ,  y-'-Z), EvFi,L=Fi.L+l 
-- 

As a r e s u l t ,  it i s  possible  t o  ca lcu la te  t he  operator  formerly i n  the  same way 
as an algebraic  quant i ty;  t h a t  i s ,  

Then, f o r  example, when wr i t ing  &;a.Pby ind ica t ing  t h i s  except f o r  the  res idua l  
term, s ince 

. .  

I t  i s  possible  t o  write 

1 =2h'I G71,1-2%,1+g-1,1+g1,-14g0,-1+g-1,-1~ 

Then, if we write the  frequent ly  occurring A ,  Ab, we obtain the  following, 
where h i s  assumed t o  be equal t o  1. 
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The mp i n  these equations ind ica tes  the  upper l i m i t  of  t h e  maximum val.Ie of the  
pth order p a r t i a l  d i f f e r e n t i a l  coe f f i c i en t  a t  a l l  g r i d  poin ts  within t h i s  range. 
Also, i n  t h i s  case,  only t h e  required number of fi;,t order  simultaneous equa- 
t ions  occurs with respect  t o  F i , k .  However, i n  the case of nrdezs of Iproxima- 
t ions  above the  second order ,  i f  the  boundary conditions a r e  not s a t i s f i e d  by 
the  f i rs t  approximation, values of F f o r  the  g r i d  poin ts  outs ide of the  boundary 
w i l l  remain, causing the  problem. Moreover. e w n  i n  examples of numerical com- 
puta t ion ,  it i~ of no i n t e r e s t  t o  reduce tile approximation f o r  high order  par- 
t i a l  d i f f e r e n t i a l  coe f f i c i en t s ,  s o  t h a t  they are lower than the  low order  ones. 
Conversely, t he  higher  t he  order ,  t he  highe. 'muld be the  approximation. 

1.4.10. PERTURBATIOPi METHOD 

This method can be used when i n  solving L*eS] + XM*[V]  = 0,  the co r rec t  
so lu t ion  i s  known f o r  t he  Zase where the re  i s  only a s l i g h t  d i f fe rence  i n  i t s  
coef f ic ien t .  L [ V ]  + A K [ V ]  = 0.  
conditions t o  be the  sari? f o r  both. .?he correc t  so lu t ion  i s  known f o r  

In t h i s  case,  i t  is necessary f o r  the  boundary 

(1.4.80) 
L*Cv)+A N*CcpJ=O 

We wr i te  the eigen \ d u e  a.; An,o*, t he  eigen function as fn,o.  

In comparison with t h i s ,  we assume t h a t  the  o r ig ina l  equation was Written 

(1.4.81) Lcvl+A Jfc(F3=Lyv1+~>~(Cp)+ N C f +  4Kr,(7)=0 

* n,o is  assumed t o  be s ing le .  When mult iple ,  consul t  Courant-Hilbert ( 7 8 ) .  
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Considering the  parameter E i n  wr i t ing ,  

E = 0 is Equation (1.4.80) where t h e  co r rec t  so lu t ion  i s  known. 
t h i s  becomes (1.4.81). Then, it is considered t h a t  t he  soluti-on of Equation 
(1.4.81) is r e l a t ed  t o  E and it i s  assumed t h a t  it is  poss ib le  for t h e  eigen 
values and eigen functions t o  be expanded t o  t h e  ascending powers 3f E (general 

Where E = 1, 

proof i s  d i f f i c u l t ) .  i .e . ,  - /73 

(1.4.83) 

We insert  t h i s  i n  Equation (1.4.82). Then 

. .  .. 0 0 - 
I:€~~** ~.,. I+I:e.NCf. . . - , l+(ZE*&. .X~ €.MI[ f,.. 3+ZE.Kc f...- ~I)=O 
b-a -1 u b-e kl 

Correcting t h i s ,  and arranging it for t h e  ascending powers of E,  assuming each 
tern t o  be 0, 

From the  coe f f i c i ec t  EO 

(1.4.84) 

(1.4.86) 

Since the  i n i t i a l  equation (1.4.84) agrees with Equation (1.4.80), it is assumed 
t h a t  t he  following r e l a t ionsh ip  is es tab l i shed  f o r  a l l  functions g, h i n  which 
the  properties of L* and M* s a t i s f i e d  t h e  boundary conditions. 

(1.4.87) 
j b L T h I - h ~ Q 3 )  &=o, 

Jg 3fYhI-h  JIG]) dz=o, 

Then, from Equation (1.4.85) (1.4.861, t h e  unknown q u a n t i t i e s  A n , l ,  f 
fn,2 . . . are successively determined. That i s ,  when equation (1.4.85fD3s muiti-  
p l led  by fn,o an in t eg ra t ion  is car5ed out for t h e  e n t i r e  range, employing 
Equation (1.4.87), since 

, An 2: 
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( 1 .4.88) 

S imi la r ly ,  Xn,2 is  as follows, when v = 2 i n  Equation (1.4.84) and it is multi-  
p l i e d  by fn ,o  and in t eg ra t ed  

.. 

-J f ~ , . ( N U n , 3 + A n , i ~ n * ~ l + A n , ~  Jf*C.fn,J+An,o i k f n * J W  (1.4.89) + 

, *  
As,*=- 

$fa** mra,*l dz 

Simi lar ly ,  we can write 
equations as far as Equation (1.4.88) suffice. When it comes t o  Equation (1.4. 
89), it is  necessary t o  know fn,l.  
for fiD,l so t h a t  t h e  boundary ccnditions a r e s a t l s f i e d ,  i n s e r t i n g  t h e  values o f  - /74 

but usua l ly  t h e r e  are many cases i n h i c h  t h e  

For t h i s  purpose it is necessary t o  so lve  

i n  Equation (1.4.85). 

As a special case, when K = 0, j .e., M* = M, and assuming simply p = p*, 
w e  assume t h a t  t h e  so lu t ion  is known f o r  t h e  following equation 

(1.4.90) 

Then, w e  assume t h a t  

is used t c  obta in  t h e  o r i g i n a l  so lu t ion  

Then, Equations (1.4.88) and (1.4.89) become simple, as i n  the  bllowing equa- 
t i sns  . 

.-$/..o x ~ a , ~ a z  
(1.4.91) A,,,= -- J pfnc* & 

(1.4.92) 

In  t h i s  case, i t  i s  poss ib le  t:, determine according t o  Courant-Hilbert (78) p 
297, a so lu t ion  which assumes t h a t  f n , l  can be expanded by t h e  eigen value 
function series, f l , O ,  f2,0.. . i n  Equation (1.4.90). That i s ,  it corresponds t o  

95 



Equation (1.4.85). l aen  multiplying 

LYf a d +  Im,pfn,r+ <xcfm,eI+r*.,pf I ,u;=o (1.4.93) 

by f l  0 and in tegra t ing ,  and taking Equation (1.4.87) i n t o  consideration, a l s o  
consiilering t h a t  f1,o i s  tb so lu t ion  of (1.d.90) 

Moreover, s ince  t h e  r u l e  f o r  expanding f o r  . ' P f t , o / J J G  , where z 
i s  normalized is  

so  it i s  found i n  

(1.4.94) 

Moreover, By t h i s  it i s  poss ib le  t o  determine f n . B  with the  exception of fn,O. 
ac tua l ly ,  s ince  t h e  term f is not required,  we can follow t h i s  procedure. n,O 

1.4.11. THE METHOD OF LEASED SQUARES 

We assume t h a t  t he  eigen funct ion f i s  an approximation equation of t he  
following form 

(1.4.95) 

- Moreover, we have s a t i s f i e d  the  boundary condi t ions with x as a function. In 
order  t o  determine cl  , . . . and the  approximate value of A, 1 .e., A , we operate  - 
i n  such a wa.y t h a t  the  square of t h e  e r r o r  of  t h e  r e s u l t  o f  using JI becomes a 
minimum. i. e. ,  

175 ' 

(1.4.96) 

This denominator 
common method of 

was added i n  order  t o  normalize +, i n  order  t o  agree with 
leased squares.  Then, s ince  the  requirements of Equation 

the  
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(1.4.96) become 

(1.4.97) 

by t h i s ,  it is  possible  t o  determine A ,  c1, c2, ... %. 

I f  $ i s  a function w which already coipr ides  well with t h e  form of an 
eigen funct ion,  s ince  a I / a  A =  0, we obtain 

(1.4.98) 

Hhen p = constant,  t h i s  agrees with Rayleigh's equation, bu t  when p i s  not  a 
constant,  it general ly  does not  agree. 

1.4.12. METHOD OF SERIES EXPANSION 

When we assume t h a t  the  eigen funct ion can be expanded i n t o  a series, such 
as an exponential  series or tr igonometrlc series, it is  poss ib le  t o  determine 
the eigen function as follows, i . e .  

(1.4.99) 

We assume t h a t  t h i s  form Ym(X) already satisfies t h e  boundary cond ibns .  
this is  in se r t ed  i n  L[$] + AM[$] = 0, t h e  r e s u l t s  are expanded i n t o  a series as 
above. 

When 

Then, the  d i f f e r e n t i a l  equation becomes 

(1.4.100) 

(1.4.101) 

N o w ,  considering the  coe f f i c i en t  Yv should be 0,  it is poss ib le  t o  form a first 

...... 

i t  determinant i s  

=O 
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An a lgebra ic  equation i s  obtainea f o r  1 . Fron t h i s  approximate values are - /76 
obtained up t o  t h e  i n i t i a l  n - order  eigen value. (79) 

Generally, i t  i s  not  necessa r i ly  t h e  case t h a t  t h i s  method w i l l  work 
smoothly. Good r e s u l t s  are obtained when t h e  method o f  s e l e c t i n g  t h e  series 
and f o r  performing t h e  equations is good. Per ta in ing  t o  t h i s  type o f  method 
is  t h a t  recent ly  proposed by Takahashi (80).  

1 . 4 . 1 3 .  LOWER L I M I T  OF MINIMUM E I G E N  
VALUE OF COMPOUND SYSTEM. 

We assume t h a t  when t h e  d i f f e r e n t i a l  equation i s  L [VI + XpvS = 0, D i s  
expressed as t h e  sum of seve ra l  functions.  That i s  

(1.4.103) 

Moreover, w e  assume t h a t  w e  know t h e  minimum eigen function X ('J o f  L [$I + 
XpV = 0. Then, according t o  ihnker ley ' s  equation, t h e  lower l i m i t  of t h e  
minimum eigen value o f  L [ q ]  + Xpq = 0 is  determined by 

(1.4.104) 

C I I  

When L[q]  is  t h e  sum of  many d i f f e r e n t i a l  opera tors ,  L p f v ] ,  and i f  w e  know 
t h e  minimum eigenvalue A1('), of L[P] + XpV = 0, t h e  lower l i m i t  o f  t h e  minimum 
eigen value X 1  o f  L[v] + Xpw= 0 is  determined by 

(1.4.105) 

In buckling problems, t h i s  can be  used when t h e  ex te rna l  force  system comes 
on, or t he  s t r u c t u r e  i s  a compound system. 

1 . 4 . 1 4 .  METHOD U S I N G  APPROXIMATION OF BOUNDARY CONDITIONS 

The methods described above were se l ec t ed  from those which s a t i s f y  as 
c lose ly  as poss ib le  t h e  d i f f e r e n t i a l  equations, from among those which s a t i s f y  
t h e  boundary conditions.  
conditions as c lose ly  as poss ib le ,  by appropriately s e l e c t i n g  such a function 
t h a t  would s a t i s f y  t h e  d i f f e r e n t i a l  equations. 
used as conditiozs f o r  s a t i s f y i n g  these  boundary conditions as c lose ly  as poss- 
i b l e .  That is, the  following methods are involved 

There are a l s o  methods which s a t i s f y  t h e  boundary 

The following methods can be 

(1) Point Se lec t ion  Method 
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(2) Method of least  squares.  /77 - 
(3) Ser ies  expansion method. 

(1) In the  poin t  s e l ec t ion  method, one merely satisfies t h e  required con- 
d i t i ons  a t  severa l  po in ts  on t h e  boundary. One example of  t h i s  i s  t h e  attempt 
made by Sezawa i n  the  case of  a Clat p l a t e  with a th ick  boundary (81), but  t h e  
r e s u l t s  were not  a very good approximation. 

(2) In the  method of  least squares,  t h e  Getexmination is  made on the  bas i s  
of a condition according t o  which the  sum ( in tegra t ion)  of  the  square of t h e  
e r ro r s  with respect  t o  t h e  boundary condition is minimized. 

(3) In the  series expansion method, t h e  values of  t he  combination of  
so lu t ions  of d i f f e r e n t i a l  equation (s) on a boundary are, f o r  example, expanded 
i n t o  a tr igonometric series along t h e  boundary, compared with t h e  boundary 
conditions,  and t h e  values f o r  each-coef f ic ien t  of  t h a t  series are determined. 
A determinant i s  obtained f o r  determining t h e  eigen values from these  equations. 
For example, t h a t  which Taylor uses t o  determine t h e  buckling load on a rectang- 
u l a r  p l a t e  with a f ixed  edge is an ins tance  of  t h i s  (82). Details are omitted 
on t h i s  from here  s ince  they are given on pages 452-455 of  Kurinishi ' s  book 
"Danseigiku" (FAasticity) (9) .  

1.4.15.  METHODS FOR DETERMINING BUCKLING LOADS 
I N  FRAME STRUCTURES 

Various methods have been proposed f o r  determining t h e  buckling load i n  a 
s t r u c t u r e  cons is t ing  of  a combinatim of bars  by means of  ca lcu ia t ions .  
t h i s  case, the  method which can be used t o  ca l cu la t e  s t a t i c a l l y  indeterminant 
stresses general ly  can be u t i l i z e d  i n  e las t ic  s t a b i l i t y  problems. In t h e  case 
of s t a t i c a l l y  indeterminar.t stress, a general  c l a s s i f i c a t i o n  of methods can be 
made i n t o  those which u t i l i z e d  the  stress of a member as 9- unknown quant i ty  
( s t ag ica l ly  indetermenant excessive quant i ty)  and those w..ich u t i l i z e  deforma- 
t i o n  (displacement and ro t a t ion ) .  
t he  general  method of  composing a set  o f  simultaneous first orders  i n  equations 
f o r  t he  unknown q u a n t i t i e s  and solving them, the re  are methods which proceed i n  
s tages ,  carry out  sequent ia l  cor rec t ions ,  or u t i l i z e  f ixed  poin ts ,  or f ixed 
values.  
cases. 
hinged j o i n t  frames and s t i f f  j o i n t  frames. As has already been explained i n  
Section 1.2.8,  cases arise which depend on t h e  a b i l i t y  of displacement of t he  
j o i n t s ,  and the  a p p l i c a b i l i t y  of  changes i n  member length.  

In 

Moreover, f o r  each of them, i n  addi t ion  t o  

Moreover, various s p e c i f i c  methods have been devised f o r  individual  
Moreover, with regard t o  the  s t ruc tu res  themselves, t he re  are both 

In any case,  following the  general  theory of  buckling, given a p a r t i c u l a r  
load condition, i n  addi t ion t c  the  deformation t h a t  ex i s t ed  up u n t i l  t h e  time 
of t h a t  condition, we u t i l i z e  the  displacement and r o t a t i o n  of t h e  j o i n t  as 
a new deformation with respect  t o  the  form of buckling deformation, and de ter -  

99 



mine the  s ta te  of equilibrium when t h i s  new deformation is  appl ied,  o r  taking 
i n t o  consideration the  added i n t e r n a l  forces (ax ia l  force ,  bending moment) we 
determine the  conditions under which they develop i p  order  f o r  them t o  be i n  
equilibrium with respect  t o  the  deformation, and formulate a homogeneous simul- 
taneous equation. Then assuming its determinant t o  be 0 ,  one may select the  
lowest values from i t s  root  as the  buckling load. 

In addi t ion t o  t h i s ,  t he re  are severa l  o ther  methods which are e s s e n t i a l l y  
the  same as t h e  above. Kavanaugh's paper (86) is a co l l ec t ion  of  a r e l a t i v e l y  
large number of  these methods, toge ther  with a discussion of  them. 1Je w i l l  not 
attempt t o  present  a general  discussion of >.his problem here,  bu t  w i l l  ins tead  
descr ibe r e l a t i v e l y  new spec ia l  cases. 

(1) Lundquist 's S t i f f n e s s  Method (89). S t i f f n e s s  refers t o  the  bendinq 
moment which must be applied t o  t h e  end of  a bar ,  i n  order  t o  r o t a t e  one encl, 
a of it only one radian i n  t h i s  case r ? l l e d  absolute s t i f f n e s s )  o r  1/4  radian 
(ca l led  r e l a t i v e  s t i f f n e s s ) ,  bu t  hei.. e s h a l l  call it "s t i f fness"  without fur -  
t h e r  qua l i f i ca t ion .  There i s  a d i f fe rance  i n  i t s  value,  depending on t h e  de- 
gree of  r e s t r a i n t  and ax ia l  load on t he .o th+r  and 8 . We s h a l l  use S h  to ex- 
press  the  s t i f f n e s s  when t h e  o the r  end is thickel.-&, S" & t o  express t h e  
s t i f f n e s s  when t h e  o the r  end is  ro t a t ing ,  and S'& t o  express the  general  case, 
i n  which the  o the r  end is  e l a s t i c a l l y  res t ra ined .  Then S, S ' ,  S" , r e s u l t  from 
multiplying the  coe f f i c i en t s  based on t h e  axial load by EI/L.  
t he  s i z e  of  t h e  bending moment occurr ing a t  one eDd b ,  due t o  the  bending moment 
occurring a t  the  o ther  end a, t o  t h e  first bending moment occurring a t  end a, 
we cal l  t he  carryover fac tor .  This w i l l  be denoted by Cab when the  o t h e r  end 
is  a f ixed  end, by C" d ( = O ) ,  (when the  o the r  end is a r o t a t i n g  end) and by 
C ' h  i n  t h e  case of  general e las t ic  r e s t r a i n t .  This is  a l s o  r e l a t e d  t o  axial 
load, bu t  t he  value of  S, S" , C,  are already given i n  the  form of a t a b l e  
(See Chapter 3.1). 

The r a t i o  of 

- J78 

Denoting by i k  one of  t he  members coming toge ther  at  t h e  j o i n t  i and by 
kh another one of  the  members coming together  at j o i n t  k on the  opposi te  s i d e ,  
t h e  s t i f f n e s s  S ' i k  at end i of  member i k  can be expressed by t h e  following 
equation 

s1 t (1.4.106) 
l--Cii, Crr f S,JCS"W+{ S'U) 

When t h i s  S ' i k  is t o t a l l e d  f o r  a l l  of  the  members coming together  a t  j o i n t  i ,  
i f  . JS '~ ,>O 

Then,# S ' ik  = 0 i s  t h e  l i m i t  of s t a b i l i t y  of  t h i s  ordinary deformation. That 

i s ,  t he  buckling load i s  determined from t h e  condition 

no buckling occurs. That is, ordinary deformation is  s t a b l e .  
t. 

(1.4.107) 
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In t h i s  case,  s ince  the inf luence of the o ther  members s t a r t i n g  from h i n  

i n  Equation (1.4.106) is  ca lcu la ted  by an equation of the same form as Equation 
(1.4.106) and thus becomes involved, the  inf luence of a l l  members en te r s  i n t o  
Equation (i.J.107). 
the  same buckling load is  involved. 
method (Stufenverfahren) i n  the  theory o f  s t a t i c  indeterminancy . 

Consequently', no matter which j o i n t  is  se lec ted  as a j o i n t ,  
On , th i s  po in t ,  t h i s  is similar t o  the  s t e p  

The above methods a l l  involve the  case i n  which the re  i s  no displacement 
of the  j o i n t .  
i s  displacement of t he  j o i n t ,  bu t  one man, Lundquist, has determined t h a t  which 
i s  described above. 

I t  i s  possible  t o  expand t h i s  method t o  cover cases i n  which there  

Moreover, t h e  fact t h a t  Lundquist uses r e l a t i v e  e l a s t i c i t y  coe f f i c i en t  when 
' 

*. discussing t h i s  method, and states t h a t  S, S', Sf' , must be ca lcu la ted ,  i s  of 
important s ign i f icance .  That is ,  t he  vaiue of  t he  parameter E which is  
.which ind ica tes  t he  inf luence of t he  ax ia l  load, should be determined i n  
accordance with the  a x i a l  load P. 
posed by Lundquist i s  ca lcu la ted  as follows. 

The r e l a t i v e  e l a s t i c i t y  coe f f i c i en t  E p r o -  

* 1  

(1.4.108) - l P  L X  E = - -  - 
x' F (is',) 

Here L / i K  i s  t h e  e f f e c t i v e  s lenderness  r a t i o ,  i .e. ,  t he  slenderness 
r a t i o  obtained by d iv id ing  the  buck l ing leng th  L& by the  sectio-a1 two- 
dinensional radius  i. This value follows the  Equation(s) f o r  columns, and 
s u b s t i t u t e s  f o r  t h a t  which i s  expressed as the  function P/F = a k .  This method 
of ind ica t ion  is  more p r a c t i c a l  than Karman's equation (1.4.52). Moreover, 
by employing E i n  t h i s  method, t he  buckling load of  a frame becomes very close 
t o  the  aqtual  load. Otherwise, i n  t h e  case of a s i n g l e  column, t h i s  would be 
the same th ing  as ca lcu la t ing  only Euler ' s  buckling load, and the re  would be 
the  danger t h a t  it would be very remote from the  ac tua l  buckling load. 

(2) Lundquist's Ser ies  Method (89). This proceeds on the  same bas i s  as 
t h a t  which i s  described immediately above. A u n i t  moment is applied t o  a j o i n t  
b. In order  t o  e s t a b l i s h  an equilibriurd with t h i s ,  a moment of -1 is  d i s t r i b u -  
.ted according t o  s t i f f n e s s  along the  me4ber which is connected t o  t h i s  j o i n t .  
F i r s t ,  the  end c of member bc converging a t  point  b is f ixed,  then the  restric- 
t i o n  is removed, a f te r  which a bending doment is applied t o  the  next  member. 
This procedure i s  the  same as t h e  Hardy Cross Methcd (44). 
tchich re turns  t o  the  o r ig ina l  j o i n t  b is expressed as follows. 

Then the  moment 

(1.4.109) 

/ 79 - 

C ind ica tes  the  sum f o r  a l l  members bc l ,  bc2, .. . converging a t  point  b,  
8 ind ica tes  the  sum of a l l  c 

deformation t o  be s t a b l e ,  it i s  nicessary f o r  a constant moment t o  operate  on 

C 
dl ,  cid2, . . . f o r  c i .  In order  f o r  ordinary 

i '  
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each p a r t .  For t h i s ,  it must be the  case t h a t  r < 1. Consequently, r = 1 
becomes the  l i m i t  of s t a b i l i t y .  
appear i n  the  tab le .  S' can be ca lcu la ted  from the equation (1.4.106). Also, 
i n  t h i s  case, i t  i s  easy t o  include i n  the  ca lcu la t ions .  

The S, S", C occurring i n  these  ca lcu la t ions  

(3) Hoff's Method (90). Hoff's Method is the  same approach as the  method 
based on the  series used by Lundquist i n  the  previous sec t ion ,  but  it uses a 
d i f f e ren t  procedure, and there  i s  some d i f fe rence  i n  the  b a s i s  of explanation. 
Bi t h i s  method of Hoff's, using the  load which is  ac tua l lv  appl ied,  and follow- 
ing  the  Hardy Cross Method (94), when one carries out t he  d i s t r i b u t i o n  of  bend- 
ing moments, the elimination of s t r a i n  and br ings  about equilibrium, as a re- 
s u l t ,  s ince  the  bending moments a t  each j o i n t ,  i n  t he  case of e l a s t i c  s t a b i l -  
i t y ,  converge t o  f i n i t e  and unique values,  t he  case when these  moments no 
longer converge t o  f i n i t e  values may be taken as the  l i m i t s  o f  s t a b i l i t y .  

One should not ice  t h a t  t he re  are exceptional eases i n  which t h i s  converg- 
ence is only apparent. 
the equilibrium is  s t a b l e  with respect  t o  a p a r t i c u l a r  s e r i e s  o f  changes, and 
forms a saddle  point  which i s  unstable  with respect  t o  o the r  changes. 
a case, i f  one changes t h e  order  o f  e l iminat ion of  r e s t r a i n t s  when using 
Cross 's  method, d i f f e r e n t  values occur, so  t h a t  t h i s  i s  immediately discern-  
i b l e ,  and ac tua l ly  it can be s a i d  t h a t  t he re  are few cases i n  which such a s i t u -  
a t ion  would be encountered. 
i b l e ,  i t  has been noted here.  

Even when t h i s  i s  unstable ,  there  are cases i n  which 

In such 

However, s ince  such a case is mathematically poss- 

Even with Hoff's method, it i s  easy t o  introduce the  r e l a t i v e  e l a s t i c i t y  
modulus E and perform ca lcu la t ions ,  and Hoff himself even gives examples of 
t h i s .  

(4) H S U ' S  Method (95). HSU'S apptoach is  r e l a t e d  t o  the  methods described 
above. 
approximations are used t o  determine the  ove ra l l  s t i f f n e s s  from other  members 
a t  j o i n t s  a t  both ends of  the se l ec t ed  member, and f i n a l l y  t o  determine the  
buckling load under the conditions of r e s t r a i n t  of t h a t  member and t o  consider 
t h i s  as the  l i m i t  of  s t a b i l i t y  of the frame. 

However, i n  t h i s  method, a p a r t i c u l a r  member is se lec ted ,  successive 

Assuming a member A,  B t h a t  i s  t o  be inves t iga ted  as a first approximation 
the o ther  ends of the  members connecting i t s  ends AB, are f ixed,  and the over- 
a l l  s t i f f n e s s  from members o ther  than AB, at  A, B,  i s  calculated.  In t h i s  man- 
ner ,  it i s  possible  t o  determine the  degree of r e s t r a i n t  a t  the  end of  each 
member. 

As a second approximation, using the  values determined by the  f i rs t  approx- 
imation f o r  the  overa l l  s t i f f n e s s  of t h e  o ther  ends of t h e  members connecting 
with the  ends A, B of member AB, the  overa l l  s t i f f n e s s  from members o ther  than 
AB at ends A,  B i s  determined. 

This procedure is  repeated. I t  i s  a necessary condition o f  e!astic s t a b i l -  
i t y  t h a t  t h i s  should converge (however, it is  not  a s u f f i c i e n t  condi t ion) .  By 
doing t h i s ,  when the  t o t a l  s t i f f n e s s  of t he  ends from the  members i s  determined 
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as one f i n i t e  value,  t he  buckling load is  determined f o r  each member, as i n  a 
column having such e las t ic  r e s t r a i n t .  Then, i f  the  buckling load i s  g rea t e r  /80 
than the ac tua l ly  applied load, one can judge t h a t  t he  frame is e l a s t i c a l l y  
s t ab le .  

- 

1.4.16. DETERMINATIONS BY C A L C U L A T I O N  OF B L ' C K L I N G  STRENGTH 

This is  general ly  car r ied  out i n  the  case of t he  f l exura l  buckling of a 
There are very few cases i n  which i t  i s  used f o r  o ther  types of buck- 

For t h i s  reason, we s h a l l  descr ibe it only with respect  t o  the  f l e x u r a l ,  
column. 
l i ng .  
buckling of a column, 

(1) Below Proportional L i m i t .  In p rac t i ce ,  the  r e s u l t s  of  ca lcu la t ion  
of buckling load can be used witnout modification. Actually,  when the  def lec-  I 

t i o n  is increased, s ince  a por t ion  above the proport ional  l i m i t  w i l l  necessar- 
i l y  appear, the  maximum values,  i .e. ,  t he  y i e l d  loads determined by applying ' 
t he  methods described below, i s  the  buckling s t rength .  

(2) The  case i n  w h i c h  t h e  buckling s t rength  is above t h e  proportional 
l i m i t ,  and there is  a pure center  load. In t h i s  case,  t h a t  which i s  de te r -  
mined by Karman's theory described i n  Section 1.2.6 simultaneously becomes 
the  maximum load. 
sec t ion ,  s ince  t h i s  poses considerable d i f f i c u & t y ,  one cannot f ind  many r e s u l t s  
of t h i s  being applied i n  such a case.  

However, i n  t he  case of  a column with a non-uniform cross- 

(3) The  case i n  w h i c h  b u c k l i n g  s t rength  is above proportional l i m i t ,  and 
there  is or ig ina l  def lec t ion  and load eccen t r i c i ty .  In  t h i s  case,  consider- 
ab le  d i f f i c u l t i e s  are encountered i n  attempting t o  perform ca lcu la t ions  which 
w i l l  correspond f a i t h f u l l y  t o  cases i n  which t h i s  ac tua l ly  occurs,  so an appro- 
p r i a t e  s impl i f ica t ion  i s  made. The d i f f i c u l t y  here  l ies  i n  t h e  f a c t  t h a t  t he  
s t r e s s - s t r a i n  curves f o r  a material have d i f f e r e n t  paths  i n  the  case of a r i s e  
and a drop i n  stress. That which causes the  drop i n  s t r e s s ,  extends gradually 
from the  column center  t o  the  ends, and even i n  a s i n g l e  cross-sect ion,  it 
begins from the  most remote tension f i b e r  and gradually approaches the  center .  
In  addi t ion,  i n  any cross-section, t he  stress t h a t  i s  present  when the  drop i n  
stress begins, is d i f f e r e n t  at each poin t .  Even i f  only one cross-sect ion is  
considered, when t h e  average compressive s t r e s s  increases ,  t h e  stress a t  each 
poin t  should become as shown i n  Figure 1.4.1, i n  accordance with the  d is tance  
from t h e  neu t r a l  axis. The f igu re  i s  an abbreviated diagram and O A l B l  i nd i -  
cates the  d i s t r e s s - s t r a i n  curve i n  the  case when, as a mater ia l ,  there  i s  an 
increase i n  s t r e s s .  When the  average compressive s t r e s s  progresses from D2 t o  
D3 ,  02-02, 03-03 correspond respec t ive ly  t o  t h e  neu t r a l  axes of bending, and 
the s t r e s s  d i s t r i b u t i o n  i n  the  cross-sect ion should progress i n  the  form 
A2C2D2B2 and A3C3D3B3. The range indicated by the  h ' s  i n  the  diagram show the  
overa l l  height  of t he  cross-sect ion.  Then, t he  stress drops quickest  i n  the  
most remote f i b e r ,  decreases along A1A2A3, and s ince  the  drop i n  s t r e s s  begins 
e a r l i e r ,  then t h i s  on the  poin ts  on the  ins ide ,  i f  ve assume C2, C 3  as the  
points  where the  drops i n  s t r e s s  begin, they should appear on A2C2,  and A3C3 
respect ively.  
A3C3, but  depending on the  ac tua l  material, the  cross-sect ion configurat ion 

In t h i s  way, i t  i s  possible  t o  conceptualize the  curves A2,  C 2 ,  
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and the degree of buckling deformation, when it comes t o  s p e c i f i c a l l y  ca lcu la t -  
ing the value,  t h i s  cons t i t u t e s  a very d i f f i c u l t  task, and it  is  almost imposs- 
i b l e  t o  car ry  out.  
noted t h a t  those who have proposed s impl i f ica t ions  i n  many cases have f a i l e d  t o  
present de t a i l ed  explanations of t h e i r  proposals.  

For t h i s  reason, s impl i f ica t ion  is  required.  I t  should be 

(4) Various proposals f o r  s imp1 i f i ca -  - /81 

( a )  Karman's Method ( 3 8 ) .  This 

t ion o f  s t r e s s - s t r a i n  curves. 

is a s impl i f ica t ion  by Karman, which he 
car r ied  out with respect  t o  ca lcu la t ions  
of  tl.e r e l a t i v e  modulus of e l a s t i c i t y  of 
the  proport ional  l i m i t ,  f o r  an eccen t r i c  

4 E ( O r  column. Figure 1.4.2 corresponds to the  
i l l u s t r a t i o n  i n  Figure 1.4.1. That i s ,  
it i s  assumed t h a t  the  tension s i d e  of  
bending causes a drop i n  the  overa l l  
stress, and the  stress which begins t o  

-- 
Figure 1.4.1 

cause a drop i n  stress is  assumed t o  be equivalent t o  the  average compressive 
stress. If t h i s  is  cdmpared with Figure 1.4.1, it can be seen t h a t  t he  d i f f e r -  
ences cons t i t u t e  a corlsiderable quant i ty .  However, when the  eccen t r i c  quant i ty  
i s  extremely small, it can be considered t h a t  t he  d i f fe rence  i s  not  too g rea t ,  
and s ince  Karman h a se l f  i s  performing ca lcu la t ions  f o r  such a case, i n  such an 
event, t h i s  can be considered as an appropriate  s impl i f ica t ion .  

(b) H o f f ' s  System (96) .  f i is  
system was developed i n  arranging the re- 
s u l t s  of tests on the  buckling load of  
r i g i d  j o i n t  t ru s ses  t h a t  were carr iedout  
j o i n t l y  by two o r  th ree  o the r  persons 
together  with Hoff. This method involves 
co r rec t ly  es t imat ing the  stress which be- 
gins  the  drop i n  stress i n  the  most re- 
mote f i b e r ,  determining the  stress i n  the  
f i b e r  as t h a t  which causes drop i n  s t r e s s  
from t h a t  point  and on t h e  bending tension 
s i d e ,  assuming t h a t  t he re  i s  l i n e a r  v a r i -  

a t ion  from t h e  neu t r a l  axis up t o  the  stress i n  the  most remote f ibe r .  
means t h a t ,  as shown i n  Figure 1.4.3, t he  d i s t r i b u t i o n  of the curve sec t i an  
expressed by the  s o l i d  l i n e  A2D2B2 A3D3B3 i s  within t h i s  sec t ion .  
seen from inspect ion and comparison with Figures 1 .4 .1 ,  t h a t  t he  approximation 
i n  t h i s  system is  qu i t e  s a t i s f ac to ry .  

(c) S y s t e m  u t i l i z i n g  exact ly  t h e  same curve i n  t h e  case o f  a r i s e  i n  

&(x'v2 

Figure  1.4.2 

This 

I t  can be 

s t r e s s  w i t h  respect t o  t h e  portion wha,re there  is a drop i n  s t r e s s .  According 
t o  t h i s  method, when the  e r c e n t r i c  throw is  g rea t e r  than the  nuclear  distancd 
of the  cross-sect ion(s)  s ince  there  a re  cases i n  which no drop i n  stress is 
ac tua l ly  present  from t h e  beginning, r e l a t i v e l y  cor rec t  r e s u l t s  are obtained 
i n  cases when t h i s  i s  general ly  t rue .  ( Jesek ca lcu la ted  the  case i n  which the  
eccent r ic  throw by t h i s  method. (97).) 
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Figure 1.4.3 

Figure 1 .4 .4  

Figure 1.4.5 

Y )  

In addi t ion t o  t h i s  system, there  
is an Ppproach i n  which t'le s t r e s s - s t r a i n  
curve i s  a l so  s impl i f i sa .  

(d ) Rat ze rsdo r f er  I s Sys  tern. 
Ratzersdorfer,  as shown i n  Figure 1 .4 .4 ,  
considers t h a t  the  r e  1 a t  ionship ietween 
s t r e s s  and s t r a i n  forms a s t r a i g h t  li.re 
with a d i f f e r e n t  s lope than Young's motu- 
lus  even when above the  proport ional  l i m -  
it, o r  the  y i e ld  poin t ,  
t h e  r e l a t ionsh ip  betxsen buckling s t r e a s ,  
s t r e s s  a f t e r  buckling, and %formatjon, 
i n  such a case. 

He inves t iga ted  

(e) Sys tern assuming perfect  
p l a s t i c i t y .  This method, as  s h c m  i n  
Figure 1.4.5,  considers the  case o f  per- 
fect  p l a s t i c i t y ,  which wsunes  t h a t  t h e  
stess is :onstant beyond the  point  of 
t he  proport ional  l i m i t  ( a l so  matclles 
y i e l d  point' .  Jesek ' s  ca lcu la t ions  of 
buckling s',rength of a s t e e l  columi, which 
were pe;rormed T; p a r t  of a massive re- 
search e f f o r t ,  ,97) wcre ca r r i ed  out on 
the  b a s i s  of an inves t iga t ion  using t h i s  
method. 

- /82 

(5) Various Proposals f c r  Simp1 i f i c a -  
t ion Relating t o  Changes i n  Direcfion of 
Column Leng th .  
c u l t  t o  co r rec t ly  es t imate  the  stress- 
s t r a i n  curve f o r  each sec t ion  of a cr?un' 

I t  is extremely d i f f i -  

i n  the  lengthwise d i r ec t ion  and t o  introduce i t s  values.  For t h i s  reason, i t  
is  absolutely necessary t o  e f f e c t  an appropriate  s impl i f ica t ion .  
discuss 2 o r  3 proposals.  

Below we s h a l l  

( a )  Karman's System. This is a procedure ca r r i ed  out by Karman i n  the  
same case as i n  the  pyevious sec t ion  ( 3 8 ) .  In  t h i s  case,  Karman has not iced 
t h a t  the center  port ion of the column i s - d e c i s i v e  %r the  s t rength  of t he  
column, and asserts t h a t  each port ion of t he  column has a f l exura l  r i g i d i t y  
which is calculated from the  previous sec t ion  ( in  the  t e x t )  i n  accordance with 
the bending of  each port ion.  This r i g i d i t y  i s  de te rmiwl  by graphic so lu t ion .  

(b) Ro;-Brunner's Method (98).  This procedure involves s implifying the 
determination of center  curvature,  given def lec t ion  of the  column center  l i ne .  
The problem i s  solved i f  only the  d i s t r i b u t i o n  of stress i n  the  center  sec t ion  
is accurately determined, and even i f  t he  def lec t ion  curve is eccent r ic ,  and 
can be maintained t h a t  a s i n e  curve h a l f  wave i s  formed over the  e n t i r e  length 
of t he  column. In t h i s  case, Karman's mtchod describe<'  above i n  (1) i s  used 



for  t h r  ' -'-Sibution of stress within the  sec t ion .  

\ <  a mann's System (9' This is a system which considers t h a t  t he  
to t a l  1zl:gth of a column i s  t h e  length between t h e  poin ts  i n  which, when the re  
is no eccen t r i c i ty ,  a column which is  long by some length,  reaches exac t ly  t h e  
buckling load, foming  a s i n e  curve hal f  wave and when t h e r e  is eccen t r i c i ty ,  
t he  degree of de f l ec t ion  i n  the  previous s i n e  curve has a value exac t ly  e q i a l  
t o  the  degree of eccen t r i c i ty .  In th i ,  manner, Hartmpnn assumes t h a t  one may 
treat  only the  d i s t r ibu t io i i  of stress i n  t h e  cen te r  sec t ion ,  as mentioned pre- 
viously i.1 Section (h) ,  and calcillates t h e  c i s e ~  i n  which t h e r e  are various 
degrees of eccentriciLy. In t h i s  case, t h e  system oa t l i ned  i n  (c) is  used f o r  
t he  d i s t r i b u t i o n  of stress. 
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CHAPTER 5 

EXPERIYENTAL DETERMINATION OF BUCKLING LOAD 
AND BUCKL I N6 STRENGTH 

There a r e  cases when it is d i f f i c u l t  t o  solve problems i n  e l a s t i c  s t a b i l i t y  
such as buckling only by ca lcu la t ion ,  and there  a re  o the r  cases i n  which calcu- 
l a t ion  alone w i l l  not su f f i ce .  Moreover, there  a re  a l so  instances i n  which, 
i n  the  case of ac tua l  s t ruc tu res ,  it i s  more r e l i a b l e  and more rap id  t o  de te r -  
mine the  proper t ies  of t he  s t r u c t u r e  through d i r e c t  :-Derimental research. 
t h i s  reason, experimental research and inves t iga t ion  A being car r ied  out  f o r  
various cases.  

For 

In experimental research, even when systematical ly  inves t iga t ing  a la rge  
n w b e r  of top ics ,  there  a r e  na tu ra l ly  l imi ta t ions  on extending the  genera l i ty  
of the  r e s u l t s  outs ide of t he  range of the  experiments, as long as the  experi-  
ments a re  not  accompanied. by theo re t i ca l  research. I f  e r r o r s  a r e  made i n  its 
appi icat ion,  and fool i sh  e r r o r s  may be made; moreover, even i n  the  case of the  
tests themselves, there  are cases i n  which it i s  d i f f i c u l t  t o  formulate a cor- 
r e c t  judgmsnt, owing t o  various imperfections occurring i n  carrying out  t he  
tests, and due t o  considerable differences and irregplarities i n  the  r e s u l t s  
obtained owing t o  the  insolence of these i r r e g u l a r i t i e s .  
uate test r e s u l t s  cor rec t ly ,  i s  a r a t h e r  d i f f i c u l t  problem. 
experiments with ac tua l  s t ruc tu res ,  very f requent ly  even more complications 
become involvcrl, making judgments d i f f i c u l t .  There a r e  even cases when unrea- 
l i s t i c  t e s t s  may r e s u l t  due t o  the  complexity of t he  t e s t  ob jec t  i t s e l f  o r  t he  
test apparatus and frequent ly  t h i s  r e s u l t s  i rk  conditions which were completely 
unexpected. I t  is necessary t o  pay adequate heed t o  these  poin ts .  

Consequently, t o  eval-  
When it comes t o  

1.5.1. BUCKLING TEST METHODS - /83 

In bars ,  columns, and s h e l l s ,  one 'carefu l ly  appl ies  a load o r  an end d i s -  
placement t o  combinations of these s t ruc tu res  under t h e i r  respect ive boundary 
conditions,  and vai*ious s p e c i f i c  methods have been adopted f o r  inves t iga t ing  
in d e t a i l  t he  processes which take place up t o  t h e i r  mwciniitm loads. 

The end conditions f o r  f l exura l  buckling due t o  compressive load on a bar ,  
; . e . ,  the  end conditions f o r  column tests usua l ly  involve r o t a t i n g  ends, bu t  
sometimes " f l a t  seat" is used. 
end of a ba r  i n  the  plane pcrpendicular t o  its ax i s ,  and applying a load t o  it 
by a load p l a t e  a r  a compression p l a t e .  Consequertly, t he  end conditions a re  
not very c l ea r ,  bu t  it is  employed because the  conditions a re  c lose r  t o  t h a t  
of a f ixed  end than a r o t a t i n g  end, and are simpler,  o r  such a "flat seat" is 
used when the problem of buckling i n  a s h e l l ,  o r  wall surface buckling is  in-  
volved. 
i t  i s  4 f o r  a f ixcd end. 
is t o  have ro t a t ing  ends, and t o  determine how t o  reduce eccen t r i c i ty  as a 
center  !.oad. 

The tsrm " f l a t  seat"  involves f in i sh ing  the  

The end condition coef f ic ien t  is general ly  considered t o  be 2 ,  whereas 
However, what is usual iy  important i n  t e s t s  on columns 

Figures 1.5.1 through 1.5.3 (33)(100)(44) a re  examples of t h i s .  
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The e f f e c t s  of such end conditions on the  r e s u l t s  are described l a t e r  on. 

Eigure 1.5.1 

The method t h a t  i s  used t o  prove 
t h a t  t he  load is applied i n  the  center  
without eccen t r i c i ty  involves measuring 
t h e  def lec t ion  i n  the  l a t e r a l  d i r ec t ion ,  
when a load to  some degree has been ap- 
p l i ed ,  hopping the  load when it i s  
la rge ,  repeating the  loading operat ion 
after cont ro l l ing  the  pos i t ion  of the  
t e s t  object  with respect  t o  the  load, 
and then, only after r e s t r i c t i n g  ?he 
degree.of  def lec t ion  t o  within a c e r t a i n  
l i m i t ,  increasing the  load up t o  the  
buckling load. In order  t o  do t h i s ,  

-normally a control  apparatus is at tached 
so t h a t  t he  end of t he  test piece can be 
displaced on t he  load p l a t e .  The devices 
on the sus ta in ing  faces  of t he  test piece 
i n  the  load plate;  shown i n  Figures 
1.5.1 t o  1.5.3 are f o r  t h i s  purpose. 
However, t he re  is considerable doubt 
whether such a method i s  appropriate  
for making correct ions when there  co- 

cy l inde r  surface 

Figure 1.5.2 

Steel ba l l  

Figure 1.5.3 

- 

e x i s t s  both eccen t r i c i ty  and o r ig ina l  def lec t ion .  
b e ? m  i n  Section 1.5.3. 

This point  w i l l  be discussed 

In t h i s  case, usual ly  the  column is placed upright  and the  t e s t i n g  apparat- 
us is attached. Sometimes, it is at tached hor izonta l ly  t o  a hor izonta l  t e s t  
apparatus. However, i n  t he  case of t he  horizontal  buckling i n  a beam, it is  
d i f f i c u l t  t o  apply a load using a conventional materials tester. For t h i s  
reason, f requent ly  a spec ia l  apparatus is produced and the  load is  applied 
d i r e c t l y  using a load object .  

For f la t  p l a t e s ,  t he  most usual case i s  t h a t  of t he  compressive load i n  
one d i rec t ion  on a rectangular  p l a t e .  
ing the  load cdge s t r i c t l y  a r o t a t i n g  edge. 
seat"  i s  employed. I t  i s  considered t h a t  t he  e f f e c t  of t h i s  i s  r a t h e r  consid- 
e rab le  xhen the  aspect r a t i o  [hor izonta l -ver t ica l  r a t i o ]  is  below 2. Moreover, 
a f t e r  buckling, t he  load i s  applied under conditions t h a t  t he  displacement is 
constant at t h e  load end. This means t h a t  t he  load is  applied by a load p l a t e ,  
such as t h a t  shown i n  the  Figure 1.5.4 ;n Schumann-Back (85) t e s t s .  The condi- 
t ioil  t ha t  t he  load end displacement be constant is the  boundary condition t h a t  
is normally car r ied  out  both i n  theory and i n  t e s t i n g  p l a t e s  and s n e l l s .  
Usually one des i res  t o  have, as a bounda.ry cundition f o r  thes ide ,  a r o t a t i n g  
edge condition. 

In t h i s  case,  d i f f i c u l t i e s  a r i s e  i n  m a k -  
For t h i s  reason, usual ly  a "flat 
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Figure 1.5.4 

E+ 
Figure 1.5.6 

Figure 1.5.7 

Schumann-Back normally employ a V channel, /84 - as shown i n  Figure 1.5.4 i n  t h i s  method. 
i s  also the  method i n  which the  end edge is  
cramped i n  a round rod. 
ure  1.5.5, t he  test is ca r r i ed  out  with the  
test p iece  r ive t ed  t o  a re inforc ing  member. 
Neither case i s  pe r fec t ,  and has i t s  advantages 
and disadvantages. Consequently, s ince  con- 
s iderable  differences a r i s e  i n  the  t e s t  re- 
s u l t s ,  it is necessary to  def ine c l ea r ly  t h e  
t e s t  conditions and t o  u t i l i z e  the  r e s u l t s  i n  
t h i s  manner. 

There 

O r ,  as shown i n  Fig- 

Figure 1.5.5 

In the  case of a shear  load on a flat 
p l a t e ,  usual ly  the  t e s t  ob jec t  is r ive t ed  t o  
edge members as shown i n  Figures 1.5.6 and 
1.5.7 and normally the  load is applied t o  t h e  
edge member. Consequently , t he  boundary con- 
d i t fons  caq be considered as intermediate be- 
Ween those o f  a r o t a t i n g  edge and those of a 
fixed edge. 

The device developed by Marguerre {lOl], is considered t o  be r e l a t i v e l y  
accurate as a method f o r  applying a comgressive o r  shear  load t o  a f l a t  p l a t e .  
The apparatus i s  shown i n  Figure 1.5.8. 
f i r s t  f ixed t o  a ra i l  and the  appdTatus is designed so  t h a t  t he  ra i l  can be 
moved along the  l i n e r  ?;?.lit2 guide. 
possible  t o  apply, e i t h e r  individual ly ,  or i n  combination, t he  compressivt load 
and shear loads. H e  develcped several  kinds of test: using t h i s  apparatus,  i n  
pa r t i cu la r ,  he used it f o r  t e s t s  on ha l f  t e n s i l e  force f i e l d s .  

According t o  t h i s  method, t he  p l a t e  is 
. 

Using t h e  l i n e r  p l a t e s  as a frame, it is  

.. - . _  . 
P - S h e a r  load 

A 1  'A1 

(*) Figure 1.5.8 

(E 

1 oad 

screw 
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Normally i n  the  case of s h e l l s ,  i n  
compression tes ts  on cy l ind r i ca l  s h e l l s ,  
f o r  the  cen t r a l  a x i a l  1922, a "flat  seat" 
is  used and t h e  load i s  usua l ly  supplied /85 
by a materials tester.  That is ,  i n  most 
cases, an apparatus such as t h a t  shown i n  
Figures 1.5.9 and 1.5.10 is employed. 
However, when the  type of load d i f f e r s ,  
t he  procedure is' hot as simple as t h i s ,  
and spec ia l  apparatus i s  required f o r  
each case.  

- 

l 

A !  'Kh* @ m  
Figure 1.5.9 F i g u r e  1.5.10 

i n  the  manner of a beam, and a shear  load and bending load are appl ied t o  the  
ax i s  i n  a perpendicular manner, normally the  load is supplied by an apparatus 
such as t h a t  shown i n  Figure 1.5.11. 
the  cyl inder ,  usua l ly  it is r i v e t e d  t o  a frame, and then placed on a to r s ion  
tester. 
t o  a cy l ind r i ca l  s h e l l  i n  any combination, i s  t h a t  shown i n  Figure 1.5.12, 
devised by Donne11 f o r  t h e  National Advisory Committee f o r  Aeronautics i n  
the  United S ta t e s  (102). 
it is poss ib le  t o  apply 3 types of moment o r  a compressive load. 

I f  a cy l ind r i ca l  s h e l l  i s  considered 

When applying a load t h a t  would twist 

A device t h a t  w a s  dtsigned i n  order  t o  apply various t y p e o f  loads 

By means of a crank which operates  with 3 O  freedom, 

,Test piece 

Test .-c1 p i e c e  

Figure 1.5 .11  F i g u r e  1.5.12 Figure J .5.13 

Tokugawa's method f o r  applying ex terna l  pressure t o  cy l ind r i ca l  s h e l l s  i s  
shown i n  Figure 1.5.13 (103). According t o  t h i s  method, t h e  ex terna l  pressure 
i s  applied by means of  a l i qu id ,  and it i s  poss ib le  t o  observe the'deformation 
of  a tes t  piece from ins ide .  

In the  case o f  a rectangular  curved s h e l l ,  when t h e  curvature i s  small, 
the  method can be used whim is t h e  same as t h a t  f o r  f lat  p l a t e s ,  bu t  t he  d i f -  
f i c u l t i e s  increase.  
I t  involves using a tes t  piece with cross-sect ion configurat ion,  cons is t ing  of  
3 curved p l a t e s  joined together  by a longi tudinal  edge piece,  as shown i n  
Figure 1.5.14. 
piece i s  converted completely i n t o  a cyl inder  and the  p a r t  between the  r e in -  
forci;ig members i s  t r ea t ed  as a rectangular  curved p l a t e .  

A method w a s  devised by Wenzek f o r  t h i s  purpose (104). 

Another approach is t h a t  of Ebner (105), i n  which the  test 
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F i g u r e  1.5.14 

As far  as the  quan t i t i e s  t h a t  are 
determined i n  the  tests are concerned, i n  
the  case of a bar ,  usua l ly  the  maximum 
load is determined as the  buckling load. 
When c o n h c t i n g  de ta i l ed  research,  the  
r e l a t ionsh ip  between the  de f l ec t ion  and 
the load is detexmined before  and after 
buckling. As described below, the re  i s  
a method f o r  determining buckling loa6 
from t h e  r e l a t ionsh ip  between the  dcf lec-  
t i o n  under t h e  buckling load and load, 
but  i t  cannot be s a i d  t h a t  t h i s  method 
is necessar i ly  r e l i a b l e  (See Section 
1.5.3). 

F i g u r e  1.5.15 In the  case of  a p l a t e ,  s ince  the  
maximum lcpd and the  buckling load d i f f e r  

markedly, normally t h e  de f l ec t ion  i n  the  d i r ec t ion  of the  load is measured, and 
the  point  a t  which t h e  apparent r igidi ty  rap id ly  changes, is t r e a t e d  as the  
buckling load. Then, after the  buckling load, t he  e f f e c t i v e  width i s  de ter -  
mined from the  apparent r i g i d i t y ,  and f i n a l l y  t h e  maximum load is  determined. 
Moreover, t he  method proposed by Yoshiki Masao (35j described i n  Section 1.5.3 
is employed t o  determine t h e  buckling load, but when t h i s  is a t  t he  proport ional  
l i m i t  o r  above, determinations o f  t he  buckling load cannot bu t  be unre l iab le .  
In the  case of s h e l l s ,  s ince  jump t r a n s i t i o n  and y i e l d  occur i n  addi t ion  t o  
buckling, it i s  necessary t o  take t h i s  i n t o  considetat ion when conducting 
tests. I n  ;iich cases, ins tead  of  gradually increaqing t h e  load, it is des i r -  
able  t o  gradually change the  displacements of  t he  end plane. Then, i f  possible ,  
it i s  des i rnble  t o  follow the  e n t i r e  process i n  the  case of  t he  jump t r a n s i t i o n ,  

/ 8 6  - 

8 (including port ions under unstable  equlibrium) but  t h i s  i s  d i f f i c u l t  both i n  
-experiments, and i n  prac t ice .  

Usually the  maximum load, e l a s t i c i t y  lircit load, and deformations such as 
displacemeat and de f l ec t ion  are measured in the  case of s t ruc tu res .  Since i n  
such a case, the  number of places  i n  which these  must be measured increases ,  
t h i s  i s  a cause f o r  increase i n  d i f f i c u l t y .  HLrJever, s ince  it is  important t o  
determine what p a r t  i s  the  bas i s  f o r  f a i l u r e ,  it is  necessary t o  measure i n  
d e t a i l  as much as p s s i b l e ,  t h e  deformation and t h e  d j - i t r ibu t ion  of stresses. 
However, it is extremely d i f f i c u l t  t o  determine the  poi-lt of o r ig in  of t h i s  
buckling, t he  time it took place,  the  place,  and the  r e l a t ionsh ip  p r i o r  t o  and 
a f t e r  buckling, and requi res  spec iz l  knowledge and experience. 

1.5.2. ADVICE ON BOUNDARY CONDITIONS 

Making c l e a r  t he  boundary conditiolis on the  test  piece and the apparatus,  
when determining buckling load and o ther  f ac to r s  i n  the  course of tests on tes t  
pieces ,  i s  important with regard t o  the  u t i l i z a t i o n  of t h e  tes t  r e s u l t s .  how- 
ever ,  frcm the  s tandpoint  of t he  tests, i t  is not only d i f f i c u l t  t o  e s t a b l i s h  

.?6it;.ms, but  even t o  have a c l e a r  p i c tu re  of what i s  involved. 
-,c 

For 
'Aae must make e f f o r t s  t o  a sce r t a in  as c l ea r ly  as possible  the  
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boundary conditions.  
due t o  d i f fe rences  i n  boundary conditions.  

I t  i s  important t o  in-rest igate  adequately the  inf luences 

(1) Load End Conditions. Load end conditions pose a spec ia l  problem i n  
the  case of bars .  
ua l ly  t o  reduce the  degree of eccen t r i c i ty ,  and t h e  r e l a t ionsh ip  between the  
load and def lec t ion  of  t he  b a r  now is  approaching the  idea l  one. 
clear from the  r e s u l t s  shown i n  Figure 1.5.16. When t h i s  is below the  propor- 
t i ona l  l i m i t ,  s i nce  there  is p r a c t i c a l l y  no inf luence with respect t o  the  max- 
i m u m  load, there  i s  l i t t l e  problem, but  i n  the  case of a buckling load above 
the  proport ional  l i m i t ,  s i nce  there  i s  an influence,  even on t h e  maximum load, 
spec ia l  care must be exercised. In order  t o  reduce t h 4 s  eccentric throw [lit- 
e r a l l y  the  degree of eccen t r i c i ty ] ,  as described i n  the  previous sec t ion ,  one 
should t r y  t o  reduce as mch as poss ib le  t h e  de f l ec t ion  when the  t e s t  load is  
applied.  In  t h e  method f o r  regula t ing  t h e  r e l a t i v e  pos-Ltion of the  load p l a t e  
and tes t  piece,  i f  one does not  reduce t o  a minimum t h e  o r i g i n a l  de f l ec t ion  of 
t he  tes t  piece,  t h e  effects described i n  Section 1.5.3 w i l l  occur, and the  re- 
s u l t s  may be confused. 

Due t o  progress i n  test methods, it has become poss ib le  grad- 

This i s  

For t h i s  reason, a spec ia l  caution is required.  

In the  load terminal,  there  are p r a c t i c a l l y  
no cases i n  which t h e  en3 of  the  brdinary tes t  
p iece  w i l l  become the  center  of r o t a t i o n  of  t he  
r o t a t i n g  end. The space between t h e  end of t h e  
test co lum and t h e  center  of  r o t a t i o n  is t h e  
load p l a t e ,  and s ince  it i s  s t i f f ,  t h e o r e t i c a l l y  
t h i s  means t h a t  one i s  conducting a tes t  f o r  t h e  
case i n  which a s t i f f  s e c t i o i  has become at-  
tached t o  the  end of t he  column. For t h i s  rea- 
son, tes t  r e s u l t s  are obtained which d i f f e r  from 
the  buckling i n  the  por t ion  of the  t es t  column 
alone. I t  i s  necessary t o  cor rec t  t h i s  point .  
For t h i s  reason, as shown ir. Figure 1.5.17, a 
column of t h e  same material as the  t es t  piece 
should be def lec ted  along the  curve running from 

Figure 1.5.16 

point  A' i n  t he  f igu re  through pnin t  P,  but  i n  the  case o f  load p l a t e ,  t he  in-  
t eg ra l  PA may be considered as a s t r a i g h t  l i n e  i n  a d i r ec t ion  tangent ia l  t o  
P. 
as Kaman has calculated.  

Considering t h e  length of x' t o  be A ,  t h i s  i s  expressed by the  equation, 
/87 - 

(1.5.1) 

In any case, the  length of AP is  somewhat smaller than L,  so  i t s  inf luence is 
not very I a t .  

Next, what should be taken i n t o  considera- 
t i o n  when u t i l i z i n g  a materials t e s t e r  i n  order  
t o  apply a load, i s  t h a t  when it is constructed 
so  t h a t  it is possible  t o  control  the  horizontal  

tests, or when it is  constructed so t h a t  a par- 
movement of the  load end, e .g . ,  as i n  tension 

t i c u l a r  po in t  is used as t h e  center  and can 
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o s c i l l a t e ,  changes i n  the  buckling length of proper t ies  similar t o  those de- 
sc r ibed  above may a l so  occur i n  p a r t s  of  t he  t e s t  apparatus i t se l f  (106). 

(2)  Boundary Conditions on Load Edge. In buckling tes ts  on f l a t  p l a t e s  
and cy l ind r i ca l  s h e l l s ,  the  conditions on the  load edge involve t h e  "flat  seat" 
condition described i n  the  previous sec t ion .  Consequently, the  end conditions 
are very unclear.  Since it i s  impossible t o  regula te  the  degree of eccent r ic -  
i t y ,  it i s  necessary from the  very begir-'?g t o  pay very close a t t en t ion  t o  t h e  
tool ing of the  end face, l i n e a r i t y ,  and Anbwlarity. If t he  l i n e a r i t y  i s  not 
clearly defined, from the  beginning, t he re  is a lo s s  i n  the  uniform d l s t r i b u t i o n  
of the  load on the  lead edge, and when t h e  angular i ty  is poor, a siriilar ad- 
verse  a f f e c t  occurs with t h e  eccen t r i c i ty .  

In the  case of a rectangular  p l a t e ,  t he  effects due t o  d i f fe rences  i n  t h e  
condition oon the  load edge, when the  aspect  r a t i o  is below 2 ,  but  no consider- 
a t ion  has been given t o  methods f o r  cor rec t ing  before  t h i s .  When instead of a 
"flat  seat"  a p r o f i l e  i s  r ive t ed  along t h e  load edge, i f  one does not  be care- 
f u l  t o  make sure  t h a t  symmctricity i s  maintained, it is  poss ib le  f o r  the  load 
d i s t r i b u t i o n  t o  become uneven, o r  for  the e c c e n t r i c i t y  t o  increase.  

In the  case of such closed sec t ion  items as cy l ind r i ca l  s h e l l s ,  due t o  
f r i c t i o n  between the  load p l a t e  and the  test piece,  displacement due t o  lateral  
s t r a i n  (due t o  Poisson's r a t i o )  becomes r e s t r i c t e d ,  and from the  very beginning, 
s ince  t h i s  causes def lec t ion  deformation on t h e  wall surface,  it i s  necessary t o  
be carefu l  of changes i n  t h e  buckling load due t o  this. 

(3) Boundary Conditions o n  Ordinary Edge. Generally four  quan t i t i e s  are 
involved i n  the  boundary conditions f o r  f l a t  p l a t e s  and s h e l l s .  
t h a t  x, y are the  p l a t e  sur face ,  and z i s  a d i r ec t ion  perpendicular t o  t h i s .  
This condition involves regula t ion  of  t he  displacement, t h e  a x i a l  force,  o r  t he  
shearigg force,  i n  t h e  d i r ec t ion  x, y, z and t h e  regula t ion  of  the  s lope i n  t h e  
d i r ec t ion  perpendicular t c  t h e  periphery,  o r  of t he  bending moment around the  
periphery.  

We s h a l l  assume 

In the  case of a rectangular  f l a t  p l a t e ,  i f  w e  denote the edge by t h e  d i rec-  
t i on  y, the displacement i n  d i r ec t ion  x is  usua l ly  considered t o  be free. 
times, t he re  are cases i n  which t h e  displacement i s  considered t o  be 0. 
order  t o  c l ea r ly  provide t h i s ,  it is  necessary t o  have a s t r u c t u r e  such as t h a t  
shown i n  1.5.8. Moreover, it i s  necessary t o  be carefu l  t h a t  f r i c t io r !  does no t  
occur, so  t h a t  displacement i n  the  d i r ec t ion  y may apply f r ee ly .  
i n  d i r ec t ion  z ,  when regulated by a V channel, becomes as shown i n  Figure 
1.5.18, and s ince  t h i s  ob jec t ive  i s  no t  achievable,  i t  is  not any interest .  
Nevertheless, when employing the  method of in se r t ing  the  edge between the two 
cyl inders  as shown i n  Figure 1.5.19, t h e  displacement i s  r e s t r i c t e d ,  but  the  
f ac t  t h a t  the  configuration shown i d  t h e  f igure  i s  obtained due t o  the  s lope,  
means t h a t  there  i s  RO freedom, and since the  bending moment i s  caused i n  such 
a case, the  displacement approaches somewhat t h a t  of a f ixed  edge, r a t h e r  
than a condition of a r o t a t i n g  edge, and the  buckling load rises. 
f o r  t h i s  reason, s ince  f r i c t i o n  is  caused with respec t  t o  the  displacement 
i n  the  d i rec t ions  x, y ,  it i s  of no i n t e r e s t  a t  t h i s  po in t .  

Some- 
in  

Displacement 

Moreover, 

Actually,  i n  t he  
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case of a f l a t  p l a t e ,  t he  buckling load i n  Figures 1.5.18 and 1.5.19 show a 
difference of 1% t o  2%,  (85) (36 ) .  

In t h e  case of a s h e l l ,  when using 
t h e  methods described i n  Figures 1.5.14 
and 1.5.15, i n  t h e  previous sec t ion  as a 
test method fir a curved rec tangalar  

/88 - p+-$ -- - -- 
i 

p l a t e ,  i f  one examines t h e  t e s t  r e s u l t s ,  
one sees t h a t  a considerable d i f fe rence  Figure 1.5.18 Figure 1.5.19 

arises i n  t h e  buckiing load or i n  the  
change of t he  e f f ec t ive  width a f te r  t h e  buckling load. 

1 .5.3. RELAT I ONSH I P BETWEEN DEFORMAT I ON 
DURING TESTS AND BUCKLING LOAD 

As explained i n  Section 1.2.5, when there  is or ig ina l  de f l ec t ion  i n  the  
t e s t  piece i t s e l f ,  o r  when the re  i s  an eccen t r i c  load, considerable deforma- 
t i on  occurs even under buckling load. X t e r a l l y ,  even with buckling load o r  
l e s s .  

Consequently, i n  p l a t e s ,  r a t h e r  pronounced wrinkles occur. However, 
t h i s  does not have any d i r e c t  r e l a t ionsh ip  t o  the  buckling load. 
j t  is possible  t o  consider a method f o r  determining the  buckling load from the  
r e l a t ionsh ip  between the  way i n  which these wrinkles o r  def lec t ions  arise and 
progress;  i . e . ,  and load. However, considerable care i s  required for t h i s  
purpose. 

Nevertheless, 

We s h a l l  descr ibe t h i s  below: 

1. Karman's Method, Southwell 's Method, Donnell 's Method. Karman ex- 
p l a ins  t h a t  when there  is eccen t r i c i ty ,  the  r e l a t ionsh ip  between the  def lec-  
t i o n ,  d e l t a  of a column and the  load P can almost be considered t h a t  of a 
hyperbola, so ,  by means of t he  graph shown i n  Figure 1.5.20, it is poss ib le  
t o  f ind  the  buckling load as  one of i t ' s  asymptotes, ( 3 8 ) .  
3 poin ts ,  A,  B,  C on the  curve. 
of the  asymptotes is ve rz i ca l  and hor izonta l ,  hor izonta l  and v e r t i c a l  l i n e s  
a r e  drawn respec t ive ly  from the  2 po in ts ,  . B ,  t he  poin t  of i n t e r sec t ion  i s  
determined; and when the  2 po in ts ,  E ,  F are determined with ABF/ED, EBC/DF, 
t h i s  becomes one point  on the  asymptote. Consequently, t he  buckling load i s  
determined from the  horizontal  l i n e  passing through F. 

First, we take 
Since it i s  considered t h a t  t he  d i r ec t ion  

. .  . .  

Southwell 's approach concerns the  
case when a b a r  has o r i g i n a l  de f l ec t ioa  
and writing the  o r i g i n a l  def lec t ion  as 

c,sinz TIL 

t h e  r e l a t ionsh ip  between the  center  de- 
f l e c t i o n  6 and t h e  load P ,  becomes 

8=crP/iPL -PI 

Figure 1.5.20 
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so ,  adjust ing t h i s ,  we can wr i te  

( t= (6 /P ' )  Pt-01 (1.5.2) 

Consequently, s ince  6 and 6 / P  have a l i n e a r  r e l a t ionsh ip ,  when the  t e s t  r e s u l t s  
a r e  p lo t t ed  as 6 t o  6 / P  as show i n  Figure 1.5.21, it i s  possible  t o  determine 
the buckling load from the  slope f107). 

F i g u r e  1.5.21 F igure  1.5.22 

Donne11 s imi l a r ly  transforms t h e  equation f o r  def lec t ion  and load i n  the  
case of o r ig ina l  def lec t ion ,  and obtains  the  following equation 

(1.5.3) 

Therefore, drawing the  l i n e  P with respect  t o  P / 6 ,  from t h e  value when P/6 = 0 ,  
it is  poss ib le  t o  determine the  buckling load as P = Pk (108). 

In the  case of  p l a t e s ,  when there  is o r ig ina l  def lec t ion ,  s ince  the  same 
equations hold, it is  poss ib le  t o  use Southwell 's and Dofinell's methods. 
over, Cox attempts t o  u t i l i z e  the  f a c t  t h a t  t he  relabionship between shrinkage 
and load with buckling load as boundary, becomes l i n e a r  before  a d  a f t e r  i t  
respect ively.  (109). 

Yore- 

- /89 

In such cases, as Southwell has pointed out ,  it i s  necessary t o  bear  i n  
mind t h a t  t he  load o r  o r ig ina l  def lec t ion  must be adequately la rge ,  it should 
be easy t o  measure the  def lec t ion  with s u f f i c i e n t  accuracy, and a t  the  same 
time, the load should be below the  proport ional  l i m i t ,  Moreover, as described 
below, when bot5 eccen t r i c i ty  and o r ig ina l  def lec t ion  are present  together ,  
the bas i s  f o r  these methods becomes shaky. 
d i f fe rence  between makingdeterminations igith a value of Pk and the  buckling 
load of t he  next magnitude is  small, even considering what was described i n  
Section 1.2.5, it can be predicted t h a t  the  determination of  Pk w i l l  be d i f f i -  
c u l t .  

In the  case of  p l a t e s ,  s ince  the  

(2) Sezawa's Method. Sezawa, as a r e s u l t  of invest igat ing the r e l a t ion -  
ship betNeen the ax ia l  compressive load of  a column and the l a t e r a l  v ibra t ion  
frequency, es tab l i shed  t h a t  i n  the  case of a buckl ins  load P , the  v ibrz t ion  
number i s  0,  and then vzr ies  according t o  a l i n e a r  r e l a t i o n s  t: i p  with the  axial 
compressive load (6iiC. For example, i n  the case of a column with both ends 
ro t a t ing ,  the re la t ionship  between the  c i r c u l a r  v ibra t ion  Pm and t he  axial load 
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P i s  expressed 

One example of 
r e s u l t s  a r e  on 

by the following equation 

p FL' 
(1.5.4) 

t e s t  r e s u l t s  f o r  t h i s  is  t h a t  shown i n  Figure 1.5.23 ( the test  
the  dot ted l i n e ) .  

(3) 6 2  Method. This method was pro- 
posed by Yoshiki Masao (35). This method in-  
volves r e l a t ionsh ip  between load and deforma- 
t i o n  a f t e r  buckling i n  a f l a t  p l a t e .  I t  i s  
expressed by the following equation, as de- 
sc r ibed  i n  Section 1.2.5 

. ,  - load! .I 

Figure 1 .5 .23  
(1.5.5) 

Here, b i s  the  p l a t e  width and a i s  a constant which depends upon the boundary 
condition, the  aspect r a t i o  of t he  p l a t e ,  etc.  For t h i s  reason, i f  one de te r -  
mines from t e s t s  t he  curve of the  r e l a t ionsh ip  between P and b 2 ,  one sees  t h a t  
P and 62 have a l i n e a r  re la t ionship  where P is  qu i t e  l a rge ,  and when t h i s  i s  
extended, so t h a t  the ax is  of P i s  crossed, t h i s  becomes equal t o  Pk. 

In t h i s  case,  when t h e - s t r e s s  i s  above the  proport ional  l i m i t ,  d i f f i c u l t -  
i e s  a r e  experienced, and s ince  when the  aspect r a t i o  i s  la rge ,  the  d i f f i c u l t i e s  
described i n  the  next sec t ion  a l so  become involved, some degree of caution i s  
required i n  the  u t i l i z a t i o n  of t h i s  method. 

Figure 1 .5 .24  Figure 1 .5 .25  

( 4 )  Spezial Case of Change i n  Deflection when under Load. In the  cases 
described above, e i t h e r  the  degree of eccen t r i c i ty  i s  very small ,  even when the  
origj-nal def lec t ion  of the t e s t  piece i s  la rge ,  o r  t he  reverse  i s  true, but as 
explained by f igure  1.2 .24 ,  when the  re la t ionship  between o r ig ina l  de f l e  t ion 
c1 and eccen t r i c i ty  is  expressed by the following equation f o r  the  case of a 
column, a reverse  turn  of  t he  d i r ec t ion  of def lec t ion  occurs,  as shown oy 
Figure 1.5.25. 

-0.811 < clc, < -0.785 
(1.5.6) . .  
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I n  such cases,  methods sbcn as those of  Southwel! a r e  use less .  

In  addi t ion,  when the  o r ig ina l  def lec t ion  has the  shape of an S, i . e . ,  /go 
when the  shape of the  deformation i n  the  case of a second buckling load becomds-- 
included Ln large measwe i n  the  origiiiial def lec t ion ,  the  center  axis, as shown 
i n  Figure 1.5.26 chbnges i n  the  c rder  1, 2 ,  3 ,  4,  5, causing buckling. In 
such a case,  good r e s u l t s  cannot be obtAined by the  methods described above. 

In the case of p l a t e s ,  i n  addi t ion to  t h e  
two cas-s mentioned above, t.he buckling defor- 
mation does not necessar i ly  form a h a l f  wave 
length i n  the  lengthwise d i r ec t ion ,  which is  
d i f f e r e n t  from the  case of bars .  When a rez-  
t a n g d a r  p l a t e  with fow r o t a t i n g  s ides  sus- 
t a i n s  a c.,qpressive load i n  ont d i r ec t ion ,  
general ly  the  p l a t e  becomes divided i n t o  shapes 
which are c lose  t o  t h a t  of a square,  and i r r eg -  

u l a r  wave for:- a r e  produced. Therefore, for ,  exaxiple, i n  a rectangular  p l a t e  
with an aspect r a t i o  c lose  t o  2 ,  the deformation i n  t he  center  longi tudinal  
cross-section progresses,  as shoim by the  Figures 1 2 ,  3 ,  4,  i n  Figure 1.5.27. 
Dde t o  t h i s  re la t ionship ,  deqending on t he  poin ts  a,,,ured, a reversa l  of de- 
f l ec t ion  occurs. 

Figuri: 1 .5.26 

Ine loads which cause a reversa l  of these 
def lec t ions ,  do not  have a d i r e c t  re la t ionship  
t o  t he  buckling load, as explained i n  d e t a i l  
i n  Section 1.2.5, c o  when conducting experi-  
iments, one must be careful  ncE t o  s e l e c t  the 
i n i t i a t i o n  poin t  ti t h i s  reversa l  as buckling 
load, o r  t o  bpcoce confused by t h e  e f f e c t s  of 
t h i s  reversa l  i;! the  case whan the  62 method 
i s  used. 

---- 
F i g u r e  1 . 5 . 2 7  

As has been frequently mentioned, when tha stress i s  above the proport ional  
l i m i t ,  s ince  i t s  inf luence involves f ac to r s  'in addi t ion  t o  those described. 
above, caution must be exercised s ince  it is  very dangerous t o  u t i l i z e  the  
method described i n  t h i s  sect ion.  In  ac tua l  s t ruc tu res ,  t he re  a re  many cases 
in  which the  stress goes above the proport ional  l i m i t ,  so i n  s t ruc tu res  with 
r e a l  dimensions, t h i s  po in t  must be considered very ca re fu l ly .  
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DESIGN AND STRENGTH AS RELATED TO BUCKLING AND 
OTHER FAC lORS 

1.6.1. STRENGTH DUE TO BUCKLING, Y I E L D I N G ,  "JUHP TRANSIT ION' '  

The s t rength  based on t h e  buckling of t he  b a r  i s  the  maximum load due t o  
yielding,  determined from t h e  re la t ionchip  between s t rength  and stress, above 
the  proport ional  limit of a material, as described i n  Section 1.2.7, i.e., i t  
is t he  y i e ld  load. 
a r e  not very marked, t h i s  maximum load is almost equivalent to  the  buckling 
€oad. 
Consideration changes i n  the  elastic proper t ies  of t h e  material. However, as 
explained i n  the  previous chapter,  it is q u i t e  d i f f i c u l t  to  determine t h i s  maxi- 
mum load ana above t h e  buckling load i n  columns with a non-uniform cmss-sec- 
t ion ,  is q u i t e  complicated. In t h e  buckling of  bars ,  these  proper t ies  have not 
been invest igated concretely or i n  d e t a i l ,  except for t he  f l exura l  buckling due 
t o  an axial compressive load, but it is  not considered erroneous t o  be l ieve  
t h a t  proper t ies  are shown which are exac t ly  l i k e  those of t h e  buckling of  a 
column. 

However, when the  o r ig ina l  de f l ec t ion  and load e c c e n t r i c i t y  

Of course, above t h e  proport ional  limit, t h e  buckling load takes  i n t o  

When a p l a t e  sus t a ins  a compressive load o r  a shearing load, and def lec-  
t i o n  buckling is caused, as described i n  Section 1.2.7, t he  maximum load, i .e.,  
t h e  s t rength  becomes much l a rge r  than the  buckling load. 
determining t h i s  maximum load have not  been stildied concretely fo r  such cases 
as bars.  

The conditions f o r  

Usual ly  one must r e l y  on the  r e s u l t s  of  experiments. 

In  t he  case of s h e l l s ,  s ince  it i s  considered t h a t  it is most co r rec t  t o  
maintain t h a t  the buckling load simultaneously is the  ascending ('jump t r a n s i -  
tion" load, i n  t h i s  case, it may be considered t o  be the  buckling load, i.e., 
t he  maximum load. O f  course, i n  t h in  s h e l l s ,  when the  stress is maintained 
below the  proport ional  limit, only the  phenomenon of  jump t r a n s i t i o n  occurs 
unaccompanied by rupture  phenomenon. 
sometimes u t i l i z e d .  
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For t h i s  reason, such proper t ies  3re 

In p l a t e s  having reinforcing members, when the  re inforc ing  members are 
weak, or they are very densely arranged, overa l l  buckling occurs,  and t h i s  
approaches the  proper t ies  of an or thot ropic  p la te .  In such a case, apparently 
the  degree t o  which the  max imum load i s  increased with respec t  t o  the  buckling 
load i s  not very grea t ,  but t he  s t rength  law is not -very  clear. When the  re in-  
forcing members a re  s t rong  and not densely arranged, first the  p l a t e  port ion 
only buckles and it is considered t h a t  it withstands the  load u n t i l  t he  combin- 
a t ion  of t he  reduced e f f ec t ive  width and the  reinforcing members cause buckling 
as a column. 
bers .  

This cons t i t u t e s  t he  s t rength  of a p l a t e  having re inforc ing  mem- 
This is t he  same both i n  the  case when the  p l a t e  sus ta ins  a compressive 
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load, and when it sus t a ins  a shearing load. 
have not been concretely and clearly given. 

However, cases of shearing load 

The case of s h e l l s  having reinforcing members has a r e l a t ionsh ip  similar 
t o  t h i s ,  and probably n o m l l y  only the  p l a t e  sec t ion  buckles f i r s t .  
most frequently arise i n  t h e  case when t h e  reduced e f f e c t i v e  width and the  
reinforcing members together  cause bar-type buckling. 
quently handled as the  case of an or thot ropic  s h e l l .  
succeeded i n  expressing stremgth by a simple equation. 

Problems 

Moreover, t h i s  is fre- 
In any event,  no one has 

In the  case of s t ruc tu res  cons is t ing  of a combination of p l a t e s  and s h e l l s ,  
s ince  r e s u l t s  which d i f f e r  on var ious T i n t s  w i t h  t h e  bas i c  cases described 
above occur, special care is required.  
a combination o f  p l a t e s ,  when the  c o l u m  buckling load with respect  t o  the  com- 
pressive load is markedly g rea t e r  than t h e  p l a t e  buckling load, the  p l a t e  buck- 
l i n g  load occurs f i rs t ,  but  i n  t h i s  case, one cannot expect an increase above 
t h e  buckling load having the  proper t ies  nf a p l a t e  (45). 

In channel merbers which are viewed as 

The ascending jump transitioa l o a d i n  the case when the  y i e l d  load or 
deformation after jump t r a n s i t i o n  is vel7  grea t ,  and t h e  stress is above t h e  
proportional limit, can be used as t h e  maximum load o r  breaking load of the  
member or  s t ruc ture .  
they w i l l  not be repeated here. 

Since the  equations for t h i s  are explained i n  Chapter 2, 

Below, i n  t h i s  chapter,  we s h a l l  eliamine problems r e l a t i n g  t o  s t rength  and 
design, pr imari ly  i n  terms of buckling. 

1.6.2. F O M U L A S  FOR BUCKLING STRENGTH, SAFETY FACTORS 

As has been described i n  t h e  previous sec t ion ,  t o  determine theo re t i ca l  
formulas or equations f o r  buckling s t rength ,  even if possible ,  is usual ly  very 
d i f f i c u l t .  For t h i s  reason, it is des i rab le  t o  have them agree as c lose ly  as 
possible  with the  experiment r e s u l t s ,  and t o  express them as simply as possible .  
As a r e s u l t ,  there  is a la rge  va r i e ty  of design formulas f o r  columns i n  which 
buckling is  the cen t r a l  problem, and depending on the  f i e l d  of engineering in-  
volved; the  peference f ~ r  m e  t z c  c x r  t he  o the r  d i f f e r s .  
examples, we give below the  simplest  a lgebraic  examples, with a and b as con- 
s t a n t s .  

'b c i t e  severa l  

Tetmaj er' s Equation 

DIN 'S  Equation 

Johnson's Equation 

(1.6.1) 

(1 - 6 . 2 )  

(1.6.3) 
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Rankine’s Equatioil u.=oL/(lio(L/i) .)  

More theo re t i ca l  equations have the  following forn  

Southwell’s Equation . F O . / {  1 ++ec (e- $)} 

(1.6.4) 

/92 -- 
(1.6.5) 

(1.6.6) 

Southwell, using a theo re t i ca l  equation for t he  case of eccen t r i c i ty  e and 
Perry using equations f o r  i n i t i a l  de f l sc t ion  cl s i n  nx/L, es tab l i shed  t h e i r  
formulas on the  condition of t he  calctilr-tcd maximum stress, with the  extreme 
f i b e r  f r o m  t h e  neu t r a l  axis as n1 is  i i” D i f f i c u l t i e s  
arise i f  E is used above the  proport ional  l i m i t ,  and the  maximum load occurs i n  
the case when it is equivalent t o  cry at the  maximum stress, but  i f  e, cl are 
appropriately se lec ted ,  a p r a c t i c a l  formula is obtained (Refer t o  Section 
1.2.7). 

t c  the  y i e l d  poin t  cry. 

There are many cases i n  which t h i s  i s  handled by similar re la t ionships  
depending upon whether t he  buckling is t h a t  of a bar ,  or other types,  but  it 
is not  as convenient as t he  above. 

In the  case of f l a t  p l a t e s ,  t he  maxim load becomes s i g n i f i c a n t l y  g r e a t e r  
than buckling load, but  its l i m i t s  can only be determined by experiment. 
ever,  t he  equation given by K h n h  f o r  t he  case when four  edges are ro t a t ing ,  
is 

How- 

(1.6.7) 

However, ac tua l ly  t h e  dY i n  t h c  equation should be made t h e  proport ional  l i m i t  
u Moreover, when Owk > up, t h i s  equation cannot be used 
a! a l l .  
not been proposed (See Section 1.2.7), even i n  the  case of o ther  boundary con- 
d i t i ons ,  only the  same kind of equation can be used. 
load, no appropriate  equation has ye t  been formulated. 

(See Figure 1.2.32). 
With regard t o  t h i s  sec t ion ,  equations f o r  t he  case of columns have 

In the  case of shearing 

In s h e l l s ,  t he  buckling s t rength  OWk is given by the  following equation 
for the  case of a cy l ind r i ca l  s h e l l  t h a t  general ly  i s  longer than a p a r t i c u l a r  
length with a radius  a and a sk in  thickness t. 
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c, n a re  constants and n i n  the  case of axial compression is n = 1, the  to r -  
s iona l  load with respect t o  t h e  shearing s t r e s s  is n = 1.35 - 1.5, i n  t he  case 
of exte,-nal pressure,  it is  n = 2 with respect t o  a d i r e c t  force i n  the  d i rec-  
t im of t he  circumference. Moreover, t he  values of c ,  according t o  experiment 
r e s u l t s ,  are respect ively 0.3-0.2; 0.2-0.15; and 0.25. However, when the  cyl-  
inder length is reduced, t he  inf luence of t h i s  i s  manifested (See Figure 1.2.8). 

Generally, i n  the  case of  various typzs of buckling, when t h e  load is a 
c -  ipos i te  of two or more types of simple loads,  w e  may express the  buckling 
s t rength  f o r  each of these  simple loads as ( Jk l ,  (Jk2 ... and expressing the  
s t r e s s  corresponding t o  the  case when a m a x i m u m  load is formed i n  t h e  event 
t h a t  t h i s  iompound load is sustained,  as "1, a2, 

(1 -6.9) 

I s  establ ished,  and is widely used. 
quently are equal t o  about 1 or 2. 

The "1, n2, ... a r e  constants and f r e -  

The sa fe ty  factor problem is important i n  design. This should be se lec ted /93  - 
by taking i n t o  consideration t h e  rate of  f luc tua t ion  of tne  o r ig ina l  member 
with respect  t o  its load r e s i s t ance  and the  rate of f luc tua t ion  with respect  
to  the  value of t he  standard m a x i m u m  of t he  load which is applied f r o m  outside.  
However, t h i s  has not been c l e a r l y  measured, and frequent ly  empirical values 
are used, as t he  r e s u l t  of which meaningless numbers are assigned t o  it. More- 
over, as shown i n  the w Method i n  formulas for columns, it is f requent ly  the  
case t h a t  t he  allowable load i s  e a s i l y  determined by means of a simple formula 
which includes the  sa fe ty  f a c t o r  i n  experimental s t rength  formulas. 
t h e  formula has the  form 

That is, 

> P Q/F allowable (J 
(1.6.10) 

The design should be ca r r i ed  out  i n  such a way t h a t  t he  value of w is appropri- 
a t e l y  determined with respect  t o  the  slenderness r a t i o ,  and the  computed value 
on the r i g h t  s i d e  should be smaller than a s p e c i f i c  allowable stress determined 
for t he  member. This equation can be f u r t h e r  expanded, and i n  t h e  case when 
the  bending moment is simultaneously i n  effect, it is  claimed t h a t  t he  follow- 
ing can be used, i n  which W is the  sec t ion  coe f f i c i en t  and the  bending moment 
M does not take buckling bending i n t o  consideration. 

( 1  . B .  11) 
< P w/F + M/W allowable (J 

This equation is widely used i n  a rch i t ec tu re  and c i v i l  engineering. 
apparently there  a re  considerable arguments against  it (4) (97). 

However, 

Generally, it is  very dangerous t o  employ the  "safety factor"  o b t a k e d  by 
considering t h e  s t r e s s  value t h a t  is calculated with respect  t o  the  1ob.d i s  
safe ,  since i t  is a ce r t a in  percent with respect  to  the  unique tensile s t rength  
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o r  the  y i e ld  point  of t he  mater ia l .  
maximum load is  a ce r t a in  percent with respect  t o  the  breaking load. 
should be noted p a r t i c u l a r l y  i n  the  case when bucitli;:g i s  a l s o  involved. More- 
over,  depending upon the  s tandards,  t he re  a re  many cases i n  w h i h  whereas it is 
na tura l  t o  require  t h a t  t he  r i g i d i t y  of t he  member should be above a ce r t a in  
degree, there  are standards which ass- a load of  a p a r t i c u l a r  s i z e ,  and state 
t h a t  t he  s t rength  should be s u f f i c i e n t  with respect  to  t h a t  load. In such case 
i f  one ca r r i e s  out a design which deviates  from the  customary dimensions, t h i s  
i s  dangerous and requirPs caution. 

Actually, one should consider t h a t  t he  
This 

Even though the  concrete values for the  safety f a c t o r  i tself  a re  general ly  
determined as indicated above, s ince  the re  are differences depending upon the  
type of s t r u c t u r e  and the  type of load, we s h a l l  not treat t h i s  nere.  

1.6.3. C O N C E R N I N G  PREVENTION OF BUCKLING 

Before each type of s t r u c t u e ,  or a p a r t  of them reaches a s p e c i f i c  break- 
ing load, or  a predic tab le  buckling loa$ or buckling s t rength ,  it i s  des i r ab le  
t o  r e l i a b l y  prevent t he  occurrence of o ther  types of buckling o r  i n s t a b i l i t y  
phenomena. Moreover, i f  t h i s  po in t  is  not  c l e a r l y  taken i n t o  account i n  de- 
s ign,  an unpredicted i n s t a b i l i t y  w i l l  occur a t  a low load, and it is possible  
t h a t  unsuspected accidents  such as breAage  may occur, so  t h i s  must be taken 
i n t o  careful  consideration. From t h i s  po in t  of  view, w e  s h a l l  descr ibe below 
several  examples of t he  r e l a t ionsh ip  between t h e  r i g i d i t y  of s t r u c t u r a l  ele- 
ments e f fec t ing  buckling, and t h e i r  dimensions. 

(1) R i g i d i t y  of  Intermediate Support P o i n t s  o n  a Continuous Column. 
When a s t ruc tu re  which is supported by having severa l  support  po in ts  at equi- 
d i s t a n t  i n t e rva l s  on a s ing le  long b a r  sus t a ins  an axial compressive load, and 
buckling occurs, t he  maximum load when the  d is tance  between the  support po in ts  
is determined, is the  buckling load, where the  length between the  support 
points  i s  considered t o  be the  buckling length.  In order  t o  have such a buck- 
l i n g  load, it is  ne-essary f o r  there  t o  be a r i g i d i t y  o f  above a ce r t a in  mag- 
n'tude, so t h a t  the  support po in ts  w i l l  not  move l a t e r a l l y .  When the  r i g i d i t y  
i s  below t h i s  degree, t he  buckling load w i l l  decrease t o  a value lower than t h e  
above-mentioned maximum value. 
r i g i d i t y  a t  t h i s  support point  as a, t he  overa l l  length as 1, and the  number of 
spans as 8 ,  t he  buckling load is  Pk = m 2 r 2  E I / 1 2 ,  and the  value of a is  neces- - /94 
sary f o r  t h i s  pumose, i s  given as 

Denoting the  spr ing  coe f f i c i e r t i nd ica t ing  the  

a==m PI4 1 (1.6.12) 

and the  constant f3 with respect  t o  the  value of m has the  numerical values 
indicated i n  the  following t ab le .  
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Table 1.5.1 

1 I I j 6 I I I l l j  . I  

B 0.5 10.333 1 0.293 I 0.276 I i 0.268 I i 0.263, I !  0.258 0.255 j 0.253 
I I /  

As f requent ly  happens i n  such cases, t h e  method which requi res  a load of  P/100 
as t he  s t rength  of t he  p a r t  which cons t i t u t e s  t he  support  point  i s  open t o  de- 
bate .  

(2) P reven t ion  of Buckiing i n  other Types of Columns. If one has knowl- 
edge concerning o the r  tvpes of buckling which should be prevented i n  such cases, 
it is possible  t o  devise  counter measures. I t  i s  s u f f i c i e n t  t o  have k:iowledge 
concerning the  presence of such buckling and the  numerical values  f o r  t h e  size 
n f  t he  load caused by it. 
the  case of t he  axial compressive load gn a @umn are to r s iona l  buckling and 
w a l l  surface buckling, so they w i l l  be described here.  

In the  o t h e r  types of buckling which may occur i n  

(a )  Prevention of Torsional Buck1 ing. There are many cases i n  which 
to r s iona l  buckling occurs i n  open thin-walled scc t ions ,  i .e . ,  angle members and 
channel members (44). In order  t o  prevent t h i s  buckling, the  sk in  thickness  
should be made appropriately la rge  (see next sec t ion) ,  bu t  i n  addi t ion,  the  
spaces between each open sec t ion  are connected by cross pieces  a t  appropriate  
i n t e rva l s .  Then, t h i s  forms a half-open sec t iona l  member, t he  to r s iona l  r i g id -  
i t y  increases  markedly, and it is  poss ib le  t o  prevent t o r s iona l  buckling. 

(b) Frevention o f  Wall Surface Buckling. With regard t o  por i ions  i n  
which the  wall sur face  i s  f l a t ,  one should make the  buckling stress, considered 
as a f la t  p l a t e ,  above the  f l exura l  buckling stress. 
shown i n  Figure 1.6.1 f o r  steel  members, i n  sec t ion  AB, considering t h a t  both 
edges are r o t a t i n g  edges, 

For t h i s  purpose, as 

and i n  sec t ion  AC, considering t h a t  one edge is  free 

and i r  EF, considering the  r i g i d i t y  of t he  support  s i d e  t o  be small, t h i s  co- 
e f f i c i e n t  14 should be 11. With regard t o  the  cxrved sec t ion ,  as shown i n  
Figure 1.6.2, compared with the  bucklinR i n  the  case of a cy l ind r i ca l  s h e l l ,  
one should have f o r  sec t ion  GH 

(1.6.15) 
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Fisure 1.6.1 Figure 1.6.2 

0.6 5 
0. e - 
1.0 10 
1.2 - 
1.4 '5. 
1.6 20 
1.8 - 
2 0  25 

Moreover, i n  t h i s  case, i t  i s  important t o  have the  conditions of support on 
the  s ides  equal t o  t h a t  of a cyl inder .  
walled swfaces i n  general ,  one should r e f e r  t o  methods f o r  the  prevention of 
buckling i n  p l a t e s  and s h e l l s .  
t i ons ,  i t  is necessary t o  pay a t t e n t i o n  t o  the  configurat ion on the end, and 
the  method of coupling. Moreover, one should attempt t o  make it poss ib le  t o  
s k i l l f u l l y  employ re inforc ing  members. 

In addi t ion,  f o r  t he  buckling of 
/95 - 

Then, i n  order  t o  maintain the  boundary condi- 

5 I 5 
- to 
10 - 
15 15 
- 20 
20 25 
25 - 
- - 

(3) Arrangement and Rigidi ty  of f l a t  P l a t e  Re in fo rc ing  Members. When it 
i s  disadvantageous t o  have a broad f l a t  p l a t e  width and only increase the  sk in  
thickness ,  re inforc ing  members are introduced i n  I rde r  t o  prevent a drop i n  the  
buckling load. Once t h e  re inforc ing  members are added, it is des i rab le  t o  in-  
crease the buckling load as fa r  as the  buckling stress of t he  f la t  p l a t e ,  i n  
which the  i n t e g r a l  between re inforc ing  members i s  considered as the  width, and 
the  edges are cor,sidere.. as r o t a t i n g  edges. This then i s  t h e  maximum value i n  
the  case when, +'c? t h e  buckling load, t h e  i n t e g r a l  between t h e  re inforc ing  mem- 
be r s  is made constant.  
t h i s  purpose is  as shown i n  Tables 1.5.2 t o  1.5.4 i n  the  case of a compressive 
load, and as i n  Figure 1.6.3, i n  the  case of a shear ing load. The measurement 
of t h i s  was ca r r i ed  out  by Timoshenko (I) and are abbreviated values.  Assuming 
B = EI,, D = Et3/l2 (1 - v 2 ) ,  6 = L/b, 6 = F/bt (p l a t e  width b,  p l a t e  length L,  
cross-sect ion a rea  of re inforc ing  member F,  geometrical moment of i n e r t i a  I r ) ,  
the  values of y = B/bD are given i n  the following t ab le s .  

The r i g i d i t y  of t he  re inforc ing  members necessary f o r  

Table 1.5.2 
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Table 1.5.3 
Case of 2 longitudinal re inforcing members 

(multiple 9) 

i I I 6=o.10 P - 
5 

10 

0.6 

0.8 

Table 1.5.4 
Case of 1 l a t e r a l  re inforcing member ( m u l t i p l e  1 , )  

1,(+1.4!; (2/3-t 6'2)Z (l/3+6y,/3<1.41] ) 
B j 0.5 i 0.60 j 0.70 , 0.E') O.?O , 1.0 1 1.2 1 1.4J 

r 112.6 j 7.18 1 4.39 1 2.80 j 1.82 1 1-26 I '0.433 t o 
I 

- 

When longi tudinal  rei7,iorcing members are thus included, t he  buckling 
ax ia l  force ny becomes m24n2D/b2, and the  buckling load increases  i n  proportion 
t o  the square of the  number of  sec t ions  m. 
meabers, t h i s  effect i s  very small, and when B = 0.5, while a re inforc ing  mem- 
be r  with y = 12.6 i s  added, the  mult iple  i s  memly 2.96, and when B = 1.00, the 
mult iple  i s  1.56. This means t h a t  t h e  increase due t o  t h e  re inforc ing  member /96 
is  s l i g h t .  Therefore, it can be sa id  t h a t  a lateral r e in fo rc ing  member i s  an 
unsuitable method f o r  d i r e c t l y  preventing buckling of a f l a t  p l a t e .  However, 
Ilrhen the length o f  t h e  longi tudinal  re inforc ing  member i s  increased, it becomes 
necessary t o  combine t h i s  with an appropriate  lateral re inforc ing  member, and 
t o  measure the  increase i n  buckling stress and buckling s t rength .  Otherwise, 
very thick members w i l l  be required i f  only longi tudinal  re inforc ing  members 
a re  use i .  

However, i n  la teral  re inforc ing  

In the  case of shear ing stress, as can be seen from Figure 1.6.3, using 
i s  almost unrelated t o  the the  width of one sec t ion  f o r  the  lj i n  y = B/bD, 

number of re inforc ing  members, and is determined by h/b (1). 

Moreover, when a re inforc ing  member i s  
added, as shown i n  Figure 1.6.4, the  width i n  
terms of a f l a t  p l a t e  becomes narrow, and s ince 
the  to r s iona l  r i g i d i t y  of the  re inforc ing  mem- 
be r  a l so  increases ,  t he re  is  l i t t l e  worry about 
i n s t a b i l i t y ,  In such objec ts  as depicted i n  
1.6.5, s ince  the  r i g i d i t y  of the  re inforc ing  
member i t s e l f  with respect  t o  to r s ion  is small, 
caution must be exercised s ince  it i s  easy f o r  
t o r s iona l  buckling t o  occur. 

- 
Figure 1.6.4 

rn 
Figure 1.6.5 

In order  t o  f u r t h e r  increase the  buckling load on a f l a t  p l a t e ,  it i s  poss- 
i b l e  t o  a t tach  a corrugated p l a t e ,  bu t  in t h i s  case, as w i l l  be described i n  the 
next sec t ion ,  r a t h e r  than employ the  method of  attachment shown i n  Figure 1.6.6, 
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it is more advantageous t o  employ the  method shown i n  Figure 1 . 6 . 7  i n  which the 
buckling loac. due t o  compression Cor a corrugated p l a t e  i s  nigh. 

Figure 1.6.6 F i g u r e  1.6.7 

In order  t o  prevent buckling of a p a r t  of a f l a t  p l a t e  "escape holes" o r  
"functional holes" with re inforc ing  edges are used. O r ,  ins tead  of  adding re- 
inforcing members, channels a re  made with the  p l a t e s  themselves, o r  a protub- 
e ran t  sec t ion  i s  prepared. There are s t i l l  no r e s u l t s  of experiments on t h i s ,  
but i t  is  used i n  p rac t i ce .  

(4) Prevention of Buckling i n  S h e l l s .  As f o r  the buckling of a s h e l l ,  
the  buckling load i n  terms of a tube,  is l a rges t  so  f o r  the cross-sect ion con- 
f igura t ion ,  one uses as  m c h  as possibie ,  e i t h e r  a tube o r  a combination of 
part of a tube. 
i s  not achieved. 
d i t i ons ,  f o r  example, i n  a corrugated p l a t e  as shown i n  Figure 1.6.8,  which is  
viewed as a continuous connection of  one p a r t  of a tube,  owing t o  a x i a l  com- 
pressive load, t he  buckling stress f o r  only the  tube i s  u i a t t a inab le  This i s  
becauze i r r e g u l a r i t i e s  appear i n  the shape shown by the dot ted l i n e  i n  the  
f igure ,  and the  boundary conditions on the  edge have the  form of an unvariable 
slope,  and a f r e e  displacement, so  t h a t  t he  b-ickling stress drops. For t h i s  
reason, i n  such a case, as shown i n  Figure 1.6.9, i n  t he  connected p a r t s  of the  
curved sur face  shown by poin t  A, it i s  necessary t o  f ind  a way f o r  the r i g i d i t y  
{ s t i f f n e s s ]  t o  appear i n  the  configuration of t he  cross-sect ion '  i t se l f ,  such 
t h a t  t he  displacement i s  0.  

In such cases,  f requent ly  it happens t h a t  the  des i red  s t rength  
If caution is  not exercised with respect  t o  the  boundary con- 

( 5 )  Arrangement of Reinforci.ig Members of 
S h e l l s .  With regard t o  t h i s  case, the re  are 
no materials ava i lab le  such as those f o r  a f l a t  
p l a t e .  Dschouls (51) r e s u l t s  are quoted by 
Timoshenko (1) so one must r e f e r  t o  the  la t -  

/ t e r ' s  work. In addi t ion t o  items with such a 
configuration, there  a re  cases i n  which the  
problem of s t rength  becomes important af ter  
the  sec t ion  of the  p l a t e  has first buckled. 
Spec i f ic  standards f o r  such a case have not 
y e t  been c l a r i f i e d .  

Figure 1.6.8 

A 
(6) Prevention of  B u c k l i n g  i n  Complex /97 

* 
c? Figure 1.6.9 

- 
Struc tures .  In the  case of ac tua l  complex 
s t ruc tu res ,  t he  s t r u c t u r a l  elements i n  which 
buckling should be prevented, and the  types of 
buckling a re  numerous, and requi re  extremely 
close a t t en t ion .  Especially when designing 
something which d i f f e r s  from conventional 
dimensions, t h i s  must be considered with g rea t  
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care.  
considered f o r  a p l a t e  g i rde r .  

As an example, we s h a l l  consider below the  problem in  w h i h t h i s  must be 

In a p la te .  g i rde r ,  there  is  overa l l  l a t e r a l  buckling. Moreover, when 
accompanied by an ax ia l  load, f lexura l  buckling and to r s iona l  buckling also’  
pose problems. In any case,  the  g i rde r  i s  designed with overa l l  b tck l ing  i n  
mind, so it becomes necessary t o  prevent a l l  o the r  types of buckling. 
case, t h a t  which should be prevented can be described below f o r  each sec t ion  of 
t he  s t ruc tu re .  

111 t h i s  

(a) In the  edge members, it i s  necessary t o  take i n t o  consideration 
f lexura l  buckling, t o r s iona l  Duckling, wall surface buckling, buckling between 
r i v e t s ,  and i n  addi t ion,  loss  i n  s t i f f n e s s  of connecting p l a t e s  due t o  r i v e t s .  

(b) In the  webs, one must take i n t o  cuiisideration def lec t ion  buckling 
due t o  shear ing load, def lec t ion  buckling due t o  bending load, buckling between 
r i v e t s ,  and the  inf luence of t he  re inforc ing  members used f o r  t h i s  purpose. 
Moreover, depending upon the individual  instance,  def lec t ion  buckling i n  the  
pa r t s  connected with the  re inforc ing  members a l so  pose a problem. 

(c) I t  i s  necessary t o  take  i n t o  consideration the f l exura l  buckling 
of the re inforc ing  member i t se l f ,  when it is considered as a u n i t  f o r  inducing 
an external  force onto the  web, the  to r s iona l  buckling, the  wall surface buck- 
l i ng ,  and the  buckling between r i v e t s .  

(d) I t  i s  necessary t o  take i n t o  consideration the  f l exura l  buck- 
l ing ,  t o r s iona l  buckling, wall sur face  buckling and buckling between r i v e t s ,  
i n  a reinforcing member which is considered as serving as a member f o r  prevent- 
ing def lec t ion  i n  the webs. 

The explanations t h a t  have been given f o r  these poin ts  shauld be considered 
as the  standard.  

1.6.5. RELATIONSHIP BETWEEN DESIGNS WITH MINIMUM WEIGH? AND BUCKLING. 

Various conditions ex is t  f o r  having a minimum weight, bu t  even 4ive.i the  
same mater ia l  with the  same c u t e r  dimensions, i t  i s  poss ib le  t o  obtain a s t ruc -  
t u r e  with minimum weight by se l ec t ing  appropriately t h e  form of the  s t r u c t u r e  
and regulat ing the  dimensions and proportions.  

Formerly, it was thought t h a t  a minimum dimension could be obtained by 
varying the sec t iona l  standard dimensions of a column or beam 
of the  axis i n  such a way t h a t  the  maximum stress was uniform. 
books t h i s  thought i s  expressed. However, i n  a c t u a l i t y ,  the  dimensions and 
proportions within the  cross-sect ion i tself  are more important than t h i s .  The 
weight derived from the  former method does not ,  i n  comparison with the case i n  
which a uniform cross-sect ion is used, drop by more than 1 / 2 .  
appropriate cross-sect ion dimensions are used, it is  casy t o  make t h i s  weight 
[drop] 1/100 i n  comparison with t h a t  wh;r31 has a t r u e  cross-sect ion.  
quently, t h i s  has a grea t  advantage over the former method. 

i n  the d i r ec t ion  
Even i n  pocket- 

However, when 

Conse- 
As with regard t o  
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t h e  means of  se l ec t ing  these cross-sect ion dimensions and proport ions,  t he  d i -  
mensions and proportioils which should be se l ec t ed  come t o  be determined by t h e  
spec i f i c  b a d  fmeaning such q u a n t i t i e s  as P/L2, P/h2, M/h3, Q/h2). And, more- 
over, the  wall sur:ace buckling s t rength  b e c o e s  an important f ac to r .  Details 
on t h i s  can be found i n  t h e  books (9) ( lO)( l lS l  and the  paper (111). 

In tenus of minimum weight, t he  l i m i t s  on t h e  prevention of buckling de- 

In any case, it is of t he  utmost 
sc r ibed  i n  t h e  previous sec t ion  became an important element so it is  necessary 
t o  adequately inves t iga te  these  conditions.  
importance t o  accurately understand what is meant by t h e  true s t rength .  
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S E C T I O N  2 

SOLID MEMBERS 

CHAPTER 1 

COMPRESSIVE MEMBERS 

2.1.1.  CENTRAL COMPRESSIVE MEMBERS HAVING I" =ORH CROSS-SECTIONS 

The l i m i t  value f o r  t he  e l a s t i c  buckling load of a member of uniform 
cross-sect ion sus ta in ing  an a x i a l l y  compressive load, when ne i the r  end under- 
goes bending res i s tance  

(2 .1 .1)  

f requent ly  becomes a standard.  
member.*l 
made t h a t  n2 = 9.87. 
but  do r e s i s t  bending, the  buckling value is  Pee 
conditions of support of the  member, t he  buckling load f o r  such cases can be 
determined i f  d i f f e r e n t  numerical values are employed i n  p lsce  of 7r2. 
generally,  it is  poss ib le  t o  express the  buckling load by 

This is ca l l ed  Euler ' s  buckling value for a 
No grea t  differences i n  p rac t i ce  a r e  involved if the  ca lcu la t ion  is 

Even i n  cases where ne i the r  end resists horizontal  forces ,  
Depending cn changes i n  the  

That i s ,  

( 2 . i . 2 )  

The value of m i s  not necessar i ly  an in teger .  

This comes t o  have the  same s t a t e  of deformation as the  buckling wave 
form of  an a x i a l l y  compressed member with both ends pinned, which has a member 
length of i k = I / m = d  Ef/P4 when dealing with buckling deformation. Its buckling 

value i s  equal t o  Euler 's  buckling value. lk is ca l l ed  the  buckling length.  
I t  can be e a s i l y  determined by observing the  pos i t ion  of t he  in f l ec t ion  point 
a r i s ing  i n  the  bending of a member, with respect t o  simple member end condi- 
t ions .  

-- 

*I Euler did not use the  symbol E 1  bu t  expressed t h i s  by Ekk and ca l l ed  it moment 
moment du r e s s o r t  or moment de roideur.  
Wiley, 1948, p. 80. 

Van den Broek, " L i m i t  Design," J. 
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As w i l l  be described later on, t h i s  i s  s u f f i c i e n t  i n  t h e  case of  e las t ic  buck- 
l i ng ,  bu t  i s  not within non-e las t ic  ranges. 
see?s t o  be meaningless, bu t  s ince  it can be r e l a t e d  d i r e c t l y  t o  Euler ' s  load 
vaiues, it is usefu l  i n  c l ea r ly  understanding buckling phenomenon and makes it 
easy t o  introduce the  a l lodable  values and safety f a c t o r s  necessary f o r  ac tua l  

This operat ion at first s igh t  
/ l o 2  

design. 
buckling length i s  determined f o r  each b ixkl ing  sur face  ind iv idua l ly ,  t he  buck- 
l i n g  lengths i n  d i r ec t ion  x and d i r ec t ion  y a t  r i g h t  angles t o  it general ly  are 
not t he  same even within the  same compressive member. 

Table 2.1.1 ind ica tes  simple cases' o f  buckling length.  Since t h e  

2.1 .2. MEMBERS OF NON-UN I FORH CROSS-SECT I ON 

There arc : .xes i n  which, when the  cross-sect ion of  a member is not  con- 
z t an t ,  t he  bvck:.i.ng values are expressed i n  the  form of Equntion (2.1.2) and 
a buckling l e ~ , , . & h  l k  = l / m  is used. 
value f o r  A *fie.llber of equivalent  cross-sect ion which was a r b i t r a r i l y  se l ec t ed  
and which I , * . j  member length 1. For the cross-sect ion,  e i t h e r  a maximm o r  
minimum r ..I.;'J-section may be e q l o y e d ,  or, on t h i s  b a s i s ,  a hypothet ical  cross-  
sec t iop  FT, ) es tab l i shed .  
non-w,ifc:w ', ross sec t ion  which is  pin-ended on both ends, when the  hypothet ical  
cross-sc-:rion i s  appropriately determined, it is poss ib le  t o  assume t h a t  t h e  
member. ip-:gth 1 i s  equivalent t o  l k .  
equation is given f o r  ca lcu la t ing  t h i s  using a constant geomztrical moment of  
iner t2-a  such as 

The Pe i n  t h i s  case is the  Euler buckling 

In the  case of a x i a l  compression on a memDer  with 

In D I N  Entwurf 2 E 4114 Section 8, an 

In the case of a I cross-sect ion member of non-uniform depth with an extremely 
t h i n  web. In Table 2.1.2, t h i s  function i s  exprwsed where I i 0.04 Imm. min = 

* T h i s  t y p e  o f  graphical representation is i n  J .  W .  Geckler 's  "Elas tos ta t ik ,  
Handbuch der Phys i k I V ,  Springer R,er 1 i n ,  ( 1  928) , S. 283. 
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TABLE 2.1.2 

2.1 . 3 .  NON-UN I FORM LOAD 

I t  is  d i f f i c u l t  t o  express t h e  buckling values i n  the case when t h e  com- , 
press ive  force  along the  l i n e  of t he  ax i s  varies. 
constant degree over t he  e n t i r e  length of t he  member ax i s ,  
employ as the buckling value,  t h e  value at t h e  time of c r i t i c a l  buckling a t  
maximum load. 
stress of a s u i t a b l e  pa r t .  Even i n  such cases ,  there  are times when a buckling 
€ength based on Equation (2.1.2), i . e . ,  lk = l / m  i s  used. When the  compressive 
force  along an axis, where both ends are pin-ended, changes t o  a t e n s i l e  force,  
for the  value of l k ,  an intermediate  value is  used, which i s  s h o r t e r  than the  
t o t a l  length 1 and longer than t h e  length of  t he  compressed p a r t .  When the  end 
conditions of the member are complex, it i s  frequent ly  d i f f i c u l t  t o  determine 
t h e  physical meaning of  t h e  buckling length.  This i s  because it i s  d i f f i c u l t  
t o  express the  phenomenon of buckling iti i t s  e n t i r e t y  i n  terms of buckling 
length,  and as i s  c l e a r  from the  de f in i t i on ,  even though the  magnitude of the 
load buckling value is  immediately expressed from the  buckling length,  it is 
not  necessar i ly  the case t h a t  the  buckling deformation w i l l  coincide with the 
deformation of  a s o l i d  compressive member having a buckling length.  
ly, while it i s  poss ib le  t o  employ the  buckling length i n  ca lcu la t ing  the  load 
o r  stress, when deformation i s  taken i n t o  account, t h s  l a t t e r  i s  not  e a s i l y  
handled. 

When t h e  load va r i e s  a t  a 
I t  i s  customary t o  

When the  va r i a t ion  is  not constant ,  it i s  expressed by the  

Consequent- 

Figure 2.1.1 shows a member i n  which t h e  / l o3  - 
j o i n t s  cannot be f r e e l y  moved t o  t h e  s ides .  
In such a member, when the  s ize  of  the  com- 
press ive  force  on the  l e f t  and r i g h t  halves ,  
considered from the  center  po in t ,  d i f f e r s ,  i.f 
P 1  > P2, i t  i s  poss ib le  t o  determine the buck- -m M a ~ ~ r ~ ~ ~ s s e d  l i n g  length by the  following abbreviated form- 
u l a  with the  load as PI .  
mates the  a c x r a t e  value f o r  buckling. 

Wind Truss 

This c lose ly  approxi- 

Figure 2.1.1 

The above formula can a l s o  be used f o r  tensile 
force ,  i f  t he  s ign  is made negative.  
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In a K t r u s s  column such as t h a t  shown i n  Figure 2.1.2,  when the  web mem- 
be r  is  made of s o l i d  angle s teel ,  t h e  buckling lengtk., i f  P 1  > P;! can be found 
from 

ir=a (o.s~+o.I&-) P,  
- 

where the center  load i s  PI.  

F igu re  2.1 .2  Figure 2 . 1 . 3 .  

If the  members i n t e r s e c t ,  as shown i n  Figure 2.1.3, and one s i d e  i s  a 
compressive member (load P,  member length 1)  and the  o the r  s i d e  i s  a tension 
member,(load P I ,  member length I t )  i f  

then one can use 
h=0.52 

In t h i s  case, the re  must be  s u f f i c i e n t  connection at t h e  po in t s  of  i n t e r sec t ion ,  
and it is necessary t o  employ r i v e t s  a t  l e a s t  1/3 of t h e  rivets necessary for 
the  connecting poin ts  of  the compressive member. When 

<1 
P,-1 
P . I*  

one may use 

In t h i s  case,  it is  necessary t h a t  a t  t he  poin ts  of i n t e r sec t ion ,  the  compress- 
ive  members are adequately connected, and the  geometrical moment of i n e r t i a  i s  
not weakened. 
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2 . 1 . 4 .  BUCKLING UNIT STRESS 

In mater ia ls  whose proper t ies  are character ized by the  fact  t h a t  t he  
e l a s t i c i t y  modulus and the  Poisson r a t i o  a r e  r e l a t ed ,  and i n  which t h e  propor- 
t i ona l  l i m i t  is  present ,  the  values of  e l a s t i c  buckling a re  ca lcu la ted  on the  
bas i s  t h a t  i n  problems within t h a t  l i m i t ,  these coe f f i c i en t s  a r e  assumed t o  
take constant values i r r e spec t ive  of s t r e s s .  
does not take i n t o  consideration the  buckling values f o r  the  i n i t i a l  cross  
sec t ion  of the member is  ca l l ed  the  average buckling u n i t  s t r e s s .  

The buckling u n i t  s t r e s s  which 

(2.1.4) 

In the  case of a member with a constant cr0s.c ,ect ion,  ak is  the  u n i t  s t r e s s  
wherein the  p a r t  where Pk has a maxinium value,  In the  case of a nember with 
non-uniform cross-sect ion,  there  are cases i n  which the  s ize  of  uk changes i n  
the  d i r ec t ion  of the  member ax is ,  and it becomes necessary t o  ca l cu la t e  ak i n  
each cross-sect ion,  and t o  determine i t s  maximum values.  The necess i ty  f o r  
determining t h e  buckling u n i t  stress i s  due t o  the  fact t h a t  it con t ra s t s  d i -  
r e c t l y  with the  proper t ies  of the  mater ia l ,  e .g . ,  the  y i e l d  value, breaking 
value with respect  t o  compression, etc. : I materials such as carbo? s teel ,  
i n  which y i e l d  phenomena c l ea r ly  occur, it i s  frequent ly  assumed t h a t  ak is  not 
g r e a t e r  than i t s  y i e l d  value. However, even i n  carbon s t e e l ,  which has been 
strain-hardened, a d i s t i n c t  y i e ld  phenomenon is  no longer observed, and i n  
t h i s  case,  with regard t o  ak,  the stress f o r  which the  s t r a i n  rap id ly  increases  
i s  made t h e  l i m i t .  
no primary re la t ionship  between s t r a i n  and s t r e s s .  
c r e t e  and lumber. There a re  methods which t reat  the  modulus of t h a t  e l a s t i c i t y  
as a funct ion of stress, i n  dealing with buckling problems i n  t h i s  kind of 
material. However, i n  ordinary ca lcu la t ions ,  the  buckling load is ca lcu la ted  
using constant coef f ic ien ts .  

In Austenite steel ,  from the  beginning of stress, the re  i s  
This i s  a l so  t r u e  i n  con- 

/ 104 In compressive members of s o f t  s t e e l  used i n  s t r u c t u r e s ,  t h i s  can be - 
expressed as 

n’E e&=-- 1’ (2.1.5) 

within the  proport ional  l i m i t .  The terms A = l k / i  i n  t h e  above equation a re  
ca l l ed  the  slenderness r a t i o .  Zquation (2.1.5) i s  sometimes ca l l ed  Euler’s 
hyperbula, and i s  t o  be theo re t i ca l ly  the  maximum value of the  compressive 
force of a s lender  member i n  which e l a s t i c  buckling would occur. When the  
ak becomes g r e a t e r  than the  proport ional  l i m i t  of  the mater ia l ,  Equation (2.1.5) 
no longer expresses the  ac tua l  res i s tance  t o  compression of t he  member. 

I f  the  limits of res i s tance  with respect  t o  compression a re  expressed by 

, so  a l i m i t  curve 
the  vague phenomena of large d,eformation, where A = 0, t h e  material should 
undergo la rge  deformation a t  compressic7. y i e l d  value 

and a y e p  

aye 
should be described with respect  t o  compres:ion between t R 6 proport ional  l i m i t  

The shape of t h i s  l i m i t  curve is  not based only on the proper t ies  06 
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the  mater ia l ,  but  is a l so  r e l a t ed  t o  the  mater ia l s '  configurat ion,  and various 
curves have been c i t e d  from experiments. Various theor ies  have been advanced 
by such people as Considere, Engesser, J a s insk i  , Kgrmgn, Southwell, Chapmann 
t o  explain the experimental f a c t s .  Among them, the so-cal led Engesser-KbrmlIn 
theory i s  the  most popular a t  the  pzesent time. 
explanation. 
with the p a r t  where the bending u n i t  stress i s  0 as t he  boundary, t h i s  is  con- 
s idered t o  be smaller than the  modulus of e l a s t i c i t y  E with respect  t o  the bend- 
ing  compression u n i t  s t r e s s  (concave s i d e  of member) where the  e l a s t i c i t y  
modulus E does not  change with respec t  t o  the  bending t e n s i l e  u n i t  stress ( cm-  
vex s i d e  of member). The reason f o r  t h i s  i s  based on the  r e s u l t s  of s ing le  
axis  s t r e s s  tests of s o f t  steel ,  i n  which, when the  s t r e s s  exceeds t h e  propor- 
t i ona l  l i m i t ,  the  proport ional  coe f f i c i en t s  of s t r e s s  and s t r a i n  become smaller  
than the modulus of e l a s t i c i t y  E below the  proport ional  l j m i t ,  with respect  t o  
increase i n  s t r e s s ,  whereas they become equal t o  E with respec t  t o  a decrease 
i n  s t r e s s .  

I t  i s  based on Consid6re's 
In the case of a s t e e l  column i n  a s t a t e  of buckling and bending, 

According t o  t h i s  hypothesis,  i n  place of t he  usual formula for buckling 
and bending, 

d'y 
dz 

'*%,I ---,-+Py=O 

is  obtained. 
function of the  average u n i t  stress of the  member and the  shape of the  member. 
This becomes constant i n  a member of uniform sec t ions ,  a t  any pos i t i on  i n  the ' 

di rec t ion  of t he  member length.  
E, it is  possible  t o  express a l l  conditions by t h i s  formula. One may assume 
E, = E < ,  with 5 = 1 within the  e l a s t i c i t y  range and 5< 1 i n  the  non-e las t ic  
range. Using t h i s  form, Formula (2.1.5) becomes 

E, i s  the  coe f f i c i en t  which is i n se r t ed  i n  place of E and is  a 

Within the  e l a s t i c i t y  range, i f  E, i s  equal t o  

(2.1.6) 

5 i s  r e l a t ed  t o  the  form of the  cross-sect ion,  and the re  i s  less tendency f o r  
a decrease i n  
o f  dispersed form. In Figure 2.1.4, changes i n  5 above the  l i m i t  of  e l a s t i c i t y  
i n  sec t ion  members and sec t ion  members. This graph i s  of a tes t  OD s o f t  
s t e e l  St 37 with an e l a s t i c i t y  l i m i t  of  2.05 t/cm2. 
poin t  of t h i s  mater ia l  i s  2.63 t/cm2. 
great .  

where the  cross-sect ion i s  of compact form, than where i t  i s  

The compressive y i e ld  
However, the d i f fe rence  is  not  very 

Bleich maintains t h a t  i t  is  permissible t o  consider t h i s  t o  be constant 
If we assume t h a t  the  s lope of t he  curve o f  t he  i n  ordinary dimensions (1) .  

compressive u n i t  s t r e s s  u above the  proport ional  l i m i t  and the  s t r a i n  E t o  be 
/ l o5  - 

in a member with a rectangular  cross-sect ion,  t h i s  i s  expressed as 

E,=4 EEt f ( V T  + V z ) '  (2.1.7) 
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250 Vcm' 3iJ 

Figure 2 . 1 . 4 .  

and c lear ly  values a r e  obtained such 
t h a t  E E, E t .  Such a E, i s  ca l l ed  the 
reduced modulus o r  double modhlus, and 
i s  useful  i n  ana1yzir.g buckling tes ts  
above the  proport ional  limits. However, 
i n  ac tua l  cnmputations, o f ten  the tan- 
gent modulus E i  i s  used t o  determine 
t h e  buckling u n i t  stress. In such a 

ccase,  t h i s  proves t o  be smaller than 
when E, i s  used, and has the  advantage 
of being a safer e r r o r ,  and making i t  
poss ib le  t o  determine Et  by means o f  
t he  load s t r a i n  curve i r r e spec t ive  of 
t he  form of the  member. 

According t o  F. R.  Shanley, i n  the  i n i t i a l  period of buckling and bend- 

When the  def lec t ion  increases ,  t he  tangent modulus soon reaches a 
ing ,* l  def lec t ion  begins,  due t o  the  tangent modulus, and the  load gradualiy 
increases.  
constant value,  and the  load f i n a l l y  reaches a value which is given by thg 
reducecl modulus. 
case when bending f i n a l l y  begins due t o  the  cen t r a l  compreJsive load on an 
idea l  column, using the tangent modulus. This i s  because up t o  t h i s  load, 
the column i s  pe r fec t ly  s t r a i g h t ,  and the  occurrence of bending is  sudden. 
t h i s  time, the  s ign  of s t r a i n  within the  cross-sect ion w i l l  not change. When 
t h e  load becomes g rea t e r  than the load indicated by the  tangent modulus theory,  
bending immediately begins (2).  

I t  i s  not poss ib le  t o  determine t h e  maximum load i n  the  

A t  

The experimental values come close t o  those which a re  usual ly  given by 
the  tangent modulus. This i s  considered t o  be due t o  various reasons. There 
are some cases i n  which the  values from tests on columns having various member 
shapes, are processed and then used t o  ca l cu la t e  back t o  the  values used f o r  
E, o r  5 i n  Equation (2.1.6). 
equations a re  f requent ly  re fer reu  to .  
sec t ion  s t e e l  with various cross-sect ions and bui l t -up  s teel  with a compressive 
s t rength  of 3 . 8  t/cm2, and an e las t ic  l i m i t  of 2.4 t/cm2. 
a re  

In such cases, the  Tetmajer tes t  and h i s  l i n e a r  
This t c s t  covcrs s o f t  ?tee1 members of  

The values obtained 

?=lO-lOS 1-0.0114 A ticm' 

A> 105 

a t  X>135, Euler ' s  parabula i s  foui-d, and the  l i n e a r  equation in t e rcep t s  i t  
r a t h e r  t h m  being tangent t o  i t ,  Where X i s  smaller, a method f o r  processing 
*IF. R.  Shanley's descr ip t ions  of t h i s  problem are ca r r i ed  i n  rnsearch l i t e r a t u r e  

published af ter  item (2) i n  1946. Column Paradox, Jour .  Aero. Sciences, Vol. 13, 
No. 1 2  (1946-12), p. 678; I n e l a s t i c  Colwm Theory, Jour.  Aero. Sciences, Vol, 14,  
No. 5 (1947-51, pp. 261-267; Applied Column Theory, ASCB proc,, scheduled f o r  
publ icat ion by (1949). 
Jour.  Aero. Sciences (1949-3). 

Pr inciples  of St ruc tu ra l  Design f o r  Minimum Weight, 

139 



the  test  values by l i n e a r  equatioi! used by others  besides  Tetmajer. For 
example, T. H. Johnson maintains t h  .: the  s t r a i g h t  l i n e  i s  tangent t o  [ l i t e r -  
z l l y  "cuts"] Euler 's  parabula and at the  curve with respect  t o  a A l a r g e r  
than t h i s  i s  e f f ec t ive  (3). Generally, such a l i n e a r  equation is of  t h e  type 
ak = c1 - c2X. I t  is t o t a l l y  wrong t o  assign any s o r t  o f  meaning to  the  con- 
s t a n t s  cl, c2 i n  t h i s  equation. 

/106 

The parabol ic  equation uk = c1 - c2X2 is  a l so  used i n  place of t he  l i n e a r  
equation. This is because, with t h e  l i n e a r  equation, it is d i f f i c u l t  t o  ob- 
t a i n  agreement with the  e l a s t i c i t y  l i m i t ,  where X = 0, a t  the  y i e l d  point  o r  
the point  of i n t e r sec t ion  with Euler 's  hyperbola, while i f  a parabula i s  used, 
t h e  t r a n s i t i o n  t o  Euler 's  hyperbola i s  achieved r a t h e r  smoothly. The parabula 
f o r  t h i s  equation w a s  formulated ea r ly  by J .  B. Johnson, and i n  t h e  case of 
carbon steel (0.10-0.15% C) . 

pin-ended a t  both ends uk=4!!, W-0.97 A' lblin', 

both ends f l a t  

One reason t h a t  the  value of  ak  d i f f e r s  with respect  t o  the  same A with d i f f e r -  
e n t  end Tonditions is t h a t  t he  l k  used f o r  ca l cu la t ing  X is  employed f o r  t he  
e n t i r e  length of t h e  me&er, I r respec t ive  of the  end conditions.  However, it 
is not t h i s  simple. Ihe buckling length i n  the  non-elast ic  r ange  d i f f e r s  from 
the  buckling length t h a t  i s  determined by theo re t i ca l  ca lcu la t ions  i n  t h e  
elastic range. 
two above equations is r a t h e r  complex. 
comparing the  buckling values of f ixed  and r o t a t i n g  ends. 
l/i i n  place of  
t%e ordinate.  When l/i 
ca lcu la t ing  t h e  buck l ing leng th  of a member with f ixed  ends, with Ik = 1/2 and 
ind ica tes  Euler 's  elactic buckling value. 170, the buck- 
l i n g  length of  the  f ixed end members becomes l k  = l / m  and.m becomes smaller 
than 2, espec ia l ly  when 1 < 50, t h i s  is lk  = 1. That is ,  i n  the  non-e las t ic  
range, t he  e f f e c t  o f  t he  member end gradually becomes weaker with respect  t o  
the buckling length, and t h e  fact t h a t  t h e  coe f f i c i en t  (of)  X2 i n  t h e  two 
equations of J. B. Johnson given above is not  t o  extreme, i n  s p i t e  of the  
difference i n  member end conditions,  is due t o  the  above reasons. 

Thus it is  t o  be an t ic ipa ted  t h a t  t h e  na ture  of  t h e  i n  t he  

The abscissa uses 
while m2 = u)i f ixed  end)/ok ( ro t a t ing  end) is expressed on 

Figure 2.1.5 shows tests by Kdrmh 

170, s ince  t h i s  r a t i o  i s  f o r ,  t h i s  i s  equal t o  

However, where l/i 

Chr i s t i e ' s  carbon steel (0.36% C) tes ts ,  
z:;= 'lii 1- Ostenfeld as 

E 
0 0  

I 'V 
N 

%' I50 2% 
Karman's experiments 1 1 6  

and the  difference i n  the compressive s t rength  expresses the  fact t h a t  the  
smaller A is, the  grea te r  is i t s  e f f e c t .  Nickel s t e e l  ( < 5 %  Ni) i n  comparison 
with carbon steel, resists a g rea t e r  s t rength ,  the sho r t e r  the column. 
expresses t h i s  t h i s  by a l i n e a r  f ula 

Schal le r  
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The point  of i n t e r sec t ion  of t h i s  formula with Euler ' s  equation i s  = 86. 

In t h e  case o f  cast i ron ,  when b,ih ends 
are rounded, it is sa id  t h a t  Rankine-Gordon's 
type of formula i s  su i t ab le .  
Figure 2.1.6. 

This is shown i n  

Tetmajer has proposed l i n e a r  equations f o r  
various members made of wood. 

- 
Figure 2.1.6. m o o  ac=O. 203-0.00194 2 tlcm?, / lo7 

, i e . : :  
2>1# a;=9S7/2' zr t ic  . E = - I C Y ) ~ / ~ ~ . .  

Figure 2.1.7 ind ica t e s  t he  r e l a t ionsh ip  between t h e  test values i n  t h i s  
case and the  above two formulas. 

The experimental groupir-g of  t he  buckling 
u n i t  stresses above, i s  divided i n t o  two regions: 
a s h o r t  column range, and a long column range, or 
intwo three  regions,  including a range which is  
intermediate t o  these  two. Usually t h e  long 
column range is based on Euler ' s  formula, while 
t h e  o the r  ranges are based on s t r a i g h t  l i n e  
formulas or parabol ic  formulas. In  addi t ion ,  
methods f o r  expressing the  tes t  values f o r  t he  
e n t i r e  range by Rankine-Gordon's formula, and 
corrected e c c e n t r i c i t y  formulas have a l s o  been 
proposed. According t o  Ostenfeld 's  research,  
t he  s t r a i g h t  l i n e  Euler ' s  formula and parabol ic  
Euler ' s  formula agree well with t h e  experiments, 

and are b e t t e r  than the  corrected e c c e n t r i c i t y  ?ormula, bu t  he concludes t h a t  
the  Rankine-Gordon formula has a la rge  average e r r o r  (4). 
c l a s s i f i c a t i o n  i n  two regions and states t h a t  t h e  rupture  value of a s h o r t  
column occurs when the  u n i t  bending edge stress due t o  d i r e c t  pressure reaches 
a ce r t a in  l i m i t  value. He explains t h a t  the  l i m i t  value i s  the  t e n s i l e  y i e l d  
poin t  i n  s t r u c t u r a l  s tee l ,  roughly the  compression y i e l d  poin t  i n  a l l o y s ,  and 
a t  a point  between the  bending e l a s t i c i t y  l i m i t  and the  u n i t  stress of rupture  
bending i n  lumber. 
which divides  the  sho r t  column and long column ranges ( 5 ) .  

Roark makes a 

He a l s o  states t h a t  there  is a l i m i t  s lenderness  r a t i o  

In D I N  Entwurf 2 E4114, with regard t o  s o f t  steel  (St 37) and low alloy 
s t r u c t u r a l  s t e e l  (St 52) ,  t he  buckling load i n  the  case wher. an i d e a l l y  cen- 
t r a l  load is applied t o  an i d e a l l y  l i n e a r  member, and t h a t  member i s  i d e a l l y  
;iomogeneous, is ca l l ed  the  idea l  buckling load ( idea le  Knicklast) and the  
buckling load which deviates  somewhat from t h i s  assumption i s  ca l l ed  the 
bearing load (Traglast ,  prakt ische Knikklast) .  If t h i s  i s  ind ica t ive  of 
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Table 2.1.3 
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40 
50 
tO 
TO 
€0 

; I  
i l S  i 
123 j 
IW 

150  
;60 
1 10 
160 
I S 0  
200 
210 
225 
230 

:a : 
' 

3,525 
3,395 
3, t i 1  
2.845 

3,605 
3.600 
3;sao 2; C62 

2,OX 
3,238 1 1,733 

2,073 1,219 
1,713 1,035 
1.439 ! 667 

2.55Y !,'+I9 

464 % 1 415 
574 1 314 
518 339 
4i0 305 
428 . 251 
3?2 257 
360 237 
332 218 

respect  t o  a ,  Table 2.1.3 is  obtained. 
these types of steel are indicated.  

Below the  s t rength  c h a r a c t e r i s t i c s  of 

E=2,100, OOO kg,!cmt, 
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Tensile Strength 

Th.: standards Cor these cons t i tuents  of  these  types of steel are given in  
Tables 2.1.4 and 2 . 1 . 5 .  -- 

Maximum quantity of components 
a z I 

5 ~ y r i i b o l  , Refining 
2 met hod 

Corn onenr I C  
1- 

- 
Additive 

In  both types of steel, ST 37 and ST 52, t he re  i s  no d i f fe rence  i n  the  
idea l  buckling value within the  iange of Euler ' s  hyperbola. 
t h e i r  E's are equal.  Consequently, f o r  long columns, t he re  is not  much bene- 
f i t  i n  using high y i e l d  poin t  steel .  
ive,  and the  D I N  has a X < 92.9 f o r  t h i s  por t ion  for ST 37, and a X < 75.9 f o r  
ST 52, with constant values f o r  t h e  idea l  buckling of minimum y i e l d  poin ts  of 
uF = 2,400 kg/cm2 and OF = 3,600 kg/cm2 respect ively.  Sometimes an approach 
is  used where the  sho r t  column area is considered as a hor izonta l  l i n e ,  and 
an immediate t r a n s i t i o n  is  made t o  an Euler hyperbola. This can be  seen i n  
Jezek's book (6). 
valvie. The [ i l l e g i b l e :  computation ? ]  of  t h i s  value is based on Jezek's 
approach. 
chz edge u n i t  stress of the  c ross -s tc t ion  due t o  buckling bending reaches the  
compressive y i e l d  point ,  and then is considered t o  extend over a c e r t a i n  range. 
Before explaining t h i s  approach i n  d e t a i l ,  !et us show t h a t  it is  poss ib le  t o  
ind ica t e  approximatelv t h e  behiring buckling value by Rankine-Gordon's formula. 

This i s  because 

However, i n  sho r t  c o l - m s ,  it i s  effect- 

The bearing buckling value is  lower than the  idea l  buckling 1109 

Here, cont inual ly  keeping t h e  eccen t r i c i ty  of the  load i n  mind, 

For S t  37 
2400 

1 + 1.4 (m) a&= a Wm's 
(2.1.8) 
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For St 52 Wcm'. 3600 
1 '  Ut= 

1 + 2.2 ( m) 
(2.1.9) 

where A = 0, these formulas r e tu rn  t o  t h e i r  respec t ive  y i e l d  poin ts ,  and when 
h i s  large,  theysuccessively approximate Euler ' s  curve. 
u l a  f o r  S t  37 has an e r r o r  of about -6% f o r  the  bearing buckling value,  where 
A = 100 and +14% where i. = 200. 
--8% where h = 200, and +11% where X = 250, bu t  i n  both formulas, where A-, 
ak = 0 is  obtained, and t h i s  coincides with t h e  bear ing buckling value. 

For example, the  form- 

In t h e  S t  52 formula, it is -8% where A = 100, 

Considered from t h i s  po in t  of view, Tetmajer 's  s t r a i g h t  l i n e  allowable stress 
forl..Las which were def ined i n  the  regulat ions f o r  the  implementation of  t he  
laws f o r  c i t y  a rch i t ec tu ra l  s t r u c t u r e s  i n  our country f o r  a long per iod of  

.ne are simple, and i n  t h i s  sense, should deserve review. I should l i k e  t o  
add &at i n  the  present  s t r u c t u r a l  standards f o r  a r ch i t ec tu re  i n  our country 
( 8 )  i t  is s t a t e d  t h a t  as far as columns are concerned, long columns can be 
expressed by the  Euler hyperbola, using t h e  same procedure as t he  German s tand-  
ard which is o lde r  than t h a t  i n  D I N  E 4114. 
i b l e  t o  divide t h i s  i n t o  the  method of expressing by s t r a i g h t  l i n e  formula 
bu t  the  o ld  German standard is  based on t h e  s t r a i g h t  l i n e  formula and ours is 
based on the  parabol ic  formula. 
those obtained experimentally,  but  s ince  i n  ac tua l  s t ruc tu res ,  various condi- 
t i ons  d i f f e r  from those i n  the  laboratory,  so t h a t  one can understand why 
the  claim t h a t  it is  more appropriate  t o  determine the  bear ing load by keeping 
the  e c c e n t r i c i t y  of  load i n  mind, follows the  l i n e s  l a i d  down i n  D I N  E 4114. 

As f o r  s h o r t  columns, it is poss- 

These expressions are ac tua l ly  q u i t e  c lose  t o  

There i s  a very i n t e r e s t i n g  sec- 
t i o n  i n  Ralog's criticism (10) of  
Moisseiff  and Lienhard's paper (9) ,  
on the  5 = Er/E i n  formula (2.1.6). 
E i / E ,  Ec/E and Et /E  are a l l  funct ions 
of t h e  average u n i t  s t r e s s  o within 
the  p l a in  of a number, but  i n  s teel  
and aluminum, Ec/E is grea te r  than 
E,/E and E r /E  i s  smaller than E t / E .  
If we place t h e  range of stress up 
t o  t h e  y i e l d  poin t  from t h e  propor- 
t i o n a l  load on the  absc issa  and 
graphical ly  represent  E r / E  and E t / E  
a type of closed curve such as t h a t  
shown i n  Figure 2.1.8 i s  described. 
In t h i s  case, s ince  the  range of 
stresses d i f f e r s  considerably i n  
tension tests and compression tests, 
the  device shown i n  the  scale on t h e  
absc issa  i s  u&ed. The width between 
these closed curves,  the  higher  the 
y i e l d  point  and the  wider the stress 

/I 
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range, and i f  t h i s  i s  taken in,o considerat ion,  i t  i s  poss ib le  t o  reduce it t o  
a s ing le  funct ional  re la t ionshi?  f o r  var ious types of metal. When t h i s  rela- 
t ionship  is determined f o r  one type of metal, it is  only necessary t o  conduct 
tension tests i n  order  t o  determine Er /E .  Balog states t h a t  whereas de te r -  
mination of E r / E  by buckling tests is very inaccurate  due t o  tes t  e r r o r s ,  t h e  
E t / E  ca lcu la ted  i n  tension tests is accurate, and test i s  easy t o  conduct, and 
he recommends t h a t  5 should be determined by t h i s  method. For example, using 
carbon s t e e l  as a standard,  w e  s h a l l  i nd ica t e  i t s  closed curve by t h e  hatched 
sec t ion  i n  Figure 2.1.8. Expressing t h e  y i e ld  point  of t h i s  material as uyc, 
t he  range of stress of the  proport ional  l i m i t s  a2d the  y i e l d  poin t  as Cyr, the  
width of t h e  closed curve a t  any poin t  as Q ,  the  Er/E belonging t o  o the r  metals 
can be determined by f irst  determining E t / E  experimentally by tension tests. 
and then sub t r ac t ing  

from t h i s .  Here u i s  the  required tens ion  
the  range of  stresYxbetwe.?n t h e  proport ional  

(2.1.10) 

y i e l d  poin t  of t h e  metal, Xyr is 
l i m i t  o f  t he  metal and t h e  

y i e l d  poin t .  
s i l i c o n e  s teel ,  ayx = 49 k ips / in2 ,  Xyr = 25.12 k ips / in2 ,  I = 1 . 2 1 ~ .  
inum,u 
s ince  ixxs t a in l e s s  steel u 
These values match q u i t e  accurately t h e  Er/E d:ained i n  tests. 

Assuming ayc = 36 k ips / in2 ,  CYr = l5.61 k ips / in2 ,  where i n  

= 45 kips/ in2,  Xyr = 24.07 k ips / in2  i s  obtained, so I = 1 . 1 6 ~ ,  and 
In alum- 

= 130 kips/ in2,  X = 120 k ips / in2 ,  I = 2.01-1. 
YX 

2.1.5. ALLOWABLE BUCKLING U N I T  STRESS OF CENTRALLY COMPRESSED MEMBERS 

When the  buckling bearing u n i t  stress i s  
divided by t h e  s a f e t y  f ac to r ,  t h e  allowable 
buckling u n i t  stress i s  obtained. The fo r -  
mulas vary depending on the  method of ex- 
pressing t h e  bear ing u n i t  stress. In the  
o ld  German s tandards,  t h e  bear ing stress is  
expressed by the  Tetmajer-Euler formula. 
Within thz  range of t h e  Euler curve, those 
?or ST 37 and f o r  S t  52, with a s a f e t y  fac- 
t o r  of 3.5, maintain a constant value,  and 
with respec t  t o  stresses above t h e  propor- 
t i o n a l  l i m i t ,  the  sa fe ty  f a c t o r  i s  gradually 
reduced from 3.5, and where X = 0,  i .e.,  the  
y i e l d  value of the  material, it w a s  1.71 (11). 
In Figure 2.1.9, t he  s a f e t y  f a c t o r  v is be- 
tween X = 0 and 100, and i s  shown t o  vary 
according t o  the  two parabol ic  l i nes .  In 
D I N  Entwurf 2 E 4114, the  bear ing buckling 
value i s  determined, taking i n t o  considera- 
t i o n  the  e c c e n t r i c i t y  of the  load, and with 
respect  t o  t h i s ,  t h e  s a f e t y  facto: u is  1.71 
within the  e n t i r e  range of A .  Table 2.1.6 
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ind ica tes  t he  allowable buckling values obtained i n  t h i s  manner. In the o ld  
German standards,  the  long column range was i n  the  form of an Euler ' s  hyper- 
bola,  while i n  the  sho r t  column range, it was a parabol ic  curve. 

f~=14Oo-O.OSOS 1' O < d < l O o .  

u=3.5 A> loo. X'E 
u-ll * f k=- 

Table 2.1.6 

:3f buckling 
Circuyfer- 
ence- engti 
ratio 

A 

20 
30 
49 
50 
60 
70 
80 
90 

100 
I10 
120 
130 
140 
1% 

163 
170 
180 
190 
200 
210 
220 
230 
240 
250 

-. 

10 Allowable stre 
A I (Us ,t-=2I,m) 

st 37 

(@st1=14,00) 

1,343 
1.284 
1,199 
1,087 
962 
836 
722 
621 
536 
465 

405 
3% 
315 
280 
250 
225 
203 
184 
168 
153 
141 
129 
I20 

-__ 
llowable stiess 

1,378 
al 

1,0i6 
1,0112 
! ,030 
1,168 
1,288 
1,455 
1,674 

1,940 
2,256 
2,612 
3,Ol I 
3,453 
3,928 

4,444 

5 , m  
5,594 
6,218 
6,897 
7,595 
8,333 
9,125 
9,959 

10,811 
11,707 

~ 

20 
30 
40 
50 
60 
70 
80 
90 

100 
I10 
120 
130 
140 
I 5 0  
160 
170 
180 
190 
m- 
210 
220 
230 
240 
250 

2,056 
1.980 
1,850 
1,661 
1,436 
1,211 
1,011 
845 
71 I 
604 
517 
447 
390 
343 
303 
27 I 
242 
213 
198 
!80 
164 
I50  
138 
127 

. - .- __ - . - 

Coefficient - 
of buckling 

1,021 

1,060 
1,135 
1,264 
1,462 
1,734 
2,077 
2,484 
2,953 
3.478 
4,059 
4.694 
5.381 
6, I 2 2  
6,923 
7,759 
8.675 
9,626 
10,619 
11,688 
12,811 

15, :90 

0 

14,008 

16,514 

/ill 

The Japan a rch i t ec tu ra l  standards JES 3001 employs t h i s  form, and the  
allowable buckling values f o r  a long load i n  s t r u c t u r a l  steel i s  

AS30 ft=f., 

R 
a> 100 fr=O. 6fe /( is r .  

The modulus of e l a s t i c i t y  of s teel '  is 2,100 t/cm2. 

The standards do not  make clear h m  reinforced concrete s t ruc tu res  should 
be t reated,  but i n  the case when the  minimum diameter of  a compressed member 
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of rectangular  cross-sect ion i s  l e s s  than 1/15 of the  dis tance between the 
main support po in ts ,  they s t i p u l a t e  t h a t  the  inspect ion b e  made with respect  
t o  buck 1 ing . 

In wooden s t ruc tu res ,  the  sho r t  column range is expressed by a s t r a i g h t  /112 - 
l i n e  formula. 

15 100 f t  =IC (1 -0.037 a),  

A> 100 

The ciifferences i n  the  type of material are simply included i n  the  allowable 
compressive u n i t  stress fc,  and the  moduli of e l a s t i c i t y  are defined as 70 f o r  
cryptomeria, 80 f o r  cypress (henoki) and 90 t/cm2 f o r  pine.  

When def ining the  allowable u n i t  buckling s t r e s s  as above, i t  i s  poss ib le  
Expressing the  load as P t o  ca lcu la te  the buckling design by var ious methods. 

and the  t o t a l  cross-sect ion area as A, we have the  condition 

fk  has a value which d i f f e r s  according t o  the  size of A .  
according t o  which i n  performing ca lcu la t ions ,  ins tead  of d i r e c t l y  comparing 
CI with t h i s  fk ,  it is  compared with an allowable compressive u n i t  s t r e s s  f c  
which has a constant value and i s  unre la ted  t o  A .  I t  uses 

The D I N  uses a method 

w=/'>l (2.1.11) 
f k  

iltliltiplying t h i s  by the  compressive force P 

CUP ' (2.1.12) G=r < f. 
is  used. This method is  ca l l ed  -Verfahren, and is a l s o  used outs ide of Ger- 
many. Generally the  method of increasing t h e  load propor t iona l ly  i n  t h i s  man- 
ne r  i n  performing ca lcu la t ions  on s t ruc tu res ,  and cont ras t ing  it with a con- 
s t a n t  allowable u n i t  stress, has severa l  advantages. The fact t h a t  the  safety 
f a c t o r  i n  each p a r t  of t he  s t r u c t u r e  i s  maintained constant ,  taking the  degree 
of influence of t he  load i n t o  considerat ion,  is  derived from t h e  fact  t h a t  it 
is  possible  t o  superimpose them l i n e a r l y  with respect  t o  various load combina- 
t ions .  The allowable compressive u n i t  stress f o r  th ree  types of steel  i s  

f o r  S t  00 . .  
j p 1 . 2  tfcm', 

f o r  S t  52 
. .  - 

/5=2.1 t / m s .  

147 



.Tab 18. ..2 ., 1: .:z i '  

I 

I 
Key: 
1. Cross-seciion configuration 
2 Rectangular cross-section 
3 .  I - beam 
4. 2 I-beam 
5. Channel 
6. 2 - Channel 
7 ,  Equal sided angle 
8 .  2 - Equal sided angle 
9. All equal sided angle 
10. 2 - Unequal sided angle 
11. Z shaped 
12. T shaped 
13. 4 - equal sided angle 
14. 

15.  Hollow rectangular 

chapnel and I - beam kx Nittestu catalogue 

Tgble 2.1.6 ind ica tes  the  values of w .  

There i s  an abbreviated method (12) f o r  determining the  cross-sect ion of 
a compressive member, using the  configurat ion index k proposed by Gehler in 
h i s  descr ip t ion  i n  D I N  Entwwf E 4114 (12). 

/I13 

A I  (2.1.13) b=-=- p 9 

What i s  i n t e r e s t i n g  here ,  i s  t h e  fact  t h a t  when the  cross-sect ion configuration 
i s  the  same, the  value of k is  res tored  within a c e r t a i n  range f o r  commercial 
lumber and combinations of i t ,  so using i ts  intermediate  value,  it is  possible  
t o  determine the  required cross-sect ion a rea  of the  compressive member, o r  i t s  
geometrical moment of i n e r t i a .  
i t s  range are quoted from volume I! of t he  rei?bo& on St ruc tures  published by 
the  Japan Archi tectural  Society (13). 
following the  method p-qposed by the  Socjn'y. 

In Table 2 ~ 1 . 7 .  the  average values of k and 

Here, ?.:t 11s attempt an explanation 
:Isstming 

t h i s  i s  a quant i ty  determined by W and A, out  

Therefore 
(2.1.15) 
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Each item on the r i g h t  s ide  i s  determined ahead of  time i n  designing, 
excluding k and the  intermediate values of k a r e  found from the  t ab le .  
w and h a re  numbers t h a t  a re  determined with respect  t o  each o ther ,  i f  rl is 
given, h i s  a l so  determined. 

Since 

%e following formula i s  used t o  determine the  required cross sec t ion  of 
a compressive member. 

(2.1.16) 

Soft steel 

The accuracy of t h i s  abbreviated method depends on the  value of k, but  i f  the  
e r r o r  i s  increased up t o  An, there  i s  no e f f e c t .  
one can s e .  t h a t  the ac tua l  required values a re  e a s i l y  obtained. 

s t r e s s  ( lb .  / in .  2) "l. 

If ca re fu l ly  s c r c t i c i z d ,  

Below is  a comparison of various forms f o r  the  buckling allcwable u n i t  

1 6 , 0 0 1 ) - 7 ~  I 16,ooO-7% I - 16,250 18,000 li-- Is- -.- 
'+tloJoi' 

Table 2.1.8 

)w York Chicago Philadelphia Boyton 

The forms f o r  New York and Chicago a re  s t r a i g h t  l i n e  formulas, whereas f o r  
However, i n  t he  Californ- Phi ladelphia  and Boston are Rankine-Gordon formulas. 

i a  Administrative Code (14), t h e  standards f o r  the  compressive members of 
s t r u c t u r a l  s t e e l  a r e  as follows. These standards def ine the  ca lcu la t ion  Of 
s t r e s s  by ne t  cross-sect ion.  

When l/i 2 20 

r o l l e d  s t e e l  20,000 lb . / i n .2  

cast s t ee1  16,000 lb . / in .2  

When 20 < l/i < 120 
5 

ts /t=17,000-0.185T Ib/in', 

/114 - 

18, (1.6 - =) 1 Ibfid. 
/t= - 

' + - i 8 j  

*1The forms given i n  the  regulat ions Tor the implementation of the City Archi- 
t e c t u r a l  laws published i n  our country are the  same as f o r  New York and Chicago 
indicated here.  
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This standard i s  expressed by a parabol ic  formula i n  the shor t  column range, 
but  i n  the  long column range, it is expressed by a Rankine-Gordon deformation 
formula.*l This improved formula w a s  corrected so t h a t  [it] is 0 when l/i  = 
320. 
compressive member is  a l so  r e s t r i c t e d  t o  below 200. 

The l/i  of main compression i s  r e s t r i c t e d  t o  below 180 and the  secondary 

Next, considering tho buckling equation of  a re inforced concrete column 
i n  terms of t h i s  standard,*2 whex, f o r  a minimum diameter d and column length 
1 

1> 11 d 

the  al!owable buckling u n i t  stress i s  determined by the following ca lcu la t ion .  
f & = f e  (1.33 - o.m-). 1 

d 

Moreover, when the  column undsrgoes a constant bending, it i s  r e s t r i c t e d  t o  

1 a 4 d  

2 .1 .6 .  ECCENTRICALLY COMPRESSED MEMBERS 

No member is  completely homogeneous, and no menber i s  completely devoid of 
flaws. There a re  no cases i n  which the  compressive load of a column i s  not  
accompanied by some degree of e c c e r t r i c i t y ,  and it i s  d i f f i c u l t  t o  say t h a t  
ac tua l ly  the  l i n e  of the axis does not have an o r ig ina l  bending. 
member (Rahmen), compressive s t r e s s  and bending moaents a re  both always in-  
volved. One may ask whether the equations and design formulas given f o r  a 
cen t r a l ly  compressed member, such as those described -ip t o  t h i s  po in t ,  a c t u t l l y  
hav2 any s igni f icance .  Before touching on t h i s  question, let  us first indica te  
the re la t ionships  between the  eccen t r i c  compressive load and def lec t ion  t h a t  
a r e  given i n  va-.ious references.  Figure 2.1.10 is  given i n  R. V. Southwell 's 
book (15). 
while the  absc issa  ind ica tes  t he  terms t h a t  are propcrt ional  t o  def lec t ion .  
The uppermost curve i s  the  r e l a t ionsh ip  between def lec t ion  and load after the  
Euler l o t 3  values i n  the  case :hen the curvature of the de f l ec t ion  curve i s  
accurately expressed f o r  a cen t r a l ly  compressed load member, and t h i s  i s  fre- 
quently seen i n  o the r  books. This curve is Euler ' s  load value,  and is  tangent 
t o  the  horizont2.l l i n e  when the d t f l e c t i o n  i s  0. Moreover, the  lowest curve 
i s  t h a t  which i J  ohtained as a so lu t ion  of the  case when the  curvature of the  
curve of def lec t ion  of  an eccen t r i ca l ly  compressed loaded member i s  determined 
by approximatior., and a r i g h t  angle hyperbola i s  described. When the  load is  
0, and there  i s  def lec t ion ,  t h i s  is  due t o  o r ig ina l  eccen t r i c i ty .  This curve 
is a l so  seen i n  many books. 
i n f i n i t e l y  large,  and long before i t  reaches the  Euler load value,  it is  sur-  

In a frame 

The ord ina te  expresses the terms t h a t  are proport ional  t o  the  load, 

/ i15  -- With the  buckling load, t he  def lec t ion  becomes 

*1 
the  Tetmajer formula. 

*2 Standards 750, 755 i n  reference (14). 

This can be considered as a mul t ip l ica t ion  of the Rankine-Gordon formula and 
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mised t h a t  the member w i l l  cut  i n t o  the  proport ianal  
l i n i i t  o r  the y i e l d  poin t .  Moreover, one f e e l s  a con- 
t r ad ic t ion  ir. using approximatiL.1 equations f o r  the  
curvature i n  considering these limits. Curve AB should 
correspond t o  t h i s  and a member with a small i n i t i a l  
o r ig ina l  curvature,  uzldergoes an increase i n  load nlong 
the r i g h t  a g l e  hyperbola a t  t he  i n i t i a l  moment of de- 
f l e c t i o n ,  but u l t i w t e l y  a curve is  es tab l i shed  which 
matches a curve determined by Anaccurate equation of 
curvature.  . P  B 

0 c 
Figure 2.1.10 Curve ACD fu r the r  takes  i n t o  account t he  stress as 

a property of the column mater ia l .  We s h a l l  attempt t o  

E* 
consider t h a t  t he  colum~i i s  s lender ,  the Euler l i m i t  values are low, and t h a t  
the  mater ia l  does not undergo e l a s t i c i t y  loss  under d i r e c t  compression. 
the def lec t ion  increases ,  the bending P a l so  increa.ses and the  poin t  s: 
which the bending edge a n i t  s t r e s s  ul t imately reaches the  e l a s t i c i t y  l i m i t  i s  
C. As long as the  column i s  not  extremely s lender ,  point  C i s  c lose  t o  the 
Euler l i m i t  value. 
s o  t h a t  the curve from poin t  C bec?mes d i s t a n t  from curve AB and moves downward. 
When curve ACD becomes hor izonta l ,  the  s t a b l e  equilibrium i s  l o s t .  
t h i s  manner, the  highest  po in t  of ACD is  the  rupture  value,  and t h i s  can be 
regarded as close t o  the  Euler value. 
two load values do not agree with each o ther ,  but only one of them can be ex- 
pressed i n  e l a s t i c i t y  theory,  and the f a c t  t h a t  they agree approximately a l so  
depends on the two conditions which a r i s e  i n  t e s t s  on a colunn which i s  loaded 
f o r  a loag period of time and accurately.  
t h a t  when the  mater ia l  no longer fo l lous  Hooke's law, the  def lec t ion  has pro- 
gressed considerably, and the  second condition i s  t h a t  the  considerable por- 
t i o n  of the def lec t ion  of curve AB approaches the  l i n e  expressipg t h e  Euler 
value. 

If 

The res i s tance  of the  material w i l l  decrease p r i o r  t o  t h i s ,  

Viewed i n  

However, not only i s  it  t rue  t h a t  thcse 

Tile f irst  of thes: conditions i s  

In s p i t e  of  t h i s  type of explanation of Southwell, numerical i n t e rp re t a -  

In p a r t i c u l a r ,  ACB i s  a curve which should be 
t i ons  of ACB and ACD a re  not  seen i n  h i s  book, and +he ana ly t i ca l  p roper t ies  
of the  cilrve i t s e l f  are vague. 
e x p r e s s d  only by e l a s t i c i t y  theory,  but i t s  i n f l e c t i o n  pcAnt  appears as if 
it is at  the poin t  of b i furca t ion  from the  r i g h t  angle hyperbola. 
2 . 1 . 1 1  is  taken from the  book by J. Ratzersdorfer (16). 
e / l  i s  0.01, and where it is  0.1, t h e  curves have i n f l e c t i o n  points  a t  Euler ' s  
load value. Such a graphic i l l u s t r a t i o n  is  a l s o  found i n  K. Jezek ' s  book, and 
i n  Loth cases ,  s ince  there  i s  no careful  numerical treatment of rhem, they a r e  
both vague. In o ther  words, these authors hs.ve focused on q u a i i t a t i v e  observa- 
t i ons  of these curves, and apparently do not consider them as important f o r  
buckling problems. 
l a t i o n  of t h i s  curve involves troublesome and monotonous e l l i p t i c a l  integra-  
t i on .  A. S c h l a ~ . s n e r ~ s  book (17) i s  an im,:ortant reference on t h i s  subjec t ,  
and recent ly  1:. L.  Ryder's paper and cr i t i c i sms  of i t  have appeared i n  "Trans- 
ac t ion ,  A. S. C.E .  )) (1948), pp. 40-78. 

Figure 
Where the  eccen t r i c i ty  

On the o ther  hand, t h i s  may be due t o  the  f a c t  t h a t  calcu- 
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'The def lec t ion  curve of a compressive 
mem5er i n  which the  load e c c e n t r i c i t y  and 
the  member axis  have i n i t i a l  curvature is 
expressed by using an approximation equation 
f o r  curvature and expressing the  extreme 
f i b e r  stress of t he  coilvex and concave s ides  o cy w a6 GJ ro .u 14 I6 JY .? 

p/ s of the  def lec t ion  by t h i s  (18) 

FiSgre 2.1.11 

In the  equation, a, = P;A, c is  the  d is tance  from the  neu t r a l  ax i s  o f  t h e  sec- 
t i on  t o  the  compressed extreme, eo is the  eccen t r i c i ty  of the  load and el i s  
assumed t o  form a parabula such t h a t  t he  i n i t i a l  curvature of  t h e  member axis 
is expressed by 

FC.( 1 --) 4 1' a' /116 - 
Here, assuming 

and depict ing thz  extreme f i b e r  stress of  t he  cross-sect ion f o r  the  compressed 
s ide  and the  tension s ide ,  Figure 2.1.12 is  obtained. 
column, it is  easy f o r  t he  extreme f i b e r  stresj on the  convex and concave s ides  
t o  reach the  limit of  e l a s t i c i t y  such t h a t  t h i s  is expressed by the  l i n e  l /i  = 
30. 
t he  l i m i t  o f  e l a s t i c i t y ,  while the  convex s i d e  f i n a l l y  reaches a maximum value 
under t h a t  condition. The r e s i s t ance  of  t he  column a t  t h i s  time reaches i t s  
l i n i t  point  before the  convex s i d e  becomes a t e n s i l e  stress. In the  case of 
a long column, there  is no case i n  which t h e  extreme f i b e r  stress passes through 
the  limit of e l a s t i c i t y .  
sion. 
Tetmajer's experiment (E. H. Salmon: Columns, p. 215.). 

In the  case of  a shor t  

In a column of  intermediate length,  only the  concave s i d e  passes  through 

The stress of the convcx s i d e  sometimes becomes ten- 
The curve l/i = 139 indicated by the  dot ted l i n e  is  t h a t  obtained i n  

'e rz x 
3 10 
VI a 

v) 

2 8  

6 

I 

I 

0 

w 

Figure 2.1.12 

The maximum compressive extreme f i b e r  
stress i n  the  case where the  load eccen t r i c i ty  
is e ,  the  v e r t i c a l  s t r e s s  i s  P ,  and the  bend- 
ing moment M = P - e .  i s  operat ing,  i s  ex- 
pressed by thc  so-cal led Secant equation. 
S i s  the  core dis tance.  

(2.1.17) 

If i n  t h i s  equation we assume c y - p . ,  and 
solve f o r  P ,  t he  l i m i t  stress of  a sember 
with an eccen t r i c  load is determinee (19). 
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Using v as the safety f ac to r ,  the  allowable stress under such load conditions 
must be found from Pf = P/v. 
r e s t r i c t e d  t o  3 spec i f ic  cmstant  Q cons t rh i ch  i s  below a y e p  , and by t h i s  
meas,  P is determined.*2 

However, sometimes there  a re  cases i n  which u is 

In t h i s  case, a s a f e t y  f a c t o r  is ic: guaranteed such 
t h a t  v = uy.p./oconst* 

by 
In a member with i n i t i a l  curvature,  when the  form of t h e  axis is  expressed 

It2 
y=a sin 

assuming load a t  both ends t o  be P 

GT( P l+r a -). 1 
1 - 7  P 

In p a r t i c u l a r ,  i f  w e  assume t h a t  u i s  equivalent t o  uy 
ca lcu la te  t he  values of P. 
determine the  average compressive stress i n t e n s i t y  U a  = P/A from 

, it i s  poss ib le  t o  
In  t h i s  case, s ince  Pk = a2Ei/12, it is poss ib le  t o  

/117 - 
(2.1.18) 

Ir the  case of  
s ince  the  de f 1 e c t  i on 
determined by '!] the  

a [obl i te ra ted  t e x t :  
which is applied by the  load may be [ob l i t e r a t ed  t e x t :  
s i n e  curve, assuming the  added de f l ec t ion  a t  t h e  center  

s i n e  Curve without i n i t i a l  curvature?] 

point  of  t he  column t o  be a l ,  using Mohr's equation 

(2.1.19) (EI-7;a,=-T- Plf ' Pl'R 

The i n i t i a l  curvature a t  the  column center  po in t  isr%/l , and after de i l ec t ion  
has occurred, s ince  t h i s  becomes n2(a + a1)/12, i f  bendi2g moment is  a l s o  in-  
cluded i n  the  change i n  curvature,  

The am i n  the  above equation is the  extreme f i b e r  stress which is  based on t h e  
bending moment a t  pos i t ion  c from t h e  neu t r a l  axis of t h e  sec t ion .  The ac tua l  
extre:ae f i b e r  s t r e s s  becomes the  sum of am and t h e  average stress i n t e n s i t y  
aa = P/A, u = 0, + u,, SO 

P I' (2.1.20) 
a,=( @-I-)=. 

*1 According t o  the  examples i n  footnotes  on page 439 of R. V.  Southwell, 
Theory of E l a s t i c i t y ,  t h i s  method forms t he  bas i s  f o r  t he  design equations 
of the  Br i t i sh  A i r  Ministry. 
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From Equation (2.1.19) and Equation (2.1.20), i f  a1 is  eliminated, t he  following 
re la t ionship  i s  determined f o r  t he  load P. 

(E1 -$-)(u -$)=p,~. 

solving t h i s  quadrat ic  equation, 

(2.1.21) 

In t h e  above equation ue is Euler ' s  buckling u n i t  stress, i . e . ,  Pe/A. 
extreme f i b e r  s t r e s s  u is made t o  agree with a constant value,  e.g., t he  l i m i t  
of  e l a s t i c i t y  or t he  y i e ld  point  ay , t he  average stress i n t e n s i t y  0, is  
establ ished.  Ihis formula i s  ca l led  the  Wow formula and toge ther  with t h e  
Secant formula (16), it is frequent ly  noted i n  reference works on buckling as 
a theo re t i ca l  equation f o r  determining the  critical values of eccen t r i c  com- 
press ive  load (20). Van den Broek s k i l l f u l l y  u t i l i z e d  t h i s  formula t o  explain 
buckling of a s t r a i g h t  member. If a = 0, the  ins ide  of t he  square root  s ign  
on the  r i g h t  s i d e  of die equation c2.1.21) becomes [a - aeI2 so i f  t he  s ign  
i n  f ron t  of t he  square root  s ign  is +, Moreover, i f  - i s  used, 
a = a,, i.e., it i s  poss ib le  t o  mat& t h i s  with Euler 's  b x k l i n g  u n i t  stress. 

If the  

a = ay-p. 

P 

3 . 
Figure 2.1.13 

When the  load curve i n t e r s e c t s  t he  nater- 
ial axis as shown i n  Figure 2.1.13, i n  a short 
column, t h e  extreme f i b e r  stress i n  the  p a r t  
where the  bending moment of t he  member end i 5  
la rge ,  first reaches the  y i e l d  poin t ,  and the  
res i s tance  is  determined by t h i s .  Assuming 
eo ' e l ,  

P 8r.r. 
A 

-=-. 
c. 1 + 7  

I f  t he  member length is  la rge ,  t he  extreme 
f i b e r  stress due t o  bending is  

efkkt 

Figure 2.1.14 

Assuming u t o  be equal t o  ay p . ,  i f  el/eg and 
e /s a re  given, it i s  poss ib ie  t o  determine P. 
d e n  the  load pasees through the  center  of t he  
member axis, el/"" = -1 and if the  average com- 
presr ive  s t r e s s  i n t e n s i t y  P/A with regard t o  
various eg j s  i q  expressed fgr the sler.dermss 
r a t i o  l/i, Figure 2.1.14 is obtained. With 
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respect  t o  the  given eo/s,  i n  t he  sho r t  column region, P/A i s  constant ,  and is  
calculated from Equation (2.1.22). In the  long column region, i n  t h i s  case,  it 
agrees with Euler ' s  hyperbola. 
than 1, as the  slenderness r a t i o  from the  por t ion  expressed i n  Equation (2.1.22) 
increases ,  gradually t h i s  becomes expressed by the  asymptotic curve which moves 
toward Euler ' s  curve. 

IVhen the absolute  value of  el/eo, is smaller  

2.1.7 Ultimate B u c k l i n g  Theory 

Recently i n  general  s t ructural .  design, an u l t imate  s t rength  is used as a 
bas is ,  with respect  t o  which t h e  s a f e t y  f a c t o r  i s  es tab l i shed .  
t o  be used i n  order  t o  achieve the  two objec t ives  o f  reduct ion i n  weight and 
economy of materials. A t  t he  same time, it is used f o r  planning t h e  e f f e c t i v e  
design o f  materials taking advantage of t h e i r  spec ia l  c h a r a c t e r i s t i c s .  With 
regard t o  buckling, t h i s  t rend  has been evidenced s i n c e  before  the  establishment 
of D I N  E 4114, and as a r e s u l t ,  ins tead  of  determining the  l i m i t  values by the  
conventional Eiller's load and Tetmajer's s t r a i g h t  l i n e  formula, and then de ter -  
mining the  allowable stress i n t e n s i t y  on t he  bas i s  of t h i s ,  it has become cus- 
tomary t o  use the  support  load as t h e  bas i s .  
become poss ib le  t o  r a t i o n a l i z e  the  s a f e t y  f ac to r .  

This has come 

By means of  t h i s  method, it has 

In compressive members, for some reason o r  o ther ,  bending is  always pres-  
en t .  As f o r  a p p l i c a b i l i t y  t o  e l a s t i c i t y  theory, it is systematic  to consider  
the time a t  which, taking t h i s  quant i ty  i n t o  considerat ion,  t h e  m a x i m u m  extreme 
f i b e r  stress reaches t h e  y i e l d  poin t ,  t o  5e t he  c r i t i ca l  poin t  of  t h e  member, 
and by t h i s  rre.uls, t he  cri t ical  load given by the  Secant formula and the  Wow 
formula is determined. However, according t o  experiments by many inves t iga to r s  
of ul t imate  s t rength  theory,  even after the  m a x i m  extreme f i b e r  stress, i n  the  
case of  bending ;tress, reaches the  y i e l d  poin t ,  it is known t h a t  an even grea t -  
er load can be  withstood. 
t i o n  reaches as far as the  y i e l d  poin t  ins ide ,  from the  extreme f ibe r .  The 
viewpoint of K. Jezek with regard t o  a steel  column is similar t o  t h i s ,  and 
Van den Broek has a l s o  developed a similar approach (21). 

That i s ,  t h e  d i s t r i b u t i o n  of  stress within t h e  sec- 

If w e  consider the  case, such as 
t h a t  of s o f t  s teel ,  i n  which the  stress 
s t r a i n  curve i s  symmetric with respec t  t o  
the  compression s i d e  and t h e  tens ion  s i d e ,  
and the  stress i n t e n s i t y ,  considering the  
column as having a rec tangular  cross-sec- 

~ ~ ~ ~ ~ ~ - ~ e ~ ~ ~ ~  *tion,  reaches the  respec t ive  y i e l d  vcslues, 
a stress d i s t r i b u t i o n  is  obtained such as 
t h a t  shown i n  Figure 2.1.15. 

1 
1 

Central line in 
the column 

Al A, b 

44 XII IC,  

*e c a,d 

From t h e  equilibrium of stresses 
within the  s t r e s s e s  Compression 

eY.P.~ l .=  P, - 
F i g u r e  2.1.1s 24P.p.A121=P~G+QI). 

/119 - 
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If we assume t h a t  the  added def lec t ion  al i s  d i r e c t l y  proport ional  t o  the  square 
of the  member length 1 

4 = W'. 

using the  symbols i n  t h e  f igure ,  and ad jus t ing  these  equations 

here the  proportion coe f f i c i en t  i s  expressed by 

h A4r.r.  
k= d T  - *)-a 

1'1 

(2.1.24) 

(2.1.25) 

Here P1 is  t h e  load value i n  the  case of a member length of  l1 when i n  t h e  above 
stress condition. 
and el iminat ing k 

In the  above two equations,  assuming i n  p a r t i c u l a r ,  e = 0,  

This equation covers t h e  sho r t  column range. 
t h a t  

If w e  assume i n  the  above equation 

-+ ... Proportional L i m i t  

t he  long column range is defined as t h a t  which is  connected by t h i s  point .  

Moreover, i f  PI and 11 are used as t h e  values f o r  t he  long column range, actu- 
a l l y ,  s ince  we can assume PI = T ~ E I / I ~ ~  

(2.1.26) 

The a, and a 

ly long, Euler 's  value is expressed 6y the  above equation, and when the  member 
length is  of an intermediate  s ize ,  it expresses the  stress condi t ions i n  t he  
case of d u c t i l e  equilibrium. and 11 a r e  of a magnitude se lec ted  i n  
any long column range, i f  the  point  whch  agrees with Euler 's  equation is  se -  
l ec t ed  f o r  t he  case when the  member length i s  i n f i n i t e l y  la rge  (11 -+ m ) ,  t h i s  
becomes ale = 0,  so  

i n  t h i s  equation are respec t ive ly  the  buckling values of Euler ' s  
theory f o r  t f e e member length 1 and 1 . When the  member length becomes extreme- 

Since P 
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( 2 . 1 . 2 7 )  

Equation (2.1.27) gives t h e  c r i t i ca l  buckling valLes i n  t h e  case i n  which the  
sec t iona l  stress is i n  t h e  y i e l d  state (tension and compression) due to buck- 
l i n g  bending (Knickbiegung) and ind ica t e s  a curve which is  very similar t o  t h e  
supporr ioad i n  DIN E 4114. Figure 2.1.16 ind ica t e s  tests on an aluminum 2 
sec t ion  and cz lcu la t ion  of t h i s  by equations (2.1.26),  (2.1.27) and tangent 
modulus equations. 

/I20 

Tangent modulus 

Figure 2.1.16 

Assuming i n  Equation (2.1.25) t h a t  e = 0, 

In Equation (2.1.27) i n  t h e  case 05 an i n f i n i t e l y  long column, s ince  t h i s  
matches Puler ' s  curve, ue = 0 and 

k- bar.r. 
4 *E? 

It is necessary t o  determine the  appropriate values of  k i n  such a way t h a t  t he  
hangent modulus is exac t ly  determined. As an example, i n  t h e  case of a square 
cross-section member of aluminum a l loy  24 ST where h = 5/8 in . ,  uy.p ,  = 53,000 
lb./ in.2,  E = 10,640,000 l b / in2  

k = 0.00242 

when e is present k i s  ind ica ted  by such a s t r a i g h t  l i n e  formula as 

k = 0.00242 + 0.0083e 
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When the  column length increases  the  effect of e on t h e  column re s i s t ance  de- 
creases ,  and becomes 0 i n  the  case of i n f i n i t e  length.  

The d i s t r i b u t i o n  of sec t iona l  stress 
i n  an eccen t r i ca l ly  compressed member i s  j A  as shown i n  Figure 2.1.17. The u l t imate  

1 s  s r e s i s t ance  is  expressed by (d).  I t  changes 
G H 

Elasticity limit t o  t h i s  state from states (a),  (b) .  How- 
(a 1 ! b J  (C) (d 1 ever ,  i f  t h i s  is  a case of cen t r a l  com- 

+.- ' 
press ive  load, after reaching ( c ) ,  i t  sud-- 
denly progresses t o  ( d j .  The process from 
increase i n  load t o  decrease is gradual i n  
the  case of  a.n eccen t r i c  load, and t h i s  F i g u r e  2.1.17 

K 
F i g u r e  2.1.18 

tendency is  greqter ,  t he  g rea t e r  the  eccen- 
t r i c i t y .  Equation 12.1.27) d i f f e r s  from t h e  conventional 
Euler equation and i s  not a f f ec t ed  by in f in i t e s ima l  i n i t i a l  
blending, load eccen t r i c i ty ,  o r  o the r  defec ts .  The f i rs t  
two items on t h e  top of Figure 2.1.18 represent  a conven- 
t i o n a l  explanation of bending stress, whereas t h e  lower two 
graphical ly  i l l u s t r a t e  t h e  case i n  which there  coexis t s  
bending based on u l t imate  s t r eng th  theory and bending and 
compression. *1 

/121 

2.1.8. DESIGN FORMULAS T A K I N G  LOAD E C C E N T R I C I T Y  
I N T O  CONSIDERATION 

If the  r e s i s t ance  of a member sus t a in ing  an eccen t r i c  
compressive load is  r e s t r a ined  t o  t h e  case i n  which t h e  
extreme f i b e r  stress reaches a s p e c i f i c  value,  e.g. ,  t he  
y i e l d  poin t ,  i s  e l a s t i c  up t o  t h i s  poirA;, and i s  determined 
as t h a t  f o r  which Hooke's law holds t h e  Secant i m n u l a  i s  
obtained. 

(2.1.28) 

*' Van den Broek notes t h e  following: 
a 

Rankine's equation m-4- l+#I$i * 

Transformed Rankine's equation PI*- I+olar a 

The term P/i i s  not i n  the  First  Manual of  Applied Mechanics published by Ran- 
kine i n  1870 where it i s  l /h ,  (Rankine died i n  1872). h i s  ca l l ed  the  minimum 
radius;  moreover, i n  Miscellaneous S c i e n t i f i c  Papers i n  C iv i l  Engineering, l/i 
is  not seen. L i m i t  Design, John Wiley and Sons, New York (1948), p. 110. 
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The method employed t o  determine the  design load P, using a y e p .  i n  place of 
i n  t h i s  formula and using UP i n  place of P ,  i s  the cor rec t  treatment of t h i s  
formula, as Timoshenko has explained. However, it i s  necessary f o r  the  load 
eccen t r i c i ty  e t o  e i t h e r  be assumed, o r  determined by experiment. Nevertheless, 
t he  design load will not  be immediately determined by solving these,  s ince  P is  
a l so  included ins ide  the  denominator on t h e  r i g h t  s ide .  
pare beforehand a numerical t a b l e  f o r  P/A f o r  t he  case of when various eccen- 
t r i c i t i e s  a r e  present ,  i n  which case Equation (2.1.28) i s  used wirhout modifica- 
t ion .  By using t h i s ,  it is  poss ib le  t o  immediately dettrmine any safety f a c t o r  
u when graphical ly  displayed. 

I t  i s  convenient t o  pre- 

There a re  a l so  many cases i n  which the  Secant foxmula i s  used as a general  
buckling formula f o r  compressive members. 
following formula f o r  s o f t  s t e e l ,  s t r u c t u r a l  s i l i c o n e  s teel  and s t r u c t u r e  n icke l  
s t e e l ,  as a standard f o r  br idges.*l  

For example, Roark has provided t h e  

For the  allowable load P 
.. - .  - v P  - 6r.r. -- 

A 
1+0.25 =(-!$-!% ) 

i n  t h i s  formula, t he  c h a r a c t e r i s t i c  f ea tu re  is t h a t  t he  ex ten t  of eccen t r i c i ty  
which can occur i n  a s t r u c t u r e  i s  expressed as a maximum of  e/s = 0.25. The 
sa fe ty  f a c t o r  v and the buckling length a1 have d i f f e r e n t  values depending on 
the conditions of connection of t he  member ends. aymp.  d i f f e r s  according t o  
the  material, being 32,000 i n  the case of  carbon s teel ,  45,000 i n  s t r u c t u r a l  
s i l i cone  s t e e l  and 50,000 lb . / in .2  i n  n icke l  steel. The magnitude of a i s  0.75 
i n  the  case of a r ive t ed  end, and 0.875 i n  a pinned end. 
Table 2.1.9 f o r  sec t ion  steel  and bui l t -up  compression members. 

v is as expressed i n  /122 

TABLE 2.1.9 

- 
Materiai 1 Carbon steel IStructural silicon steel1 Strrlctural nickel steel 

Joint 1 Rivet end Pin end 1 Rivet end Pin end I Rivet end Pin end 

1.76 1.8 1.8 I 1.78 1.78 

> I 3 0  
Limits. of 

application Ui 
I -- 

In Germany, t hew method i s  used even i n  the  
According t o  D I N  Entwurf I E 4114 (1939-11-1), t h e  
compressive u n i t  stress ca lcu la ted  by the  umethod 
t ion .  

ab.++/ e t 

case of eccen t r i c  loads.  
bending u n i t  stress and the  
are added w i t h m t  modifica- 

(2.1.29) 

(2.1.30) 

*lJ. Roark: Formulas f o r  S t r e s s  and S t r a in  (1938), p. 198. 
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abc and Ubt are respec t ive ly  the  compression and t e n s i l e  u n i t  s t r e s s  due t o  
bending. Formula (2.1.30) is  necessary only when P i s  very small, o r  i n  the  
case of a 7r o r  7 sec t ion  member and is  used i n  the  case of  

P (2.1.31) u*, >Ub'+(Wf 1 ' 7  

i n  Equation (2.1.30) 
P ure+-= A >(++ Ul)sn 

(2.1.32) 
. .  

DIN Entwurf I1 E 4114 (1940-8-20) d i f f e r s  somewhat. The compressive and 
t e n s i l e  u n i t  extreme f i b e r  s t r e s s  based on the  d i r e c t  stress P and the bending 
moment M = P.e are ca lcu la ted  and it  i s  ascer ta ined whether t h i s  falls  within 
the prescribed allowable values.  In t h i s  ca lcu la t ion ,  it i s  not  necessary t o  
consider t he  d , f l e c t i o n  of t h e  member. 
p rec ise  ca lcu la t ion  is  not used, the following two formulas a r e  employed. 

Next, buckling i s  analyzed, but  :rhen a 

When the  member has a symmetrical cross-sect ion o r  the  sec t ion  center  of 
grav i ty  i s  c lose  t o  the  tension extreme. 

(2.1.33) 

when the  center  of  grav i ty  of t he  member cross-sect ion i s  c lose  t o  the  compres- 
s ion  extreme i n  addi t ion t o  the  above analysis  - - ._ -. - - 

( 2.1 .34) 

P 71 When the  poin t  of appl ica t ion  of the  load 
i s  on the  p r inc ip l e  ax i s ,  t he  following pro- 
cedure i s  used. (Figure 2.1.20) When the  
d is tance  between the  poin t  of  appl ica t ion  of 
force and ax is  xx i s  a, and the  d is tance  from 
axis yy i s  b ,  where 

-. 
X 

- 
iUlc=P*a. rU,=P*b 

Figure 2.1.19 F i g u r e  2.1.20 

The analysis  is ca r r i ed  out by i n s e r t i n g  these  values i n  Equations (2.1.33), 
(2.1.34). As i n  the Crane truss beam i n  Figure 2.1.20, i n  a member i n  which 
the  compressed member sus t a ins  a compressive force P and a bending moment Mx 
and i n  which there  is concern less buckling occur i n  the  d i r ec t ion  xx perpen- 
d i cu la r  t o  the s t r e s s  plane,  as long as 
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i t  i s  possible  t o  determine the  dimensions approximately by Equation ( 2 . 1 . 3 3 ) .  
In t h i s  case,  f o r  w values are used with respect  t o  the d i r ec t ion  xx. 
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CHAPTER 2 

LATERAL BUCKLING OF BEAMS 

2 .2 .1 .  LATERAL BUCKLING OF T I E  PLATES 

In members which a r e  employed pr imari ly  t o  resist  bending s t r e s s ,  such as 
beams, the f l exura l  s t i f f n e s s  B i s  increased much g rea t e r  than the  cross-sect ion 
area. Natural ly ,  the  cross-sect ion assumes a s lender  form. When t h i s  tdndency 
i s  gradually strengthened, a t  a ce r t a in  l i m i t ,  t he  beam w i l l  suddenly col lapse 
i n  a d i r ec t ion  which is  perpendicular t o  the  bending s t r e s s  plane. 
ca l l ed  l a t e r a l  buckling. 
o r  the  g rea t e r  the  span between the  support point  of the  beams, the  lower i s  
the  res i s tance  value with respeLL t o  la teral  buckling. 
expressed by the  u n i t  bending moment. 
t a in ing  pure bending, t h i s  i s  

This i s  
The higher  the  beam i t s e l f ,  the  more s lender  it i s ,  

This l i m i t  is  usua l ly  
In a rectangular  cross-sect ion beam sus- 

Here, B 1  i s  the  f l exura l  s t i f f n e s s  outs ide the  plane of t he  p l a t e ,  and C i s  the  
to r s iona l  s t i f f n e s s .  
the height  i s  expressed by h ,  s ince  

When the  thickness of t h e  plate  i s  expressed as t l ,  znd 

* r E Z . '  lh 

Z i s  the  sec t ion  modulus, 1 is the  span, 

2 . 2 . 2 .  LATERAL BUCKLING OF I-BEAMS 

This is  expressed roughly by the  same formula i n  the  case of I s t e e l  beams. 
When sec t ion  steel  with both ends pure supports sus t a ins  pure bending, t h i s  i s  
expressed by t h e  following formula. 

Even i f  t he  support and load conditions change, if weaexpress the  m a x i m u m  bending 
moment as M 

eral examples: 
162 

it i s  poss ib le  t o  express i t  as shown i n  formula (2.2.1),  where 
the  d u e  o !' M should be appropriately changed. Below, i n  Table 2 . 2 . 1  are sev- 



0. I 

0.4 

1.0 - 

B 1  i s  the  f l exura l  s t i f f n e s s  with respect  'to the  outs lde  of the  p r inc ip l e  
of bending stress p la in .  Normallv, i n  an I -sect ion s teel ,  t h i s  can be de te r -  
mined immediately from the  catal,:;. In pmeral it i s  eqdal t o  the sum of the  
bending s t i f f n e s s e s  ins ide  the  f l m g e  p l m s  i n  two f langes.  

L1.4 44.3 

15.9 21.6 y:: 17.9 y::; 
IO. 36 15.7 

-- 

-- 

b'r B a k ~  E. 

2.0 7.66 

4.0 5.85 

6.0 5.11 

8.0 4.70 

10 4.43 

4.24 

16 4. or! 

20 3.83 

- 

P 2c I' - 
as D A* l2 -I- - 

( 2 . 2 . 2 )  

12.2 

9.76 7.95 y::L 6.62 y:kL 
8.69 

- -- 

. ---- 
8.03 6.40 y:: 5.34 y:; -- 
7.58 

7.20 

6.73 5.45 y:;; 4.42 7:;; 
-- --- 

- 

Here, the b i -  flange width, t is  the  average thickness of the  f lange 
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C is roughly 

C = 0 (,at'+ a - 1 hr,.). 3 (2.2.3) 

In t h i s  formula, h is  t h e  
mined by considering an I 
Since the  I-section steel 

beam height,  tl is web thickness.  
section of steel as cons is t ing  of t h ree  p l a t e s .  
web w.d t he  flange f i l l e t s  are th i ck ,  t he re  are 

This was de ter -  

cases i n  which t h e  value is made 25% grea t e r  than C above. 
t h i s  bas i s ,  writes (95) 

E. Chwalla, on 

/125 - c=1.15G ( T b t ' + T h t a a )  2 1 

However, Timoshenko maintains (96) t h a t  even i f  these values d i f f e r  consider- 
ably, tkeir e f f e c t s  on t h e  buckling stress is  not very grea t .  
Formula (2.2.1) is the  quantity which is d i r e c t l y  proportional p lane- in te rna l  
st iffness o f  t he  flange and its to r s iona l  s t i f f n e s s ,  and is  

The A2 i n  

d=Dhs/2 C 

Since D i s  t h e  plane-internal flexural stiffaess f o r  1 flange, normally there  
is no grea t  d i f fe rence  i n  using 1 / 2  B1. Consequently 

In s o f t  steel, s ince  we can a - sue  v = 0.3, it takes the  following form 

If by t h i s  equation t / h  is given, t he  size of 1 /a is  determined by 1 /h . 
In I steel, t / h  is confined within a c e r t a i n  range. That is ,  i n  ordinary 

I steel ,  s ince  t /h  = 0.04,*1 we s h a l l  consider t h i s  case i n  p a r t i c u l a r .  
ing l /b  = 30, 12/&= 10, and becomes m = 4.43 i n  Formula (2.2.1). 
t o  Formula (2.2.2), B1 = Eb3t/6, and according t o  Formula (2.2.3), i f  C = 

Assum- 
Acc3,rding 

2 Gbt3/3 
& = 1 9 V  b't' kg-mm. 

Consequently, determining t h e  extreme f i b e r  stress as 

*1 In Japan Standard Regulations No. 26, G 15, I steel, t h i s  is  t / h  = 0.16 

180 K 109 x l e > ,  9.05 ( I - Z O O  x 100 x l o ) ,  0.043 (1-300 x 150 x 1 3 ) ,  0.045 
(1-75 x 75 x 8 ) ,  0.08 (1-100 x 75 x 8),  0.067 (1-150 x 75 x 9.5),  0.056 ( I -  

(1-400 x 150 x 18) ,  0.046 (1-500 x 190 x 23), 0.041 (1-600 x 190 x 25). 
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f i f b  -19JOo. - b . , P+3h2 -- -3.7 lidmm'. 3hf -9- 

bk=-2-- 
/126 - 

Since t h i s  value can be considered t a  be intermediate between the  l i m i t  of  
e las t ic i ty  and the  y i e l d  point  of t h e  steel meniber, when the  slenderness rat-, 

l /b  with respect  t o  the  lateral buckling of t he  f lange only, plane l/i = 

xz i n  Figure 2.2.1,  is  less than 100, i .e.,  i f  l / b  < 30, it is  considered t o  
be within the  range of p l a s t i c  buckling. 

I' i" 

Figure 2.2.1 

2.2.3. DES I GN FORMULAS TAKI NG LATERAL BUCKL I NG 
INTO CONSIDERATION 

In the  normal ca lcu la t ions  of a beam, taking lateral buckling i n t o  account, 
and expressing by f t h e  allowable c o q r e s s i v e  unit stress with respec t  t o  bend- 
ing ,  it i s  necessary t o  perform the  ca lcu la t ions  i n  the  form 

M = L .  z 
c 

K i s  the  l a t e r a l  buckling coef f ic ien t ,  and is  g r e a t e r  than 1. 
C t o  be constant 

Assuming B 1  and 

Here, 130, m30 and M30 are the  values corresponding t o  formula (2.2.1) when l / b  
l/b = 30. Therefore, 

y=-- 30b - ar,. 
I n ,  

Here if the  values of m/m30 are accurately computed, we obta in  the  following as 
a rough approximation 

b 
. -  

i,n/=)=O. 6+ 1 2 7  
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Since t h i s  formula is within the  sa fe  range of e r r o r  i n  design, t he  allowable 
bending moment may be expressed by 

M= f z (1% b + % O F )  b' 

I t  is poss ib le  t o  express t h e  allowable lateral buckling bending u n i t  stress 
fk  by 

Y Yethod. Assuming f : fk  = IC, i n  a beam sus t a in ing  elastic bending 

1 
b *' 187+- 

1 
bl > c=-= - 

Usinq  t h i s ,  as with the  w method i n  a c e n t r a l l y  compressed member when 
l /b  > 30 V6>;U) n L .s &t 

can be used.*l This is ca l l ed  t h e  K method. 

In  a member sus ta in ing  bending and compression, t he re  are cases when it i s  in-  - /127 
s u f f i c i e n t  to  only take i n t o  considerat ion bending due tc  eccen t r i c i ty .  
pa r t i cu la r ,  i n  r i g i d  frames (Rahmen) P s t a t i c a l l y  indeterminant s t ruc tu res ,  
a bending whose ex ten t  of t h e  effect i s  equivalent  t o  or g r e a t e r  than t h e  
axial compressive force,  operates  simultaneously, and i n  such cases, for approx- 
imate ca lcu la t ions ,  combined use o f  w and K methods is  safest. 

In 

The magnitude of K is not ,  1iL w ,  merely a va r i ab le  of  t h e  slenderness 

However, i n  many designs,  when both ends are 
r a t i o  A .  That is, no t  only does K d i f f e r  according t o  l / b  but  the  load and 
support  conditions a l so  change. 
assumed t o  be a pure support ,  with pure bending, i n  most cases i n  p rac t i ce ,  
these ca lcu la t ions  are on the  safe s ide .  In  a pure can t i l eve r  i n  which tne  
load is applied t o  the  upper edge, t h i s  value is insu f f i c i en t .  

A. I.S.C. Design Formula. According t o  t h e  Specif icat ions f o r  S t ruc tu ra l  
S t ee l  o f  t h e  American I n s t i t u t e  of  S t ee l  Construction,** 

*1 This proposal was introduced by the author  and by committee member Ishiguro 

Society. In the  in s t ruc t ions  proposed, a method is described which expands on 
t h i s .  See publ icat ion of  t he  Ja?an Archi tectural  Society:  S t ee l  S t ruc ture  
Calculation Standards. (1950), pp. 94-99. 

*2 A.I.S.C.: 

- 
Tokue fo r  steel  s t r u c t u r a l  standards a t  a meeting of  t h e  Japan Archi tectural  

Spec i f ica t ion  for the  Design, Fabricat ion and Erection of 
S t ruc tu ra l  S t ee l  f o r  Buildings (1949-6), chapter 3, a r t ic le  15. 

166 



These formulas are as follows: 

Edge t e n s i l e  u n i t  stress of  ro l l ed  member, 

Edge compressive unit  c t r ? ~ ~  of r o l l e d  20,000 lb / in2  p l a t e  g i rde r  and bui l t -up  member 

member, p l a t e  g i rde r  and bui l t -up  member 

... 

-2K" Zb 0 . 0  20,OoO lblii', 
b t  

According t o  t h i s  Formula, e .g . ,  i f  l / h  = 30, t h i s  means t h a t  t / h  = 0.05 
becomes t h e  l i m i t .  That is, when t / h  i s  smaller than G.G5, assuming t h a t  
e las t ic  lateral  buckling i s  caused, t h e  a l l w a b l e  stress i n t e n s i t y  is decreased 
i n  inverse proportion t o  lh /b t .  This formula is immediately derived from 
Formula (2.2.1) by considering t h a t  t he  f lange p l a t e  thickness i s  considerably 
smaller than the  beam height .  

2.2.4. DESIGN FORMULA T A K I N G  INTO CONSIDERATION ONLY FLANGE BUCKLING 

There is a simple formula which takes  i n t o  considerat ion t h e  f lange buck- 
l ing ,  plane xz i n  p lace  of t h e  overa l l  lateral  buckling of  t h e  beam. 
cases,  t h i s  i s  the  s t r a i g h t  l i n e  formula. 

In most 

In order  t o  make t h i s  somewhat more theo re t i ca l ,  we s h a l l  employ t h e  buckling 
length l k  taking i n t o  considerat ion t h e  state of  load d i s t r i b u t i o n ,  without 
employing the  t o t a l  length cf the  f lange f o r  1. For example. When, a load of 
equal d i s t r i b u t i o n  is applied t o  a beam, s ince  the  d i s t r i b u t i o n  of the  flange 
compressive force i s  parabol ic  , 

t=o.  'I 1 

is used. For example, f o r  X < 100, 

/128 a=48,000-210 1 lbfin' - 

Moreover, f o r  X < 100, Euler ' s  formula is used, 
i n  most cases the  e r r o r s  t h a t  are made are on t h e  danger s ide .  
creases,  t he  degree of danger increases  markedly. 
l a ,  s ince  it is  simple, there  are many standards which use it. 

According t o  such a formula, 
When h/b in-  

However, as a general  formu- 

Using the  in t eg ra l  which is f ixed with respect  t o  the  s i d e  displacement of 
a p l a t e  g i rde r  as t h e  compressive force,  we assume t h a t  
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operates.  
neut ra l  axis of t he  f lange sec t ion  (includes f lange p l a t e ,  angle steel, p a r t  

is  necessary t o  take buckling i n t o  consideration. 

Here, S i s  t h e  geometric moment of i n e r t i a  with respcct  t o  the  

-of web) M i s  the  average value of the  bending moment i n  the  space i n  which it 
From t h i s ,  

w Y  is t h e  coe f f i c i en t  w determined bv X v  = l k / i y * l .  
buckling u n i t  stress with respect  t o  X y  t o  be f k  

That is, assuming the  

Q),= f If& - 
According t o  the  American Railway Engineering Association 

f =16, OOO- 1 5 0 7  lbJins 
, 

i s  used f o r  t he  allowable u n i t  stress.*' 

In our Railroad Standards,  t h e  followingf3 w a s  used 

Generally 

1 f =  1150-15 kg/cms, 

with beam connected t o  buckle p l a t e  

I 1 
f = 1150-10 7 kglcm.. 

Moreover, the  tension s i d e  is  taken as 1,200 kg/cm2 i r respec t ivc  of  l / b  with 
respect t o  the  e x i s t i n g  cross-sect ion.  Under e x i s t i n g  r a i l r o a d  s tandards,  a 
formula*4 is  used which reduces t h i s  by the  square of l / b .  

*1 Stahlbau-Kalender, Ernst u. Sohn (1940), S. 191. 

*2 Merriman, Wiggin: American Civ i l  Engineers Handbook, 5th Edi t ion (1945), 
p. 1185. 

*3 Railroad and Bridge Design Spec i f ica t ions ,  Chapter 3, Article 11. 

"4 Bridge Reference Charts, Kokuseido (1948), p. 80. 
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Generally , 

When the Scans are conpected by buckle p l a t e s  

f = 1100-0.25 ($>' Wm'. 
In the Cal i forn ia  Administrative Code, it is as follows: 

For r o l l e d  members, bu i l t -up  members and beams,*l 

= = =  f=2O.o00 Ibfin'. . 1 
b -2 15 

221500 Ibfid. I' 
... f =  1 40> b> 15 '+ 1 W b *  

2.2.5. LATERAL BUCKLING OF T I E  SECTION HAVING ARC AXIS 

If a pure bending moment is appl ied t o  both ends of a t i e  sec t ion  having 
an arc axis with a radius  ro ,  t he  buckling bending (ICnickbiegung) moment i s  

(2.2.4) 

In the  above equation, a is the  angle a t  which both ends of t h e  arc axis of  t he  
t i e  sec t ion  i s  enclosed i n  t h e  center. 
(2.2.1) .  

This equation corresponds t o  equation 
That i s ,  i f  ro  + m, roa = 1, it agrees with equation (2.2.1). 

That Mk has 2 values i s  determined by whether t he  d i r ec t ion  i n  which the  
pure bending moment has effect causes t h e  in s ide  of t he  t i e  secti t ' .  t o  be the  
edge of compression o r  t h e  outs ide t o  be the  edge of compression. When the  'n- 

s i d e  is  t h e  edge of compression, the  lateral  buckling r e s i s t ance  is great .  
When = , oi:e root  is 0.  This expresses the fact t h a t  when bending occurs 
such t h a t  the  outs ide i s  the  edge of compression, ro t a t ion  is  caused cn the  
diameter which connects the  two ends. 

/129 

- 
*1 Cal i forn ia  Administrative Code, Title 21, Public Works, Article 804 (1948- 

9-1). 
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CHAPTER 3 (Supp lemen t )  

BUCKLING WITH BENDING AND TORSION 

2.3.1. SHEAR CENTER 

When a lateral  load, which passes through t h e  center  of  grav i ty  of  t he  
cross-sect ion of  a member, i s  applied t o  t h a t  member, i f  the  p r inc ipa l  axes 
of t he  cross-sect ion are b i a x i a l l y  symmetrical, o r  anti-synnnetric l i n e s ,  only 
def lec t ion  w i l l  occur, except when lateral  buckling takes  place.  However, when 
only one of t he  p r inc ip l e  axes of t h e  cross-sect ion is symmetrical, o r  no sym- 
metr ical  l i n e  i s  formed, t h i s  i s  usual ly  accompanied by tors ion .  This t o r s ion  
is due t o  the  shear  force  operat ing on the  sec t ion ,  and the  center  of to r s ion  
forms the  shear  center .  I f  the  
lateral load passes through the shear  center .  torsia!: w i l l  no t  be caused. 
sequently,  the shear  center  can be defined as a poin t  on 3 sec t ion ,  or a plane 
which is  t h e  same as t h a t  sec t ion ,  through which pasccs . .,iearj?g force  such 
t h a t  the  member does not undergo tors ion .  
reciprocal  theorem, it can be seen t h a t  the  tors ion  around t h e  shear  center  is 
pure tors ion ,  and i s  not accompanied by def lec t ion .  The l i n e  which connects 
t he  shear  centers  o f  sec t ions  i s  ca l l ed  the  shear  center  l i n e .  The shear  cen- 
t e r  l i n e  of a s t r a i g h t  beam is  a s i n g l e  s t r a i g h t  l i n e .  However, s t r i c t l y  
speaking, s ince  there  are changes i n  the  end condi t ions,  support Conditions, 
and i n  t h e  d i s t r i b u t i o n  of load conditions and loca l  shear  forces ,  t h e  shear  
center  l i n e  of  a s t r a i g h t  beam should be considered s l i g h t I y  bent.  This d i f -  
ference normally is very s l i g h t ,  so  the  shear  center  l i n e  is t r e a t e d  as a ro- 
t a t i n g  center  l i ne .  *2*3 

C. Bach discussed t b * t 5  a long time ago*l 
Con- 

If t h i s  propertv i s  applied t o  a 

*1 C. Bach: Versuche Uber d i e  ta t sgchl iche  WiderstandsfXhigkeit von Balken 
with C -fbrmigen Querschnitten. 1. d. V . D . I .  (1909), p.  1790. 

*2 Timoshenko says t h a t  R. Maillart was the  first t o  descr ibe the  concept of 
shear  center  and means of determining it. 
of Materials , (McCraw-Hill, 1953) p. 401. 

Timoshenko: History of Strength 

*3 Here i s  a l is t  of c l a s s i c a l  works on t h e  subjec t :  

R. Maillart: Schweiz, Bauztg., Vol. 77 (1921), p. 195; Vol. 79 (1922) , 
p. 254. 
C. Weber: Biegung u. Schub i n  geraden Balken, ZAMM, Vol. 4 (1924), p. 334. 
A. F6ppl and L. Fbppl: Drang and Zwang, Vol. 2 (R. Oldenbourg, 1928), p. 
121.  
F. Bleich: Sphlhochbauten, Vol. 1. (J. Springer,  Berl in ,  1932), p. 79. 
E. Tref f tz :  Uber den Schubmittelpunkt i n  einem durch e ine  Einze l las t  
gebogenen Balken. ZAMM, Vol. 15 (1935), p. 220. 
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The pos i t ion  of the  shear center  is constant with respect  t o  the  cross- 
sec t ion .  
r i ng  on the sec t ion  i n  order  t o  determine i ts  pos i t ion .  For t h i s  reason, 
according t o  bending theory,  i f  t he  force  equilibrium i s  detenrined,  the 
conditions f o r  the  continuation of deformation and the  [ i l l e g i b l e  word] a r e  
included, it i s  poss ib le  t o  obtain a so lu t ion  which i s  c lose  i n  terms of 
e l a s t i c  dynamics. 

I t  i s  necessary t o  know the  s t a t e  of flow of t h e  shear  force occur- 

/131 - 

In a beam sus ta in ing  bending, Jacob Bernoulli-Navier's plane-retent ion 
law i s  i n  effect. Denoting the p r inc ip l e  axes of the  sec t ion  as x, y ,  a rb i -  
t r a r y  orthogonal axes passing through the  center  of grav i ty  as X ,  Y ,  and the  
orthogonal angle between the X axis  and the  small x ax i s  as 8, t he  stress 
u z  i n  d i r ec t ion  z of t h e  member ax is  due t o  the  bending moment M of the  vector  
ind ica tor ,  having a s lope Q with respec t  t o  the  y axis, is  expressed by the  
following equation. (Figure 2.3.1). 

Here I,, Iy are the  geometrical moments of  i n e r t i a  with respec t  t o  the  pr in-  
c ipa l  axis  x, y. Since 

X = x  cos O + y  sin 0 

Y = -% sin O +y cos 0 

By coordinate transformation, _- 
zx=s, yzdA= sin'O*Z,+ cus'e*Zm 

(2 )  

(3) 
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Therefore 

+ zr =I .  + 1. 

Eliminating 8 from (5)  and (6), i n  s u b s t i t u t i n g  (7) 

ZJY =IxZr - Z x 2  

Assuming t h a t  i n  equation (1) ci + 0 = n/2 ,  M s i n  ci = M, 

That i s ,  t h i s  i s  the  bending moment operating within plane Y,. 

sina=sin(+-e)=-e. 

oos = (T-e) = sin 8, 
?r 

From (5)  and (7), 

From (5)  and ( 6 )  

When these are in se r t ed  i n  equation ( l ) ,  due t o  the  banding moment around 
ax is  X, 

Similarly,  assuming t h a t  a = -e  i n  equation ( l ) ,  with respec t  t o  t h e  moment 5 
around the  ax is  Y ,  



If a d iv is ion  is  made between the  force aZhX) i n  the d i r ec t ion  of the &xis 
due t o  the  bending moment around the  x axis,  an 
t i on  of  the  axis  due t o  the  bending moment around the  y ax is ,  i n  equation (1) 

the  force a z ( y )  i n  the  d i rec-  

As siuning 

Carrying out transformation of coordinates 

e.=E(X=+ d'X YT) d*Y 
dz 

If (12) and (15) have the  same values,  the  curvature of the  e l a s t i c  l i n e s  
of the  member with respect  t o  ax is  X and axis  Y,  due t o  M, can be determined. 

Assuming 

On the  bas i s  of the  assumption of  plane support ,  these do not  change depending 
on X, Y.  Consequently 

(16) 

Here, the  pos i t i ve  and negative signs f o r  t..e curvatures ,  i nd ica t e  
whether 
the d i r ec t ion  of t h e  pos i t i ve  s i d e  of the  coordinates.  
(15) are  equivalent i n  value,  the  curvature of the e l a s t i c i t y  l i n e s  of the  mem- 

the  l a t t e r  are concave or convex, where the  e l a s t i c i t y  l i n e s  a re  i n  
Similar ly ,  if (13) and 

173 



ber  w i t h  respect  t o  axis  X a i d  axis  Y due t o  My i s  expressed as follows: 

I f  it i s  assumed t h a t  i n  equation (1) uz = 0 ,  the s t r a i g h t  l i n e  of the  neut ra l  
axis  can be determined. 

(20) 
y= cot a. A. x 

1 s  

The angle formed by t h e  center  axis  and t h e  bending moment M i s  a r i g h t  angle 
when 

= 1, but  i s  smaller than a r i g h t  angle when Ix/Iy 

Ix/Iy > 1, and i s  larger than a r i g h t  angle when 

Ix / Iy  < 1. 

When the  center  axis  i s  drawn onto the  cross-sect ion,  the  concept of 
pos i t i ve  or negative curvature becomes clear. 

When a l a t e r a l  load is  applied t o  a member, not only bending stress, but 
shear  stress a l so  occurs. I ts  equilibrium, from e l a s t i c i t y  theory i s  

Therefore, assuming t h e  der iva t ives  of (1) t o  be 

Where 

When there  i s  no load i n  t he  d i r ec t ion  of the  X axis, Qx = 0,  
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. s  . 
Therefore, the equation f o r  equilibrium with respect  t o  por t ion  A i n  Figure 
2.3.2 i s  

Figure 2.3.2 

When Gauss’s i n t eg ra t ion  theorem is  used f o r  the r i g h t  
s i d e  of t h i s  equation, it i s  poss ib le  t o  convert the  plane 
i n t e g r a l  i n t o  a l i n e  i n t e g r a l .  

(24) 

The r i g h t  s ide  i s  the  in t eg ra t ion  along the  o ther  perimeter 
~i of area A,  and oU i s  t he  component of shear  force a t  r i g h t  
ar,gles t o  u. When no outer  force i s  i n  e f f e c t  a r cmd  t h i s ,  
i n  sec t ions  o ther  thFii t h a t  along b ,  T~ = 0 ,  and assuming 
t h a t  T, i s  the  average value of r u  i n  the  sec t ion  alo;?g the  
b,  s in$  the ri5l.L s i d e  of (24)  becoml.3 bTZy, 

In p a r t i c u l a r ,  assuming 

Sx i s  the primary moment of sec t ion  A with respect  t o  ax is  x. There i s  no 
p a r t  of ( 2 6 )  which d i f ” s r s  from the normally employed equation f o r  calculat i r l2  
shearing s t r e s s .  What requires  a t t en t ion  is  the  f a c t  t h a t  T~ 
average value of T v change i n  the  configuration c f  a cross-sect ion,  when a shearing force is SUS- 
t a ined  and a l so  takes i n t o  account t he  flow of the  shear ing stress within the  
cross-section, and determines the  shape of tbe  Finction T ~ ,  including not only 
the  equilibrium conditions,  but the  cont inui ty  and bomdary condi t ions,  the  
accurate value of T~ can be determined. I f  one determines the  accurate values 
of the  shearing stress f o r  a rectangular  cross-sect ion (Figure 2.3.3), the 
values shown i n  Table 1 a r e  obtained.*l 

becomes the 
within the range of b.  I f  one considers i h a t  there  is  a 

*1 S. Timoshenko, . J .  N .  Goodier: Theory of E l a s t i c i t y ,  (McGraw-Hill, 1951), 
p .  326. 
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The she-.- c+r?ss is smsller i n  the  center  than i n  the  surrounding pa r t s .  
However , whv- s large,  i . e . ,  when the  path of the  shear  flow is narrow, 
it can be 5: the  difference b. *wen the  center  sec t ion  and the  sur -  
rounding sec:im= i s  only a few percc;lic. Consequently, i n  t h e  case of a t h i n  
p l a t e  membei, the magnitude of the  shearin, stress flowing along the  centei  
l i n r  of thickness i s  not grea t ly  d i f f e r e n t  from t he  average val‘il, and may be 
considered as the pr inc ipa l  snearing stress. 

Table 1 .  Shearing S t r e s s  i n  Rectangular 
C ros s-Sect i o n  

i‘ 
Positian &a 2 1 112 114 

’ = O )  Adjusted value 0.m o.#o 0.856 o.@j 
y = o  ’ ) Adjusted value 1.033 1.1% 1.396 1.s 
I = O  

i’t;tz 
I 

F i g u r e  2 .3 .3 .  

The numbers are the  mul t ip l i e r s  of t h e  shearing stress 1.5 Q/A based on the  
equation (26) ,  J =  1/4. 

Now w e  s h a l l  consi-lnr t h e  p r inc ip l e  shearing stress of  t h i n  sect ioned 
steel  such as t h a t  sh ’-I F i g u r e  2.3.4, having p r inc ip l e  ax i s  x, y .  From 
t b i s  hypothesis, from rne equi librium of forces  between du (a, b i n  Figure 
2.3. I ) .  

dt d)dz  .i- do.( tdu ) =O 
(27) 

Therefore, when t i s  constant 

dr do. -- dw ---e-& 
dz I ,  

(2 7aj 

Here WI assuae Q, = 0. 
i n  Figure 2.3.4 

If we in t eg ra t e  for area A having the  diagonal shown 

176 



Where 
(29) - /135 

Y & i X 

Figure 2.3.4 

S, is the  geometric moment of  i n e r t i a .  Taking the  i n t e g r a l  i n  t h e  d i rec-  
t i on  of the  center  l i ne .  
smallei b. 
t he  shearing stress, i.e.,  the  poin t  where S, is  already known. 

The s i z e  of  T is  g rea t e r ,  t h e  g r e a t e r  SX and t he  
The s t a r t i n g  poin t  of t h e  in t eg ra t ion  of  S, employs t h e  size of 

s, = SI + s, 

Since nollnally i n  both end sec t ions  o f  an open cross-section, t he  shear ing 
stress is  0, i .e.,  S = 0, t h i s  may he used as a s t a r t i n g  point .  

Y .  
When t h e  I cross-sect ion (Figure 2.3.5) sus t a ins  a cg+;+ 

' 9  

shear ing stress Q passing through t h e  center  of grav i ty ,  
i n  determining t h e  primary moment with response t o  axis UI, dg;p/; i t  can be seen t h a t  t h e  shear ing stress i n  each o f  t he  four  

71 3 poin ts ,  A, A ' ,  D, D' i s  0. Consequently, assuming t h a t  f o r  

Y 

.- poin t  A, u = 0,  and Jetermining t h e  geometric moment of  
i n e r t i a  f o r  t he  i n t e g r a l  AB 

- -  7 S a = I  yt du = 7 1  h *U 

I 
? 
)z Consequzntly for B 

bh Figure 2.3 .5  Stria=+ 

Similar ly ,  from the  in tegra t ion  of the  i n t e r v a l  A ' B  

I n  i n t eg ra l  RO 
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Consequently a t  poir, t 0 

bht th' 
s t n o  =2 +T 

If the  d i s t r i b u t i o n  o f  shear ing stress is  depicted using these,  it becomes 
as shown i n  the  figure. 
with the  conventional equations.  
sec t ion  p a r a l l e l  t o  ax i s  xx is a straight l i n e ,  t h e  shear ing stress i n  t h e  web 
sec t ion  perpendicular t o  t h e  x axis  is  a parabola. 
stress T is  determined f r o m  Equation (29). As can be seen f r o m  ti,e d i r ec t ion  
of its flow, i n  f lange AA', point  B sus t a ins  tensior. and i n  f lange DD', poin t  
C sustains compression. 

In the  i n t e g r a l  BC, t h e  same r e s u l t s  are obtained as 
Moreover, t h e  shear ing stress i n  t h e  f lange 

The s i z e  of the  shear ing 

From equation (27), s ince  

If equation (12) i s  in se r t ed  i n t o  t h i s  and in tegra ted ,  assuming 

Qy = dMX/dz 

Similar ly ,  in tegra t ing ,  i n se r t ing  (13), assuming Qx = d ! / d z  

Equation (32j i s  t!.e general  oquation which expresses t h e  shear  flow of 
a t h i n  sk in  open cross-section member correspoil'ing t o  the  shear ing stress i n  
d i rec t ion  Y ,  and equation (33) expresses t h i s  i n  correspondence with the  shear- 
ing  stress i n  d i r ec t ion  X.  I t  i s  7oss ib le  t o  use these t o  determine the  coord- 
i na t e s  of t he  shear  center .  
through the  shear  center ,  t h e  de f in i t i on  f o r  the  shear  center  is used, i n  which 
the  cross-sectior. does not  undergo tors ion .  
and Qy. 
in which the  sum of the  moments formed by Qy and it indica ted  i n  (32) is 0 ,  

In t h i s  case, when the  shear ing stress passes 

Shear force  Q is divided i n t o  Qx 
The coordinate X of the shear  stress is determined from the  condition 

/136 
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and the  coordinate Y of the  shear  center  i s  determined from t h e  conditions i n  
which the  sum of the  moments formed by Qx and T~ indicated i n  (33) i s  0. 

I f  t he  moment around t h e  shear  center  i s  detzrmined, t h e  terms Qx and Qy 
are not included. 
determined, t he  shear  center  i s  

If the  sum of the  noments around t h e  center  of grav i ty  is 

The r ip (34) and (35) expresses t h e  length of t h e  perpendicular l i n e  
dropped from t h e  center  o f  grav i ty  t o  t h e  l i n e  tangent t o  t h e  cen te r  l i n e  a t  
point  u on the  center  l i n e  of t h e  cross-sect ion,  and t h e  JU i nd ica t e s  t h e  in t e -  - /137 
gra t ion  along t h e  t o t a l  length of t h e  center  l i ne .  

When using the  p r inc ipa l  axis o f  t he  cross-sect ion,  s i n c e  Ixy = 0, 

1 
I* rS. du 

S, and S 
ponding To the  p a r t  u on the  sec t ion .  

are t h e  geometric moments of i n e r t i a  around ax is  X and ax i s  Y corres- 

As an example, we s h a l l  consider cold-shaped l i g h t  channel steel ,  and w i l l  
determine i t s  shear  center .  
and t h e  roundness of the  f i l l e t s  i s  replaced by r i g h t  angles.  
t he  center  of grav i ty  i n  order  t o  draw t h e  p r inc ip l e  axis 

(Figure 2 . 3 . 6 ) .  The p l a t e  thickness t is  constant ,  
If  we determine 

.. . 
Y 

=- I (  b+ h )  

or 
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Y 
bAt The magnitude of  Sx is  as follows, using examples of 

ca lcu la t ions  of  an I cross-sect ion,  with u = 0 f o r  po in t  
A .  

s=+-, r = T  h 
In in t eg ra l  AB 

In i n t e g r a l  BC S==~+<-(+-f l )  6ht dU=-dY. r=c 

F i g u r e  2.3.6 

Therefore, 

Y 
I 

Moreover, o f  course, yo = 0 and Sy becomes as shom I 

by Figure 2.3.7. Therefore,  i n  F i p r e  2.3.6 
F i g u r e  2.3.7 . .  

Vh't 
16 I* - d=- 

In cases i n  which it is easy t o  determine t h e  p r inc ip l e  ax i s  i n  a th in -  
skinned open sec t ion  member, t h e  shear  center  is determined taking the  p r inc ip l e  
axis as coordinate. The pos i t i on  of t h e  shear  center  with respec t  t o  any coord- 
i n a t e  axis is ca lcu la ted  by coordinate transformation. 
i s  employed i n  order  t o  determine the  shear  centers  with respect  t o  an a rb i t r a ry / i38  
coordinate axis, i n  t h e  case of a member i n  which it i s  d i f f i c u l t  t o  determine 
the  p r inc ip l e  axis. As example, we shal l  perform ca lcu la t ions  f o r  t h a t  which 
is shown i n  Figure 2.3.8. We s h a l l  express the  coordinates by the  X axis  and Y 
axis ,  and assume t h a t  the  o r i g i n  0 later takes  t h i s  as the  center  of grav i ty  of 
t h i s  sect ion.  The coordinates of  point  B are expressed by m, n.  

The following procedime 

In Equations (34), (35), s: Ytdu ,  f:xfdu 

Begin in tegra t ion  with o r ig in  of u as first point  A and poin t  C, converge at  
point B ,  and ca lcu la t ions  not  ca r r i ed  out as f a r  as poin t  F ,  through point  D. 
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0 mtccostr 
m-asind 
n + acosB 

t SUN Y f  d u = : a + b + c + d ) t n + ~  cosI(a'-P--d') 

d +y sin8.(~+2d)=Sm,r 

Next, the  in tegra t i r  . i s  ca r r i ed  out with poin t  E and poin t  G as t h e  o r i g i n  of  
1 1 ,  and f o r  po in t  F, r e s p c t i v e l y .  

ut Yt du=-( 2 A +2 c sin 0 -2 d cos 8--P 5i.z 9 j =Su,x Smx 2 

From t h i s ,  assuming R..=s(Dy +sc.y + S(O)E =o 

n=-[(a'-b.'-d'--2 od--2 f d )  cos0+2(d+e+f)c* sin8 

+Z sin @--e2 sin @+ f sin 0112 t 

Here 1 = a + b + c + d + e + f tcLal length 

I 
Xi du = ( a  + b + c + d)im - p i n  0( a - -b* --d* ) s,, 

(38) 
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Assuming 

et 
2 XI du=- (2 in+2 ccos 8+2  d sin 8-e cos 0: =S(..-,, 

Xt d z c = 7 ( 2  ft mf2Ccos 0 + 2  d sin 0 + f COS O)=S(G), 

m=[(a*-P -d'-2ed-2 fd) sin@-2(d+e+f)c- cos8 

-8 COC- e+ e' COS e- f COS 8312 1 

I139 

(39) 

m, n deternine the  coordinates of  point  B when poin t  0 i s  the  center  of grav i ty .  

Next 

i s  calculated,  bu t  even i n  t h i s  case, the  same path of i n t eg ra t ion  is followed 
as before. Since here  the  in t eg ra t ion  f r o m  E and G has a d i r ec t ion  which i s  
the  reverse  of  the  path of i n t eg ra t ion  from A, C, it is  necessary t o  reverse  
the  s igns 

(40) , &=s r d r r r  Ytdu  
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In the  above equation 

(43) 

Is= c -Yr .  (44) 

(45) 

ri=lml sbd+ In1 C O S B  

r.= d -ra 

/ 140 - The shear center  i s  expressed by t he  following equations,  using t h e h o v e  

(46) 1 [ I r . R ~ t - ~ r r o R ~ l  
X@=-I&- I X 2  

Various open cross-sect ions a r e  obtained from the  sec t ions  i n  Figure 2 . 3 . 8 .  

T shape a=b, b=e=f=O 

Y 
I 

Corrugated shape b=e=O, a=f, c=d 

Unequal sided angle shapt 

Equal sided angle shape 

@=&=e= f =O. c+d 

a=b=e= f t-0, C=d 

a dYV 
\$' i. 

Figure 2.3.9 L i p  angle shape ==/=o, b=e. e=d 
Channel shape 

2 shape 
a=b=f=O. c=c 

~ = b = c = ( J .  c= f 
In the case of a corrugated member, assuming 1 x 2(a  + d ) ,  8 = 45', the  

coordinates become the p r inc ip l e  axis (Figure 2 . 3 . 9 ) .  

m=-fdd'sin8+c(2 d + c )  cosO]/Z(c+d.) 

n =[dd'cos8-c(2d+c) sin8)/2(c+d) 
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In the case of an unequal s ided angle member 

Assuming e = 0 (Figure 2.3.10) 

m = -c( 2 d +c)/2(c i d j 

n =d'/2(c+d) 

n=c( 2 d+c)/2(c+d)  

YJ =c - Y I = a 2  ( c + d )  

&=--- tc'd3 Ry=-- 1 tc'd' 
6 c + d '  6 c+d 

Ir= 12 tds  c+ d ) S 4  8 + 5 + d'l 

"=12(c+d) '' ,[4d'+5cd+cx] 

~2=d'/2( c + d )  

c'd't 
In= -4(cS-d) 

Figure 2.3.10 

In the  case of equal-sided angle members, i n  t he  above example, assuming 

That i s ,  the  shear  center  becomes the point  of 
c 7i d X h/2, and 8 = 4S0, (Figure 3.2.11), the  coordinates become the  p r im!  -le 
axis and XO = 0,  YO = h / 4 n .  
i n t e r sec t ion  of  the  two s ides .  

When a l i p  HE is at tached t o  the  sec t ion  i n  Figure 2.3.8, s ee  Figure 2 .3 .  
1 2 ,  assumhg t he  geometric moment of  area 
metric moment of a rea  of  po in t  E is S(H E .  

Y t  du o r$  X t  du is SHE, the  geo- 
This i s  applied t o  SEF according t o  

Equat im (30). SEE has already been ca 1 culated.  
SCa)z#=SCa)r +SI# 

The geometric m0rner.t of area a t  point  F is 
S ( B ~ ) I = ~ C B ) ~  +SW)J 
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h 

*F 
Figure 2 .3 .1  1 

Consequently , owing t o  

i 
F 8- n +csinb-dcose-e sind-jcosd 

E 

Figure 2 . 3 . 1 2  

the  pos i t ion  of t he  center  of  grav i tv ,  i .e.,  the magnitude of m, n i s  de te r -  
mined. ~ l s o  

The second term on 
becomes 

and i s  easy  t o  fin1 

. . -  - 
the  r i g h t  s i d e  has already been- 'calculated.  The first term 

. In  order  t o  ca l cu la t e  the overa l l  R ,  one should include 
the  % + REF determined here ,  i n  p lace  of t h e  REF used i n  t h e  previous example. 

In &=S. r d u r  Yt du 

R r = S ,  r d u s i  Xt du 

following Timoshenko. 

lS. Timoshenko; Collected Papers (McGraw-Hill, 1953), p.  566. 
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Assuming 

R r = S  d w . r  Xt dn 

= I w n f :  Xt dn I -f w,,Xt du 
Y 

U For the  f i r s t  term on the  r i g h t  s i d e  
through the  center  of grav i ty ,  we make the  provision t h a t  i t  i s  0 when u = 0 
and when u is the  ul t imate  end. 

J ' O  X t  du, s ince  the coordinates pass 

Consequently 

R I =  -$, wmxt ~u 
. -  

Similar ly  

w 
t!e center  l i i?e of the member cross-sect ion.  Such a quant i ty  has force i n  sec-  
t i on  tdu a t  the  poin t  u and when we in t eg ra t e  f o r  t h a t  which expresses the  p r i -  
mary moment of t h i s  force over a l l  of u, we obtain R. 
paper on the  buckling accompanying torsi;on around a shear  center  introduces the 
quant i ty  

is twice the area of the t r i angu la r  zone connecting t h e  center  of  grav i ty  and 

Wagner1 i n  h i s  first 

fin 

wa= J rdu 

where he takes t h e  cen ter  of r as the  shear  center .  
elongation w i n  the  d i r ec t ion  of the  member axis with respect  t o  the  u n i t  t o r -  
s ion angle pe r  u n i t  member length a t  pos i t ion  u of the  member sec t ion  sus ta in-  
ing to r s ion  ai.d wn which has the same meaning with respect  t o  the  d i r ec t ion  per- 
pendicular t o  the center  l i n e  of member thickness ,  i . e . ,  with respect  t o  the  
d i r ec t ion  of thickness.  
wu, it  i s  possible  t o  use wu as w.  Consequently, it can be seen t h a t  t he  wu 
employed by Timoshenko has about the  same substance as t h i s .  
which i s  taken around the  shear  center  wu as wsu, around the center  o f  grav i ty  
as wou,  the  dis tance b2+keen the  shear  center  and the  center  of  grav i ty  as s ,  
and the so lu t ion  formed by the  tangent t o  the center  l i n e  of  the  cross-sect ion 
thickness with t h e  s t r a i g h t  l i n e  OS as 8 ,  we obtain 

wu expresses the  degree of 

/143 
In ac tua l  t h in  members, s ince  wn is qu i t e  smaller than - 

Denoting t h a t  

bere,  , s the projeccion of the sec t ion  thickness center  l i n e  with respect  t o  
the l i n e  perpendicular t o  the  s t r a i g h t  l i n e  OS, and is the length corresponding 
t o  the range of in tegra t ion  Ou. tm expresses the  average thickness of the  mem- 
be r  thickness t i n  t h i s  i n t eg ra l .  
t i o n  t o  the  locus of t he  center  l i ne .  

consequently, the size of t h i s  has no r e l a -  

1 
H. Wagner: 
Danzig 1904-1929, p.  329. 

Verdrehung und Knickung von offenen Prof i len ,  Technische HochschuLa 
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I f  the cross-sect ion i s  n:l t h in ,  t he  p r inc ip l e  shear  s t r e s s  i s  not sel f -  
it i s  necessary t o  follow a s t r i c t  evident,  so i n  order  to  determine T ~ ~ ,  

so lu t ion ,  and i n  t h i s  case,  the  Poisson a t i o  v i s  r z l a t ed  t o  the pos i t ion  of 
t he  shear  center.  Timoshenko's Gethod of ca lcu la t ion  f o r  a semi-circle  sec t ion  
member with a radius r (Figlire 2.3.13) i s  as fo1lows.l 

We p i i c e  the  or ig in  of the  coordinates a t  t he  
center  C o f  the  c i r c l e .  
1. 
sec t ion  is  equal t o  t h e  shear  stress 

We denote the member length by 
We assume t h a t  t he  shear  s t r e s s  operating on t h i s  t 

I 

which occurs when a loau P i s  operat ing i n  d i i ec t ion  x 
on c i r c u l a r  cect ion member with a center  C. In t he  
case of a semi-circle ,  we employ Q = P / 2  i n  place of 
the  P i n  t he  above equation. The moment due t o  t h i s  
shear ing stress with respect  t o  tne  c i r c l e  center  C 
i s  

z 

hf,=J$(r=,y- .,,x)dx dv 

Figure  2.3.13 

The pos i t ion  of  load Q due t o  which point  C does not r o t a t e ,  i s  expressed by 
2 Mg/P. 
and i t s  magnitude, u2, from the  cont inui ty  condition 

Therefore, the  center  of -0 of t h e  semi-circle  begins t o  r o t a t e  

-G- a (2w.)=---++c v P Y  
aZ l + u  z 

i s  
uP(1-z).m - 

E l  = 

Here, m is the  dis tance of the  center  of gravi ty  of t h e  semi-circle ,  

m=O. 424 I 

In order  t o  e l iminate  the  ro t a t ion  w z  around the  center  of  grav i ty ,  it is  
necessary t o  apply the  torque i n  reverse.  
c i r c l e  cross-sect ion member with a radius  r, determined from Saint-Venant's 
ca lcu la t ions ,  by only a u n i t  length 8 ,  i t  i s  necessary t o  have a tors ion  moment. 

MI=& 296 GY.8 

Moreover, i n  order  t o  r o t a t e  b semi- 

Consequently, a t  pos i t ion  1 - z ,  assuming 

/144 - 

~~ ~~ ~~~~~ 

IS. TimoshenAo, T,".eory of E l a s t i c i t y  (McGraw-Hiil, 1951), p. 334. 
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*i-t)=# 

t he  size of the reverse  torque Yt i s  understood. 
which load Q should be applied i n  order  f o r  t he  center  of  grav i ty  0 of the  semi- 

From t h i s ,  t he  pos i t ion  a t  

c i r c l e  not t o  t w i s t ,  is 2 
e= ( M . - M , ) p  

This ind ica tes  t he  shear  center  S of a nember with a semi-circle cross-sect ion.  
If u = 0.3, e = 0.511r. This value agrees with the  value ca lcu la ted  by A. C. 
Stevenson. E. T r e f f t z  obtained a r e s u l t  where e = 0.509r. When only the  con- 
d i t i o n  of  equilibrium of  forces  i s  taken i n t o  account, t h i s  is e = 0.528r. 
a s t r i c t  so lu t ion  is  used, t h e  shear  center  muyt be ca l l ed  t h a t  po in t  on a sec- 
t ion ,  or on the  same plane as t he  sect ion,  i n  which a lateral load operates  so 
t h a t  t he  area around the  center  of grav i ty  of the  sec t ion  of the  members sus- 
t a in ing  the  lateral load t h a t  does not rotate. 
ered as a boundary condition. '  

When 

In any case t h i s  can be consid- 

2.3.2. BUCKLING COUPLED WITH BENDING AND TORSION 

Herbert Wagner first published on the to r s iona l  buckling around the  shear  
center  of  an open sec t ion  member i n  order  t o  provide t h e  foundations for design 
of t h i s  type of member, which i s  used i n  the  structural members of metallic air- 
craft, as he states i n  t h e  introduct ion t o  t h e  Memorial Volune Commemorating t h e  
25th Anniversary of the  establishment of tne  Danzig Engineering College (1904- 
1924). Since the  res i s tance  t o  tors ion  of an open cross-sect ion,  where the  mem- 
ber thickness i s  th in ,  is small, i f  it is used as 8 compression member, t he re  
~tre cases i n  which the  member is twisted,  buckles a id  col lapses  way b e l w  its 
Euler buckling value o r  y i e l d  poin t .  
ter of to rs ion  matches the  shear  center ,  and according t o  later inves t iga tors2  
t h i s  is an extremely spec ia l  case which should be t r ea t ed  as pure to r s iona l  
b 
s ion center  do not agree and t h a t  t he  bending and tors ion  are coupled. 
Wagner's conception is outstanding, and is of equal ly  high value as Euler 's  ob- 
servat ions on the  buckling of  colunms, as expanded, t he  f i e l d  of research on 
buckling, and has become the  motivation for a wide va r i e ty  of inves t iga t ions .  
As a r e s u l t ,  Euler 's  buckling, l a t e r a l  buckling, and Wagner's buckling together  
form a s ing le  system. Each of them show a unique exis tence,  and it has become 
c l e a r  t h a t  t he  general buckling of members is indicated by t h e  combined values 
of t he  three .3  

Wagner's explanation states t h a t  t he  cen- 

. l ing.  These inves t iga tors  claim t h a t  general ly  t h e  shear  center  and t o r -  
However, 

IW. R. Osgood: 

2Robert Kappus: 

33. N, Goodier: 

The center  of shear  again, JOURNAL OF APPLIED MECHANICS, Vol. 10 
(1943), p. A-62. 

Dril lknicken zentr isch gediuckter Stabe m i t  offenem Pro f i l  i n  
e las t i schen  Bereich, Luftfahrforschung, Bd. 14 (1937), p. 444. 

Torsional and Fl.exura1 Buckling of Bars of Thin-Walled Open 
Section under Compressive and Bending Loads, Jr. Applied Mechanics, Vol. 9 
(1942), P. A. 103. 



Itre s h a l l  consider an open cross-sect ion mmber such as t h a t  shown i n  Figure /155 
2.3.14 following Wagner's i n i t i a l  paper. If  a tors ion  feat is applied around 
the  shear center  l i n e  S, a shear  flow indicated by t h e  arrow i n  Figure 2.3.15 
can be considered, f o r  a member i n  which the  length and center  l i n e  of the  thick-  
ness of t h e  cross-sect ion is  expressed by z. 
ends i s  denoted by ;.. Denoting by r t h e  connecting l i n e  f r o m  t he  shear  center  
to t he  point  u on t he  sec t ion  center l ine ,  owing t o  the  angle of ro t a t ion ,  $ i n  
both sect ions 1 and 3 of the  member length z, t he  u poin ts  on the  two sec t ions  
w i l l  move with respect  t o  each o t h e i  by only r$. 
length,  t h e r e  is an angular displacement r$/z .  

The tors ion  angle between the  two 

Consequently, f o r  t he  un i t  

Figure 2.3.14 

I- SS 

'4 
1 !F 4 

A t  po in ts  u, due t o  tors ion ,  it can be seen t h a t  sec t ion  1 crosses with an angle 
r $ / z .  In t h i s  case, the  s t r a i g h t  l i n e  uu is perpendicular to  both end planes 
before and after the  tors ion.  When $ changes i n  the  d i r ec t ion  z, these  are con-/146 
s idered  t o  have a to r s ion  angle dJI with respec t  t o  each o the r  considering the  
two sect ions i n  the  space d t .  (Figure 2.3.16) 
AB A 3 b i s  twisted,  only d$ around the  sec t ion  center  S, it becomes AiBlA3B3,  
and the  uu3of the  pos i t ion  r from the  shear  center  becomes ~ 1 ~ 3 .  uu1 = rd$, 
n u 3 ,  ulu jare  respec t ive ly  r i g h t  angles t o  the  member sec t ion  cen te r l ines  AB, 
A1B1. In order  t o  determine the  relative s t r a i n  i n  the  d i r ec t ion  of t he  mem- 
ber ax is  before and after the  to r s ion  of t h e  small s t r i p s  with a length dz and 
a width du on the  center  l i n e  at poin t  u, i f  these  small s t r i p s  are projected 
on the  plane uu3ul, s ince  t h e  plane is perpendicular to  r, and r has an inter- 
=ction angle a AB and u, t he  graph shown i n  Figure 2.3.16 (a) is  obtained. 
Since uu l i s  rd$, angle uujul becomes r d$/dz, u l u l '  has a s lope r d$/dz with 
respect  t o  uu'. 
ence i n  displacement of du s i n  a* r  d$/dz occurs. 
ence becomes 

A t  first, when the  member 

Consequently f o r  t he  width uu' = u1u1' = duesin a, a d i f f e r -  
If r s i n  a = ru, t h i s  d i f f e r -  

n;P - du sin a I-- -9'-1- drc d2 

If we denote by 
=is, i . e . ,  the  degree of warp, with respect  t o  the  width du on the  center l ine ,  

the  displacement of the sec t ion  i n  the  d i r ec t ion  of t he  member 



Figure 2.3.16 

is establ ished.  

5-=,.*Vt oy 

The displacement at  an a r b i t r a r y  point  u on the  cen te r l ine  of thickness of t h e  
sec t ion  is  expressed by - .  

f I- dn 

me or ig in  of in tegra t ion  is determined later. 
t i o n  of the  normal t o  t h e  sec t ion  cen te r l ine ,  i . e . ,  i n  t h e  d i r ec t ion  of thick-  
ness, there  i s  displacement i n  t h e  d i r ec t ion  of the member axis, and wr i t ing  

Similar ly ,  even i n  the  direc-  

rn = r cos a 

Therefore, t h e  displacement of the  points expressed by u, n on the  merrwer sec- 
t i o n  is 
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Here w is the  degree o displacement of a sec t ion  wherev = 1 ,A t he  d i r ec t ion  
of the  member axis. 
i t i o n  u, 

Since rn is constant i n  the  d i r ec t ion  of the  normal t o  pos- 

wm=rm-n 

The l o i e r  l i m i t  of in tegra t ion  i n  ( l a )  is assumed t o  be t h e  pos i t ion  where the  
averagc of the  displacements 5, in t he  d i r ec t ion  of the  member ax is  becomes 0. 
That is, the  condition is 

J A  r (dA=O. & Q Z  SAwdA=O 

moreover, s ince  the  average value of Wn is o r ig ina l iy  0 

The /A i n  t he  above equation ind ica tes  in tegra t ion  over t he  e n t i r e  domain of 
the  sec t ion  a h i l e  JU in teg ra t e s  over t he  t o t a l  length of the  sec t ion  thickness 
center l ine.  

d 

Figure 2.3.17 

When JI' is  not  constant,  t he  sho r t  
s t r i p  of width du s i n  a orthogonally 
projected cn r of sec t ion  du then has  
a curvature of 

1 
rv" 

p=- 

(See Figure 2.3.17.) 
elongation or contract ion occurs i n  the  
d i r ec t ion  of t h e  nember ax is  

For t h i s  reason, 

Denoting the  stress i n  the  d i r ec t ion  of 
the  ncmber axis due t o  t h i s  as CJ 
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There fore  

The change i n  u i n  t he  d i r ec t ion  n is 
-. 

Bd=ECIM.tm 
8ll 

Therefore, adding these 

Since there  is no load i n  t h e  d i r ec t ion  of t he  axis 
- 

a-dA=O 

Comparing (2) with ( l ) ,  ( l a ) ,  we obtain 

Moreover, s ince  the  to r s ion  has been applied around the  shear  center ,  f r o m  t he  
de f in i t i on  of the  shear  center ,  u does not  form a bending i n o r a t .  

Due t o  the  presence of u, r e s i s t ance  occurs with respect  t o  to rs ion .  
Benoting the  member length by 1, the  to r s ion  moment around both ends by M ,  when 
the  addi t ional  to rs iona l  moment -dM,/dz = m, f r o m  outs ide along the  member axis 
is given, the  s t r a i n  energy of t h e  member is 

/148 

The first term is based on Saint-Venant's t o r s iona l  shear  s t r e s s ,  and the  sec- 
ond term is based on t h e  d i r e c t  s t r e s s  described above. Moreover, when the  point 
o f  pos i t ion  u on the  sec t ion  has a d i f fe rence  i n  the  d i r ec t ion  of z, shear  
s t r e s s  a l so  occurs, but  t he  s t r a i n  energy due t o  t h i s  is disregarded. 
Equation (2b) 

From 

Here, we s h a l l  c a l l  t h i s ,  followin Wagner, Biegungs-verdrehungswiderstand (re- 
s i s t ance  t o  bending with t o r s j m ) .  4 
'A t  f i r s t ,  Wagner used Cbd i n  pla.,e of CBT, and claimed t h a t  t h i s  was i n  order  
t o  s implify expressing the  in tegra t ion ,  
l i shed  j o i n t l y  by Wagner and Pretschner a t  Lufo. (1934), CBT and Cbd a re  mixed, 
A s  indicated below, d i f f e ren t  symbols a r e  used by d i f f e r e n t  authors. 
pus) , r (Goodier, Bleich) , C 1  (TimoshenkQ), CM (Kollbrunner, Meister) 

Moreover, h t e r  i n  the  papers pub- 

C* (Kap- 
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In order  t o  u t i l i z e  the  p r inc ip l e  of  hypothet ical  displacement, espec ia l ly  
when both ends of t he  member are f ixed ,  when the  d i f f e r e n t i a l  displacement S$ 
is given, according t o  the  hypothesis,  

Moreover s ince  

The following equation i s  es tab l i shed  W = o T  

- - j:= +it 

The end conditions of the  member are included i n  o r d t r  t o  ca l cu la t e  t h i s .  As a 
r e s u l t ,  

Since t h e  above equation should hold with regard t o  any size S$, 

Integrated once, t h i s  becomes 

The der iva t ion  of t h i s  equation w a s  c a r r i ed  out  by Wagner, and is extremely ele- 
gant,  bu t  t he  d i f f e r e n t i a t i o n  ca lcu la t ions  are troublesome. For t h i s  reason, 
we s h a l l  i nd ica t e  below the  method of t h e  author which der ives  equation (Sa) 
m r c  eas i ly .  

We s h a l l  consider an overhanging beam (Figure 2.3.18) with a member length 
We assume t h a t  a to r s ion  moment M is applied t o  the  f r o n t  end, and an addi- 1'. 

t i o n a l  t o r s iona l  dM,/dz dz i n  the  middle, a to r s ion  angle I$ a t  t he  f ron t  end, 
and a tors ion  angle $ at z. 
cu la t e  the  i ork of t he  ex terna l  forces  i n  t h i s  sec t ion ,  and the  s t r a i n  energy 
due t o  the in t e rna l  forces .  The deformation i n  t h i s  case i s  assumdto  be as 

/149 - lu'e s h a l l  take the  sec t ion  z from the  t i p ,  and cal- 

1We have taken as an example, t h e  overhznging beam on page 174-180, of t he  a r t -  
i c l e  Verderhung und Knickung von offenen P ro f i l en ,  Luftfahrforschung, '!si. XI 
(1934), published by H. Wagner and W. Pretschner which i s  frequent ly  c i t ed ,  as 
a t h e s i s  of Wagner's. 
overhanging beams. 

The discussion below appl ies  a l s o  t o  cases o ther  than 
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or ig ina l ly ,  and consider t h a t  the  to r s iona l  moment ( s t r e s s )  and normal stress u 
operating on the  sec t ion  a t  z t o  be the  same as the ex terna l  forces .  

I 
- .- 

F i g u r e  2.3.18 

The first term on t h e  l e f t  s i d e  of t he  above equation is  t h e  work of  the  
tors ion  moment of the  E:-ee end, t he  second term is t h e  work done by the stress 
tors ion  moment of  t he  sec t ion  [ l i t e r a l l y  cut]  end and the  t h i r d  term is the  work 
done by the  addi t iona l  t o r s iona l  moment. The fourth term is  t h e  work done by 
the  normal stress based QP the  t c  3ion working on the  sec t ion  [ l i t e r a l l y  cu t ]  
plane and in t eg ra t ion  is :zrried out over t he  e n t i r e  range of the  sec t ion  end 
plane.  

If Equations (1) (2b), and (4) a r e  used, 

Inser t ing  (7) and d i f f e r e n t i a t i n g  equation (6) f o r  z ,  _ _  . 

1 ECBT vlqitt : E F T  qm- WET q r ~ t + a 9 r s  
' Z - M . Q ' + 2  2 2 

Leaving the term M, 0.. the  l e f t  s i d e ,  t r ans fe r r ing  the  o the r  terms t o  t h e  ri h t  
s ide ,  and dividing by $I,  t h e  same r e s u l t s  are obtained as i n  Equation (Sa). Q 

'Timoshenko first proposed t h i s  r e l a t i o n  f o r  the  case of t he  lateral  buckling of 
an I beam i n  1905. Theory of E l a s t i c  S t a b i l i t y  (McGraw-Hill, 1936), p.  257. 
Later, lie expanded t h i s  method f o r  the  bending and to r s ion  of thin-walled mem- 
bers  of open cross-sect ion.  See Theory of Bending, Torsion and Buckling of 
Thin-Walled Members of Open Cross Section, Jr. Franklin I n s t i t u t e  239 (3,4,5),  
201-213, 249-268, 343-361 (1945) and h i s  Collected Papers (McGraw-Hill 13531, 
p.  576. 
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Also, d i f f e r e n t i a t i n g  t5is by z ,  

the  equations f o r  cont inui ty  of bellding with to r s ion  a r e  detc rmined i f  the  t o r -  
s ion of a member o c w r r i n g  arocnd the  shear  center ,  dut- t o  a loa,! applied t o  the  
member is expressed by these  equations,  and i f  t h e  re!  a t ions  L?xprcs ; ing the  
bending of a member occurring on the  p r inc ip l e  ax is  i s  t*stahlLsh-d and connected 
with these equations.  

Generation of Shear Stress Based on Change i n  Normal S t r e s s  

When there  is a change i.. the  normal stress u i n  d i rLi t ior ,  :, a shear  
stress T is  generated together  with t h i s .  
t o  the  T~ measured along the  cross-sect ion center l ine ,  and T~ co responding t o  
the On measured a t  r i g h t  angles t o  the  cross-sect ion center l in t  
equilibrium of the  forces  i n  t h e  in f in i t e s ima l  rart with a wid+:- du, length dz, 
and thicknt-ss t 

We s h a l l  consider G,; cvresponding 

From the  

d( r.-t) d A  =&"'e w,. dA  /150 a2 - 

A t  pos i t ion  u 

the  moment due t o  t h i s  shear  stress is  

The shear  s t r e s s  based on the  normal stress On operates i n  d i r ec t ion  n ,  and 
becomes a parabola.  

Therefore 

and, assuming 
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This agrees with 

and 

Moreover, the  r e su l t an t s  of  T due t o  (8) are 0.  They are e s s e n t i a l l y  d i f -  
fe ren t  from the  T ind ica ted  i n  Equations (32), (33) i n  the  above sec t ion .  

Calculation of CBT 

The following procedure is used ifi order  t o  ca l cu la t e  CBT by (9) ,  ( l o ) ,  
(11). According t o  ( l a )  

rlU 

wr= J r,drr 

but  denoting t h e  o r ig in  of t h i s  in tegra t ion  by uo, t he  foot  of  the  perpendicular 
t o  the  member thickness cen te r l ine  from the  shear  center ,  and denoting wu a t  ~ 0 / 1 5 1  
by wuo (Figure 2.3.19), - 

Here wuo Is the value of wu a t  po in ts  uo determined by the  conditions of ( IC) .  
rn  i s  zero a t  t h i s  point .  We assume t h a t  the  case due t o  the  path of in tegra-  
t i on  i n  an upwards d i r ec t ion  frcm uo as pos i t i ve  and t h a t  t he  case due t o  t h e  
path of in tegra t ion  i n  a d i r ec t ion  downward from uo i s  negative.  I f  we draw a 
l i n e  tangent to t he  cen te r l ine  of t he  member thickness from the  shear  center  S,  
and denote point  of tangent by ul ,  here,  ru is  0. 

When w i t :  in t he  range of inL2gra-  
t i o n ,  u passes oves u1, t h i s  i s  de t e r -  
mined by the  following equation (Figure +*j: 2*3*21)) 

w = ~ s +  xa rm du- f:, du (13) 

Moreover, when the u passes beyond the 
tangent po in t  u2 

I ine - 
._ . -  

(a) 

F i g u r e  s 2.3.19 
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de deternine w below by the sane method. 
sec t ion  is  determined by s t r a i g h t  l i n e s ,  (Figure 2.3.20 ( a ) ) ,  i f  u i s  on l i n e  
Sul,  ru is  0,  and i f  l i n e  uul i s  within the  angle Suluo, equaticn (12) i s  used, 
while i f  l i n e  uul passes outs ide of angle Sulug, equation (13) Is used. The 
same is t rue  below. 

When the  configuration of  the cross-  

Next, i n  order  t o  ca l cu la t e  CBm, from equation ( lb)  

Inser t ing  t h i s  i n  ( l l ) ,  (Figure 
2.3.19 (a)) 

c B T " = [ A  Wm'd.4 = In[-! IU+' dn. du 
¶ 

: - 
r,'-n'dn.du=- *' [ mtdu 

In a un iax i l l a ry  symmetrical cross- 
sec t ion  member, there  i s  a uo on the  
symmetric axis. Here, s ince  the  torsicln 
extension of t he  cross-sect ion i s  

-- ¶ 1 2 "  

(a) 

Figure 2.3.20 

Therefore, from (12) 
wn.=o 

w%=[:o r,du 

In the case of channel s t e e l  as i n  Figure 2.3.21, within the  range uoB, point  
B becomes the poin t  3f tangent,  so 

Figure 2.3.21 

w,-e cirt=ey 
J "0 

- .  

Therefore, ct poin t  B ,  t h i s  i; eh/2. Moreover, /15? 
within the  range BA -- 

w , , = ~  eh -TIa h dx=2-T (x -e )=eh- -  eh h hx 
2 - 

A t  point  A ... 
h 

W" =-i-. ( e  -b) 

Within the  ranga uoC 

Therefore, a t  poin t  C -eh/2 - 
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Since point  C becomes the  tangent po in t ,  wi thin CD 

A t  point D 
h 
2 IDI=--(6-e) 

When u 5 ul, i n se r t ing  equation (12) i n  (10) 

When u < u 5 u2, i n se  :ing (13) i n  equation (10) 

Here 

Uhen u2 4 u < - u3, i n se r r ing  (14) i n  equation (10) 

Here 

Using these,  t he  following procedure i s  obtained f o r  determining C B T ~  for t he  
channel steel shown i n  Fjgure 2.3.21. 

.. . 

=-(e% th: + 6 be' -6 eb' i -2  b' } 12 

BTn Also, determining C 
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I f  we determine CBT f o r  I s t e e l ,  Figure 2.3.22, we obtain the  following 

A For EF,  DE, AB, BC w r = 7  x Y 
I 

Figure 2.3.22 

For AD 

Wagner's Buck1 ing Values 

When a compressive force i s  applied t o  s o l i d  angle s t e e l  as shown i n  Fig- 
ure 2.3.23, it can be considered t h a t  deformations of type (a) o r  (b) occur. 
The reasons fo r  t h i s  are (1) the  p o s s i b i l i t y '  o f  l oca l  buckling when two legs  
of angle s teel  are supported on three  s ides  and a p l a t e  with one free s i d e  
appl ies  a compressive force t o  the  two opposing symbol support  s ides ,  and (2)  
t h e  p o s s i b i l i t y  of buckling when, as a r e s u l t  of compression, to rs ion  occurs 
around the shear  center .  

Figure 2.3.23 

Case 2 does not  d i f f e r  i n  terms of deformation, 
from case 1, s ince  i t  happens t h a t  i n  angle s t e e l ,  the  
shear  center  is a t  the  point  of i n t e r sec t ion  of  the  two 
s ides .  
( a ) ,  and f o r  (b) is compared, s ince  (b) requi res  only 
enough extra energy t o  change the  configuration of t he  
c ros s - sec t im ,  usua l ly ,  case (a) i s  t r ea t ed  as a problem 
i n  l i t e r a t u r e .  

If the  energy required f o r  the occurrence of 

We s h a l l  consider the case i n  which a member sus- 
t a in ing  a compressive force P undergoes to r s ion  and 
then buckling. In t h i s  case, the  to r s ion  angle i s  
in f in i t e s ima l  and we assume t h a t  we can disregard the  
square o f  t h e  term f o r  it. I f  to rs ion  occurs i n  a 
member, a normal s t r e s s  u and a shear ing force T accom- 
panying i t  occur,  but  the r e su l t an t  of 0 i n  the d i rec-  
t i o n  of the  member axis na tu ra l ly  is  0.  Moreover, the  
e f f e c t  of T is  t o  cause a pure tors ion  moment, and i t s  
magnitude, from (Sa) i s  expressed by 

'Timoshenko solved t h i s  problem fo r  the  first time i n  1910. 
S t a b i l i t y  (McGraw-Hill, 1936), p. 337. 

Theory of Elastic 



Since the  cross-sect ion has an inc l ina t ion  r$' a t  a post ion r from t h e  shear  
center ,  owing t o  twist ing,  a compressive force u i n  t he  d i r ec t ion  of the  member 
ax is  produces a component a t  r i g h t  angles t o - r  yhere 

1154 - 

&I r(p'=ar(p' 

Consequently, a tors ion  moment 

occurs around the  shear  center .  G = PIA, I s p  
secondary moments around the  shear  center  and 

= /A$&, Isp are the  extreme 
assuming 

isd=. ISP 

When an elast ic  to r s iona l  r e s i s t ance  is present  along t h e  member, 
a l s o  necessary t o  add t h i s .  When a u n i t  t o r s ion  angle i s  appl ied t o  a 
length,  assuming t h a t  t he re  i s  a to r s ion  res i s tance  8 ,  B i s  considered 
of  spr ing  constant. The to r s ion  resistance mcment p e r  u n i t  length due 
is 65 ,  i f  t h i s  

In  the  case of 
the  conditions 

2 ends with simple support ,  equation (20) is solved assuming 

a r e  s a t i s f i e d .  
to rs ion  angle i n  the  center  of t he  meEber. 

In this case, when B = 0, we assume JI = $0 s i n  r z / l .  Y O  is  the 
From t h i s ,  assuming equation (20) 

t o  be an Eigen value of  P, w e  obtain 
p-=-(GJr - 1  4- +CBT) 

u-=- 1 (G jT + T ~ ~ s l )  

U P 1  

This is ca l led  Wagner's buckling value.  When (18) 

IaP 

Pw, uw correspond respec t ive ly  t o  Euler 's  buckling 
(See ar t ic le  2 .1 .1 ) .  

_. 
W ' E I  %=E P * = 7  a.=- 1' 

is used 

value 

(22) 
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When the  spr ing constant B is present ,  with n an in teger ,  t he  Eigen value 
be comes 

Dif fe ren t ia t ing  (23) f o r  l / n  assuming 0, i f  w e  determine the  member length 11 
giving h ninimum value of P 

l i = ~ l ~ E C ~ r l ~  
(24) 

If t h i s  value is inser ted  i n  (23),  f o r  1 > 11 

(26) /155 

should be used. 
taken on the  longi tudinal  axis, and t h e  buckling loads are f-ndicated f o r  various 
ends. 

In Figure 2.3.24, 1/11 is taken on t h e  lateral axis, and P is 

Figure 2.3.24 Figure 2.3.25 
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Compound Buck1 i n g  from Central Compression, S i m p l e  Bending and S i m p l e  Torsion1 

Let us consider the  compounds bending and to r s iona l  buckling i n  t h e  case 
when an ax ia l  farce P acts on the  center  o f  grav i ty  0 i n  a thin-walled open 
sect ion,  such as t h a t  shown i n  Figure 2.3.25, a bending moment MX, My acts on 
the  pLane of the t w e  p r inc ip l e  axes and a tors ion  moment MZ acts around t h e  
shear  center  axis.  

We take the X, Y axes p a r a l l e l  t o  the  p r inc ip l e  ax i s ,  passing through the  
shear  center  S of the  member before  deformation. ‘fie Z i s  t h e  shear  center  
l i ne .  We assume t h a t  when the  stresses ac t ing  on thec ross - sec t ion  are as shown 
i n  the  f igure,  w e  are pos i t ive .  
of stress, viewing the  end planes i n  the  pos i t i ve  d i r ec t ion  of  t he  coordinates,  
w e  s h a l l  assume t h a t  f o r  the  normal stress P,  t h i s  i s  p o s i t i v e  when i n  t h e  pos- 
i t i v e  d i r ec t ion  of  t he  coordinates ,  and t h a t  for bending and to r s iona l  moments, 
combining the  d i r ec t ion  of r o t a t i o n  o f  t h e  moments and the  d i r ec t ion  of  ro ta -  
t i o n  of the  r i g h t  t w i s t  and pDinting a vec tor  arrow i n  t h e  d i r ec t ion  of move- 
ment of the  r igh t  t w i s t ,  we assume t h a t  they are pos i t i ve  when the  arrow is i n  
the  pos i t ive  d i rec t ion  of  the  coordinates.  
ina tes  i n  terms of moments. 

That is, with regard t o  t h e  planes of  a. , ion 

In addi t ion,  w e  w i l l  aim t h e  coord- 

When t h e  end planes of the  member are viewed 
i n  the  negative d i r ec t ion  of t h e  coordinates,  t he  
stresses which are i n  a d i r ec t ion  opposite t o  
t h a t  described above are pos i t i ve .  
p r inc ip l e  axes of t he  cross-sect ion as X ,  Y, Z; 
t he  geometrical moment o f  i n e r t i a  around t h e  
ax is  as I,, t he  geometrical moment of i n e r t i a  

.around the  Y axis  as I . 
when X ,  Y ,  Z are f ixed  i n  space, and the  cross- 
sec t ion  moves tqgether  with t h e  bending and t o r -  
s iona l  deformation of t h e  member. We consider 

We express the  

We denote by X I ,  Y 1 ,  Z 1  
the  coordinate axes re 1 ated t o  the  sheer  center  

Z1 and Z p a r a l l e l .  
the  case when it is  i n  the  d i r ec t ion  of t he  pos i t i ve  range of  Y ,  from t h e  posi-  
t i v e  range o f  X,  i .e.,  as shown i n  Figure 2.3.26. The value is  extremely small, 
and it can be assumed t h a t  .. 

The turn  angle $ of X I  with respect  t o  X is pos i t i ve  i n  

~ c p * l ,  sinco=cp 

Since we are dealing with a thin-walled open sec t ion ,  wc assme t h a t  t he  con- 
f igura t ion  does not change when the  member is displaced. 
ment of t he  shear  center  by & and n, t he  movement of t h e  center  of grav i ty  0, 
with the  coordinates of center  of grav i ty  xo, yo 

Expressing the  move- 
/156 - 

(2 7) €+ X #  Qw $-yo sin I?- xo=&yo(p 
. .  

~ - ~ 

’J .  N. Goodier makes the  same type explanation as t h i s .  Torsional a id  Flexural 
Buckling of Bars of Thin-Walled Open Section under Compressive and Bending 
Loads. Jr. Applied Mechanics, Vol. 9 (1542), p. A 103. 

The author has attempted t o  c o n s t n c t  a system where the  d i r ec t ion  of the  
external  forces  d i f f e r s  from t h a t  of Goodier. 
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1 + Z@ sin c" +yo sin (p-YLl=P + % 0 9  (28) 
. -  

The movemen: of the  center  of  grav i ty  causes a bending moment due t o  the  forces  
i n  the d i rec t ion  of the  axes. 
t i o n  i n  the  plane X Z  i s  

That is ,  the  bending moment t h a t  causes def lec-  

P(p  + %c (P) 

The bending moment causing def lec t ion  i n  plane YZ is 

Since JI i s  small, these  are equal t o  the  bending moment planes X 1 Z 1 ,  Y 1 Z 1 .  

The bending momems Mx, My and t h e  tors ion  moment M, produce force  compon- 
en ts  owing t o  displacement of  t he  plane of act ion.  
M x  and My are vec tor  expressions and i n  t h e  d i r ec t ion  3f X 1  there  i s  Mx cos 9 
and My s i n  JI, while i n  the  d i r ec t ion  Y 1  t he re  is -lix s i n  $ and My cos iL. 
over, a3 shown i n  Figure 2.3.27, due t o  M, t h i s  i s  

x1 

the  pos i t ive  d i r ec t ion  of  Y s o  the  s ign  is not  changed, and becomes - M , z  

while the  latter, s ince  it views the  end Dlane YZ i n  t he  negat ive d i r ec t ion  of 
dv . Therefore, the  sum of the  bending X,  the  s ign  is reversed, becoming 

moments ac t ing  i n  X l Z l ,  br inging to-gether t he  vectors  i n  t h e  d i r ec t ion  of Y 1  
i s  

As shown i n  Figure 2.3.26, 

More- 
d! i n  t h e  d i r ec t ion  of 

- M , x  dT i n  t he  d i r ec t ion  of Y 1  but  t h e  former views t h e  end plane X Z  i n  

-nfSm 

d t  

M.'di- 

h (31) 
d z .  . 

-M= c. ( p + ~ r  cos (p+~,- = - . I ~ V + M P + M ~ I '  

Similar ly ,  t he  sum of the  bending moments ac t ing  i n  plane Y I Z 1 ,  br inging togeth- 
er the vectors  i n  X 1  is 

The equilibrium due t o  the  bending moments i s  determined as follows, with 5 ,  
rp and JI as parameters. 

The equilibrium with respect  t o  the  bending 
moments ac t ing  i n  plane X l Z l  from (29) and (31) 

?-,= ti**- -.: 

X I ' jdty- iT- .  - is  

EI,E"+P(~-~~(~)-M~(P+M~+M.II'=O (33) 

The equilibrium with respect  t o  the  bending mom- 

is 
* Y  Lc ;, \& 1 4  en t s  ac t ing  i n  the  ??sure Y l Z 1 ,  from (30) and (32) 
' 

Figure 2..3.2? 
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____I _ -  -_-- 
I 

1 -  

El,  9'' + P( o + x ~ c ~ )  - - M x - h l r p -  M,i'=O ! I 

e E", "1: i n  (33) and (34) &--be vigwsd as the m a t u r e  i n  the p l  
Y l Z l  s ince $ is 

tors ion moment around these 
n an arbitrary portion of an 

small area tdu on t he  sdct ion undergoes the  following relative 
1t 1D-t i n  comparison with before moving. Here, X l Y 1  ind ica te  the coordinates 

basured by the  axes of  the  coordinates f X l Y 1  of  the inf in i tes imal ly  small area. 

c 
2o I- 

- ! 

t 

b e q u e n t l y ,  i n  plane X121 ,  the s t r i p  du has 'an  inc l ina t ion  c 

d this f o r r s  the tors ion moment i n  th d i r ec t i an  of t he  shear center. 

a t  is, the  tors ion m m n t  due t o  udA 

40 

tegrat ing t h i s  over t he  entire cross- ec t ion  
- ~. _- .-- .- ~ . I - .  

MP- ( u dA (€'-y1v')*y1- u dA( 0' + XI(p')%,) 
- .-- . 

. . - . - . . .- . 

1 - - . - . . . .. . .. . ... 

e u i n  the  above eq&tion is the  no 
ff the  collpressive stress is posi t ive,  

1 stress within €he cross-section, and 

(37) 

E 
Even 

U 
Rolnan odd 



Inser t ing t h i s  

In order  t o  carry out the  above ca lcu la t ions ,  we denote the  coordinates r e l a t ed  
t o  the pr inc ipa l  axis  as x, y, and express the re la t ionship  with the  coordinates 
X I ,  Y1 with respect t o  axes X I ,  Y 1  by 

x1=x0+x, Yl=Yo+Y 

And, since1 

Inser t ing  t h i s  i n  (38 ) ,  and ad ' ing M,, we obtain the  following equation which 
expresses the t o t a l  to rs ion  moment. 
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I f  we make the  three  equations (33), (34), and (39) simultaneous, the  compound 
buckling values for bending and to r s ion  with respec t  t o  a thin-walled open 
cross-sect ion are determined. 

Flexure and Torsion of a Member w i t h  Lateral Load and Added Flexural 
!.\omen t 2  

Given a member with a mul t i - l a t e ra l  cross-sect ion,  made by welding together  
several  t h in  Tla tes ,  we denote i t s  cen te r  of grav i ty  by 0 (Figure 2.3.29). We 
denote by x and y the  p r inc ipa l  axes of t h e  cross-sect ion,  and take  z i n  t he  
d i rec t ion  of  the  member axis. When a lateral  load a c t s  on t h i s  member, we assume 
t h a t  Navier's law is  maintained, t h a t  the  c m f i g u r a t i o n  of t h e  cross-sect ion is  
not de foned .  
taking as O i  t he  center  of grav i ty  due t o  the  bending ac t ing  on t h a t  p l a t e ,  ro- 
t a t e s  around the axes t h a t  are orthogonal t o  the  p l a t e .  
denote by ~i the  elongation i n  d i r ec t ion  Z i n  t he  center  of grav i ty  of the  
p l a t e .  
placement of the  center  of grmrity O i  of p l a t e  i is expressed by t h e  d is tance  
O i 1 O i '  = s i  between the  center  of grav i ty  O i l  a f te r  displacement and the  pro- 
jec ted  poin t  O i '  onto the plane of displacement of O i .  

'The following r e l a t i o n s  are a l s o  obtained i a  the  coe f f i c i en t s  i n  t h e  above 

Plate I which i s  a t  a d is tance  R 1  from the  center  of  grav i ty ,  

(Figure 2.3.29a). We 

Denoting by Q, no, $ the  movement of the  center  of grav i ty  0, t he  d i s -  

The curvature of p l a t e  

cross-section. 

Isp, geometric moment o f  i p e r t i a  around shear  center .  

S ,  dis tance  between shear  center  and center  of  grav i ty .  
K,= Hy +- &*-Xm IS P 
~,rHz+zH~-YuIsP 

K ~ , K Z  are the sec t ion  coe f f i c i en t s  used by Goodier (Journal of 
Applied Mechanics, (1942), p .  A106). 

I., a member with a cross-sect ion i n  which the  x axis is symmetrical, 

In a member with a cross-sect ion i n  which the  y axis i s  symmetrical, 

In  a member with a cross- ,sect ion i n  which both axes are symmetrical, 

2F.  Dleich: 

Hx = xHy = 0 

Hy = yHx = 0 

Hx = Hy - - XHy = yH, = 0 
Buckling Strength of Metal S t ruc tures  (McGraw-Hill 1952), p .  107. 
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i becomes si'!. From tF.e cont inui ty  conditions of the  p l a t e ,  

Denoting by E the  t o t a l  average elongation of the  p l a t e  and the  t o t a l  cross- 
sec t ion  area by A 

a 

A e = z A i &  
Id 

I f  we denote by 

er=&--d 

the  difference between the elongation i n  the center  .f grav i ty  i n  each p l a t e  
and the avcrage elongation 

From equation (40) 

Since (41) and (42) are i n  equations r e l a t e d  t o  ~ i ,  it i s  poss ib le  t o  sol- .e  t h i s  
and t o  express t h i s  by the  curvature si" of each p l a t e .  

Figure 2.3.29 

Assuming " 0  be small and cos 
cos = 1 and s i n  = 

I f  t h i s  i s  used, t he  s t r a i n  energy of 
t h e  p l a t e  is  

If  a strain energy 

v,=* Jrd'dZ 

Due 'to the  Saint-Venant 's  t o r s ion  moment i s  applied t o  t h i s ,  t h i s  becomes the  
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t o t a l  s t r a i n  energy of the  member. Moreover, t he  Nark of  the  load is  exyressed 

T =s( €++mqW +cPm)dz 
by 

Qx* qy and m a re  the l a t e r a l  loads i n  d i rec t ions  x and y passing through the  
center  of  grav i ty ,  and the  t a r s ion  moment. Consequently, the t o t a l  po ten t i a l  
energy i n  t h i s  member i s  

U=Vc+ Vs-T (44) 

That the buckling condition formula is determined under the  condition t h a t  t he  
change i n  U due t o  the  displacements o, 0, , i s  minimum. Using the  merhod 
of var ia t ion  (44), the  following four equations are obtained: 

/160 - 

(45) 

(46) 

(47) 

EIw(o'"' + ERwCp'"'=qa 

Ell~o'' "+ ER+ "'=qw 

~ ~ ~ i ~ l l r l  + E R ~ ~ , , ~ ~ I I  + E R ~ C ~ ~ ~ ~ ~ - - C ~ ~ ( P ~ ' = ~  

EAe=O (48) 

Here 

When a load i n  the  d i r ec t ion  of t he  axis does not  a c t  upon t1.e member, (48) i s  
constant ly  s a t i s f i e d .  In (45),  (46), (47), wr i t ing  

We obtained 

we obtain 

=m+yga--x.qv 
. .  . 

(54) 
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i s  of cxact ly  the  same f0.m as (Sa), so  it can be seen t h a t  5 ,  rl a r e  the degree 
of movement of the shear  center ,  and the  r i g h t  s ide  expresses the tors ion  moment 
around the  shear  center .  
5 0  = 0 ,  n o  = 0 i n  (49) and (SO),  the  movement of the shear  center  when the  ten- 
t e r  of grav i ty  does not move i s  5 = Ry$/I;,n - Rx$/Ix, so the  shear  center  i s  
seen t o  be xs = Rx/Ix, ys = Ry/Iy. 

As f o r  the  pos i t ion  of the  shear  center ,  wr i t ing  

Using the  parameters , t he  s t r a i n  energy becomes as follows 
1 '  

v = ~ s ,  E'"+EIzfx+ ECgT(p"' + GJrVt:+EA ;x)& (56) 

Denoting by T the v-ork done by the  load with respect  t o  t h i s ,  t he  t o t a l  poten- 
t i a l  energy becomes 

Member Sustaining Central Compressive Load 

When a cbn t r a l  compressive load P i s  sustained,  w i t h  

P =- A 

Then 

/161 - 

The xs, ys i n  the  above equations a re  the  coordinates of the  shear  center  w i t h  
respect  t o  the  pr inc ipa l  axes. Therefore 

(61) PY, elf - Px, p" +ECe+(p"" + (Pisp* -C JT)cptl=0 

'Bleich maintains t h a t  these equations hold a l so  within the non-e lzs t ic  
range and hs  uses Et  i n  place of E and Gt i n  place of G .  
Buckling Strength of  Metal S t ruc tures ,  p . -  124. 

The author devised a method which tak-s i n t o  consideration the  non-e!astic 
e f f e c t ,  based on the  proper t ies  of the  cross-section and published h i s  f indings 
i n  the co l lec ted  papers of the 8th J o i n t  Conference on S t r e s s  Dynamics (1958), 
p.  25. 

(See Ar t i c l e  2.1.4.) 
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(59), (60) and (61) correspond respect i -  iy  t o  (33), (34), and (39). 

Compound Euckling Consisting o f  Central  Compression, Simple Bending, 
Simple Torsion, Added Torsion, and Latera l  Load. 

I f  we d i f f e r e n t i a t e  (39), which twice d i f f e ren t i a t ed  (33) and (34) by z 

Comparing t h i s  with (59), (60), (61), i f  we i n s e r t  t he  r e l a t i o n s  xo = -xs, 
Yo = -Ys, 

As cai be seen f r o m  t he  r i g h t  s ide  of equation (67), t he  presence of a compress- 
i ve  r^Drce t h a t  acts redice the  size of t he  tors ion  moment due t o  the  d i s t r i b -  
u t ive  load. (65), (66), (67) are general equations.  

In par t i cu la r ,  assuming P = Mz = m = 0, they express a l a t e r a l  buckling 
equation. Moreover, assuming the  loads o ther  than M, t o  be 0,  

Assuming a simple support at  both ends of member length 1, wri t ing 

q=c. Pin E 
4 

where z = 0,  t = 1,  = 0, so (69a: becomes 
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Here 

Then 

This is exact ly  the  same as Equation (2.2.1). 

I n  a Member w i th  a Cross-section wi th  One Symmetrical Axis,  one of  
the Pr incipal  Axes becomes a Symmetrical Axis 

Denoting t h i s  by XX, the  shear  center  and center  o f  grav i ty  are on t h i s  
l i n e .  We draw an ax is  YY through t h e  shear  center .  

From (33), (34), (39), we obtain the  three  equations respect ively:  

From Equation (72) the  Euler buckling load Pex giving def lec t ion  i n  d i r ec t ion  
X i s  determined and from (73), (74), t he  f lexura l  and to r s iona l  buckling va l -  
ues a re  obtained. In t h i s  deformation, t he re  i s  a compounding only of t h e -  
to rs ion  and the  movement i n  the  d i r ec t ion  of t h e  Y ax i s .  In  the  case where 
both ends have a simple support ,  according t o  the  normal hypothesi., it is  
possible  t o  wr i t e  

p=c; sin nlrz 
1 '  

A t  both ends, = = 0,  = = 0. I f  t h i s  i s  in se r t ed  i n  ( 7 3 ) ,  (74) 
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In order f o r  t h i s  t o  be simultaneous, i n  s p i t e  of C2, C3 ,  i t s  determinant must 
be 0. 

L o  

Solving t h i s ,  f o r  t he  compound buckling values 

Pw is Wagner's buckling value,  Pey i s  Euler ' s  buckling value with def lec-  
t i o n  i n  d i r ec t ion  Y. 
there  is  no buckling value PW.l  
e r  than e i t h e r  P, o r  Pey. 
of grav i ty  agrees with the  shear  center ,  w e  obtain 

Consequently, i n  a member with one axis symmetrical, 
P takes two values which are l a r g e r  or small- 

In  p a r t i c u l a r ,  when xo = 0,  i .e . ,  when t h e  center  

In t h i s  case, the  member has two axes symmetrical. 

~~~ ~ 

M. Kuranishi: Some Recent Invest igat ion on the  Elastic S t E b i l i t y  of  Bars, 
Report of the R-sezrch I n s t i t u t e  o f  Technology, Nihon Univ. No. 1 (1952), p .  16. 
Okumura Toschie, Disser ta t ion  presented t o  Tokyo University:  S t a b i l i t y  of 
Merr'3ers Sustaining Bending Moment and Axial Compressive Force. 
O F  :he Society f o r  Civ i l  Engineerii-g, No. 33 (1956), p.  50. 

Publicat ions 

Goodier ind ica tes  t h i s  po in t .  Journal  of Applied Mechanics (1942), p. A105. 
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sK-x 
shows the  r e s u l t s  of t e s t s  on these members with simple support at  both ends! 
Eccentricity i n  d i r ec t ion  of YY axis (see Figure 2.3.32). 

Wen a compressive load i s  applied i n  the  d i r ec t ion  of 
the  a x i s  YY from t h e  center  o f  g rav i ty  a t  a d is tance  of ey ,  
i n  equations (33), (34) and (39), we assume 
xo=xc, y o 4 ,  Mx=P.er.  n1r=o 

(81) EI + P - P-eyq = 0 

Y 

Figure 2.3.32 
In t h i s  case, when t h e  th ree  equations (81), (82), and 

(83) are linked, t h e  buckling deformation involves bending 
i n  both d i r ec t ions  X, Y and is accompanied by to r s ion .  Fur- 

t h e r  d i f f e r e n t i a t i n g  (82) by z ,  we e l imina te  t h e  term P-aey. 
member with simple supports a t  both ends, assuming 

In- t he  case of a 

zz z z  z z  +c, sin - I '  p=cx sin -, I I v=cs sin - 

so 
(P-Pd)C1-P.erC1=O 

(P-P,r)C*+ ProC,=O 

-P*erC, +Px,C,+isP'(P-P.)C,=O 

In  order  f o r  these  t o  be made simultaneous desp i t e  t h e  values of C 1 ,  C2,  C3, 

Solving t h i s  
. -  

=O 

If these th ree  equations are solved f o r  P,  t h i s  w i l l  i nd i ca t e  t h e  compound 
buckling value. 

lSee Kat0 Tsutomu's d i s s e r t a t i o n  c i t e d  previously.  Also Naka and Kato, Buckling 
of Solid Members ( in  Japanese), Tokyo University Press, 1959, p .  49. 
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The Case of Eccentricity (ex, ey) on Both Axes (Figore 2.3.33). 

In  Equations (33) ,  ( 3 4 ) ,  and ( 3 9 ) ,  if we assume 

Y 
If we once d i f f e r e n t i a t e  (85) and ( 8 6 )  f o r  z ,  the  con- /I67 
s t a n t  term PeX, P-ey a r e  eliminated. Figure 2.3.33 - That i s  

E& c"'+Pe'-P.ey(p'=O (88) 

EI=$"+P($ +xoq') -P.er(p'=O (89) 

Employing (87), ( 8 8 )  and (89) i n  the  case where both ends have a simple support ,  
i f  we i n s e r t  

7rz nz nz [=ci sin -, Q=C~ sin -. p=C, sin - 1 L 1 

we obtain 

i n  order  f o r  these th ree  equations t o  be simultaneous f o r  any magnitude of C 1 ,  
C2, C3, t h e  determinant becomes 0. From t h i s  
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If we assume ex = 0 i n  equation (go), we obtain a = 1, which agrees with (84) .  

Member with Two Symmetrical Axes Sustaining a Uniform Eccentric Compressive 
Force 

In the case of a member with two axes t h a t  a r e  symmetrical, xo = yo = 0,  
and I-$ = yH, = 0. Therefore, s ince  = 1, equat'.on (90) becomes 

Assuming ex = 0 i n  t h i s  equation 

o r  

and from the  top equation the  buckling values of Pey are obtained while from 
the  lower equation, t he  compound buckling value including PeX, Pw i s  obtained. 

/168 
e_ 

The same argument has been given even where ey = 0,  and i f  both ex, ey a r e  
not 0 ,  a compound f l exura l  proport ionai  buckling occurs i n  the  d i r ec t ions  of 
both X ,  Y. 
buckling proper t ies  f o r  the  dimensions of commercial I s t ee1 . l  

Kat0 has ca lcu la ted  carefu l ly  and graphical ly  i l l u s t r a t e d  these  

Eccentric Compressive Buck1 ing of Ecc'.ional S t e e l  

The case i n  which the  e - c e n t r i c i t i e s  cf c*-l*.mez:;ivc forces applied t o  both 
ends of a member are d i f f e r e n t  i s  solved by m t - i * . i i n i n g  t h a t  a cen t r a l  compres- 
s ive  load P (See Figure 2 .3 .34 )  and bending nt.mc.r,ts MXO, MXi having a d i f f e r -  
ent magnitude simultaneously take effect. The . % bending moments a re  assumed t o  
act on the  ins ide  of the  web plane of I steel  and a to r s ion  moment M, is applied 
t o  Soth ends. Assuming 

'Kat0 Tsutomu: Research on Stee l  Frame Constructions,  Doctoral d i s s e r t a t i o n ,  
Tokyo University Graduate School. 
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The support point reaction is 
R= - (1 - R )  7 Mxo 

The relation for deflection and torsion becomes as follows: 

Equation (93) provides the unique solution Pey. 
buckling is determined from the two equations (92) and (94). 

Consequently, th? compound 

In the case where both ends have simple support, 
5 ,  + are expressed by Fourier’s series, and assum- 
ingl 

Y (p=- ZMxo 2 (b.. sin 7) nnz (96) 
GJr mll 

R-isp’ T- d - E c a i  - Z’ d’ - B c=GjT 
B=EI,. a= G J ~  s 1’ GJT 4 I’ C ’  

1nsert.d in equation (94), the following equation 
i s  obtained. 

(97) /169 h MXO Ms 
c c  - %* (p +(l-a)(p’=H-----  

In the above equation 
7 

Figure 2.3.34 

1 
M. R. Horne: The Flexural-Torsional Buckling of Members of Symmetrical I-Sec- 
tion under Combined Thrust and Unequal Terminal Moments, The Quarterly Journal 
of Mechanics and Applied Mathematics, Vol. VI1 (1954), p. 410. 
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M, is determined i f  Equation (97)  is  in tegra ted  from z = 0 t o  z = 2 .  

Here, when n i s  an odd number h=- 4 - 1-/9 
n' 

xhere n i s  an even number h - 0  

Therefore, H is expressed by Fourier s e r i e s  

(93 j 

when n + m is  even Rnm=O 

when n + m i s  odd 

when n + m i s  even n+m, A'.,=O 

Inser t ing  (96), (99), and (100) i n  equation '(97), comparing the coef f ic ien t  
cos m.rrz/l 

This connects the  r e l :  cions of the  Fourier s e r i e s  an, 5, independently s e l e c t i v e  
of (95), (96).  

The 2' i n  the  equation ind ica tes  t h a t  summation should be car r ied  out on ly  

when n + m is an odd r m b e r .  Subs t i tu t ing  (96) f o r  t h e  I) i n  equation (92) 

Equation (103) i s  expressing N by Fourier series, 

(104) /170 - 
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Here 
n + m  

n + m  

Here 

odd number 8 ( l - f l ) ? ~ ~  
pan=- 

7rI (n'-m:) 

n4m. c(m..=O even number 
n=#- ,  pnr=-- 1 +d 

2 

I f  inser ted  i n  syuation (102) 

Thir equation again expresses the  r e l a t ionsh ip  o f  t he  Fourier s e r i e s  co- 

e f f i c i e n t s  an, 5n,. 2 
f o r  m such t h a t  (n + m j  becomes an odd number. 
place of the an, an even g rea t e r  approximation i s  made t o  the  def lec t ion  curve. 

means t h a t  adding summation should be ca r r i ed  out 
m 

I f  the  +' here i s  used i n  

When the  def lec t ion  curve is  determined i n  t h i s  way, the buckling bending 
moment MXO corresponding t o  the  axial conipressive force P i s  determined. 
procedure follows the  energv nethod. 

The 

The work due t o  compressive force P i s ,  from (105) 

Similar ly ,  the  work due t o  the  bending moment M i s  

With respect t o  thi.s, t he  s t r a i n  energy i n  the member is the bending s t r a i n  
energy 

[ l o g )  

The s t r a i n  energy of the normal s t r e s s  of the  flange due t o  tors ion  and exten- 
s ion  is ,  from (96) 

2 2 1  



The s t r a i n  energy &de t o  tors ion  is 

/171 - From t h i s ,  thc f o l l m i n g  r s l a t i o n  between P and MXO i s  determined 

In order  t o  determine a so lu t ion  from the above equation, first P and B 
arc determined, and then w e  hypothesize a Fourier series coe f f i c i en t  an f o r  
determining the  form of  t h e  d e f l e c t i o n  curve. 
(101). 
values within t h e  la rge  parentheses i n  equation (101). 
B = 0, assuming 

From t h i s ,  b, is ca lcu la ted  from 
Tab le  2 gives the  coe f f i c i en t s  of  f o r  ca l cu la t ing  the  numerical 

For example, when 

From the  t a b l e  

are calculated.  

Table 2 .  b, i n  e= lMxa z b , s i n s  77- 1 

4, 0 1  =a 0. 4 a5 

b,( ( l -a)+  7 }= C(a.X.5000( l+B)  .7205(1-8) 0 .2306(1-B) 0 .1429( 1-8)  
b,((l--a)+4r )= ~ ( u m x . 0 . 1 3 0 ( 1 - - 3 )  . 3 0 0 0 ( 1 + ~ )  .4377(1-8) 0 . 1 1 4 9 ( 1 - ~ )  0 
b , { ( l - ~ ) + 9 7  )= X((a.X 0 .0833(1-B) . ~ o o o ( l + B )  .3529(1-6) 3 .0801( 1-8) 
b,(( 1-a) + 16 r }=  (C. X .  0009( 1-8) 0 .1117(1-B) .3000(1+8) . 3 1 2 7 ( 1 - ~ )  0 
b ,{ ( l -a)+23r)= Z ( U . ~  0 .0029( 1 -.8) 0 .1281(1-B) .5000( 1+8) .2891(1--8) 
bs{(1-a)+36r)= ~ ( u ~ x . O O O l ( I - 1 3 )  n .0050(!-8) 0 .1396(1-8) . jooo( 1 + R )  

Next, an' is  determined by in se r t ing  these  values i n  equation (106). Table 
3 gives the  coef f ic ien ts  of  bl ,  b2, etc. i n  order  t o  cc l cu la t e  the  an' (n - 
P/Pex); i . e .  , tha t  which is contained within the  large parentheses [ t r ans .  
note: cur ly  braces?] on the  r i g h t  s i d e  of equation (106). If b, and an' are 
obtained, MXO is determined by in se r t ing  them i n  equation (113). In  order  t o  
get  accurate values for these,  one should follow the  rout ine  of taking the  an' determined by (iO6), re turning t o  (101) with t h i s  as a a, and then calcu- 
l a t ing  b,. 
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.__- 

b, b, b, b, 
0 .0144(1--8) 0 .001@( I -B )  

.5000(1+~1) .19Rj(l--B) 0 .0200(1--s) 
.1955(1-~1) . jOO@(I+B) .2001(1--~)  0 

0 .2001(1--8) .5000(1+B) . 2 0 1 C ( I - B )  
.02oo(l--s) 0 .2010( 1-,7) .5000(1 +s) 

.19.15(1--8) 0 .0184(1-B) 0 

Figure 2.5.25 i nd ica t e s  the  accurate 1.0 
09 
c3 
2 7  Since these  are uckling def lec t ion  curves, 

values of a l ,  2al , 3a3, 394, corresponding 
t o  the  B = Mxl/Mgd when P = 0, y = 0. 

2 aa t he  r e l a t i v e  r a t i o s  for t he  coe f f i c i en t s  
? 05 should be determined. Here, we assume a“ 

0.4 
c ’- 4t?:’+-9a2+16ai*=1 + c3 

When P 
i ca t ion ,  and i f  (1 - P/Pex) i s  mul t ip l ied /172  

imate values of t h e  r e l a t i v e  r a t i o  are 

of the  degree of  inf luence a of  t he  to r -  

0,  a1 i s  employed without modif- 

with t h e  values of a2, a3, a4, the  approx- 
B 

Figure 2.3.35 determined. There i s  p r a c t i c a l l y  no effect 

s iona l  elongation or the  bending to r s ion  s t i f f n e s s  y on t h e  shape of  t h e  c!:flec- 
t i on  curve. 
8 = -1. In t a b l e  1 and t a b l e  2 ,  as one assumes t h a t  B = -1, and t h a t  t h e  
for the  even o r  odd number values f o r  n = 0, the  bm f o r  t he  odd number values 
o r  even number values of m = 0 .  

Consequently, Figure 2.3.35 can be used except i n  cases where 

Consequently, one mode has an odd number term 
but the  o ther  mode has an evendnumbered term; t h a t  is, when 

t = O ,  - <0.77 Pa 
The even-numbered term indica tes  t h e  minimum buckling value,  and when 

the odd-numbered term gives the  minimum buckling 
of B = -1, the  convergence i n  ca lcu la t ion  by the  
mations, f o r  t he  def lec t ion  curve is slow, but  a 
be determined which is normally sa t i s f ac to ry .  

value.  When i n  the  v i c i n i t y  
method of  successive approxi- 
buckling bending moment can 

When B = 1, the  coef f ic ien ts  o ther  than al and b l  become 0.  Consequently, 
equations (113) becomes 

(1 13a) 
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Since MXO = P-ey,  equation (113a) i s  none other than (91b). Figure 2.3.36 de- 
p ic t s  the relationship ( h l ~ o / M ~ ) ~ / F  f o r  P/Pex when i n  equation (113) w e  assume 
a = y = 0 .  I C  can be seen that t h i s  relationship i s  l inear where 8 = 1 ,  and 
that it is  formed from two separate curves where B = 1 .  

Appended T a b l e  CBT, JT 

e . . . . distance from 
center o f  gravity 

1.0 

F9 

0.8 

'47 
0.6 --- 05 

& 04 
-1k. 

0.3 

0.2 

0.1 

U V  
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P A  

A . . . . cross-secticil  area 

Figure 2.3.36 
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NUMBER 

1 

- 
2 

-- 
3 

- 
4 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, / I 7 3  
CONDITIONS NOTES 

Upper end fixed 
with no lateral 
resistance, lower 
en@ fixed f 0, 

Upper end pin- 
ended, lower 
end fixed 

Lower end fixed 

spring constant c 
Upper end rotating 

Lower end fixed 
with elastic 

support 
tP 

Column with upper 
2nd elastic support 

Coefficient r) 
stiffness of 
upper end 
He He e=-, ea=- 

are the lateral 
x* resistance and% 

1 @* 

resistance moments 
( i ) h-0  Lateral resist- 

(ii ) k=o only bending 

cui) Deflection is 0 

ance only 

resistance 

at  upper end 

(iv) ~ ~ " O O N O  inclincatio 

rWI s- - P 

rmEI 
P &=2.0?6 - 

hlore precisely, che coefficient 
is 2.04574 

where P. is first root of 

Buckling conriition equation 

24 

Based on Euler's 
rolution. Center 
is point off in 
flexion. 

26 

n 

25 

at  upper end 
1 
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NUMBER 

6 

226 

DIAGRAM & BOUNDARY FORMULA OR TABLE 
- CONDITIONS _. 

:olumn with both endc I 

E,, Hu,N,, dl,, are the 
lateral resistance and 
resistance 

[ i ) $=O Lateral: - 

resistance to  both ends 

[ ii) 4-0 Resistance + - 
moment on both ends 

(cii) h=x, No deflecting 
at  either end 

(iv) h = m  Neither end: 
declines 

FOR RESULTS 

where m==*l 

where the stiffness a t  both 
ends is equivalent 

2ma m-sinm+- 
ml 2m. 

l-cosm+--- 
b- 

kl h 4 
(e) 

m 
e m + l - a s m  

R K- 
-(1 m +cosm)+sinm 
4 

( i 9inm-O deflection does 
not occur at either end 

I 
ma= ys. 

The resultants P 2 H 
on the line connecting 
both ends. Collapse . _  (e) 

act 

(ii) t1=- *cosmT1) Complex sign negative (f l )  8inm 
positive (f2) 

0)  tan- 

-tan- 2 2 

2 
(iii) (t1),=2 (gr) 

(h) 
2 m* sin m 

msinm-2( I-mrn) (iv) Po= 

REFERENCES, /I74 -- 
NOTES 

25 



NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, /175 
NOTES CONDlT lOF 

Upper end 
free 
Lower end 
elastic, 
fixed. 

Effect of shearing 
sue  ss take n-ilito 
consideration. 

Pin-ended at  bot 
*' ends. 

EI P t = a o r  
where p, 

1 'ptanp=-- 
a EI 

Here 
l 

k-s a==- k :basic s : cross-section 
coefficient coefficient 

t>o 
r*EI 

(21)' I+-- aEr )t 
P&k 

P 

+' pin-ended at  both 
EI 

R+ul=6-i i  

P 
l + L M  r la1 

distributed 
16.7 

+9.87, r-- where B= 
t P * d  

Upper end 
pinned, lower 

to is equall) 
distributed 1 P 

%#d load r= lrrl 
Upper end 

$ fixed, lower 
EI Pt+tcl= B-- 1' 

distributed P 
bul  load I- 7- 

m 

Same as in the 
case when link 
is increased only 

by 
Il=aEI 

29 
30 

[i)(ii) 
M i s e r  

(i)'(iii) 
OLsen 

31 
Differential equation 
solved by series 
expansion 

31 

31 



NUMBER DIAGRAM E BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, /176 

- 

12 

- 
13 

distributed load - 

14 

a 
I5 

16 

17 

- 
18 

19 

COND I T I ONS 

Upper' end free, 
lower end fixed, 

Up erendfixed 
.o w i g  no lateral 

resistance. lowei _ _  f equ;Rty &siriI-is 
i: end 'nn d 
fp+d uted load. 

F 
P p b!h ends fixed ,. withnolateral 

resistance, w 
:w is equall dis E rributed road, 

*- 
Upper end free. 

*" Lower end fixed. 
w is equally f - u~ distributed load 

-201rI ...-----._ 
e- - - ----- - 
Left end pin:ed. 
Right end fixed. 
w is equally 

-distributed load - 

Right end pinned. 
w is equally 

EI R + w l = 8 ~  

where 8 - w  *-I +39.48 

S+wl=B-, EI 

P 
?=Ti 

where 3 - e  38 +2.47 

1'1 8=1.894 when 

El R+wl= 3-p- 

+9.87 9.06' 
where 1+1.787 

P 
r-lol 

EI 
(wZ)t==ao. 3- 1' 

EI 
( W l ) k = 4 4 . 2 5 -  I' - 

NOTES - 
31 

- 
31 
32 

31 

31 

- 
26 

26 
Based on solution of 
.dfferential equation. 
Solution obtained from 
general condition matrix. - 
3i 

- 
31 



NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 1177 
COND I T I ONS- - -.. -. NOTES - 

- tributed load. 

Both ends fixed. w is 
equally distributed load 

I 

31 

Left end fixed. No lateral  
resistance. Right end I 
fixed. w is equally dis- 

(wZ)~= 18.93- ET 
P 

31 

EI 
P 

I " -  - - - -----_ 
----*--- 

Left en fixed, no lateral 
resistance. Right end pin- 
ned. w is eqvally distrib- 
uted load. 

(wQ-3.47- 

26 

EI 
Upper and free, 
lower end fixe 

- '  
Compressive load 
distribution 

Upper end frec. 
Lower end fixed 

32 
- 

3i 

32 

Differential equation 
solved by series 

32 

.~ 
Solution of differential 
equation by Bessel 
function. 



NUMBER 

27 

0.5 
1.0 
1.5 
2.0 
2 5  

- 
28 

3-7, 1.7185 
1.8076 

1.9098 
1.9415 

where .=- 

- 
29 

30 

- 
31 

DIAGRAM 6 BOUNGARY FORMULA OR TA3LE FOR RESULTS 
COND I T I  ONS 

Pin-ended at 

- disuiburion I 

Both ends 
fixed. 

: : Q  
'Compressive load 

( p0$)k=54.031- EI 

distribution 1 1 Buckling condition 
equation 

.: Lower end fixed, EI  
e' ' Upper- end^ free. F I 

Pin-ended at 
both end?. 

(&+PI)k-EEI X is lower table or lower 
formula 1' 

3.0 I 1.P656 3- I 
4.0 2.0010 7'- o+l I 2.0783 

2.11m 
00 2.1602 

a- PJP, ' 

Approximate pa+% -- n*EI ( 2 )e 1' equation 

REFERENCES, 
NOT E S 

/178 - 
32 

- 

32 

33 

34 

Energy method 

26 

Eiorbe low 
0.5%. 

230 



NUMBER DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  REFERENCES, 
CONDl  T I ONS NOTES 

32 Buckling length l k  = 1 a I o  /179 
=I4 I I 0.9.98 

r - ' w r  1.0 1.0618 

I,eft end free, 
right end fixed. 2.5 

3.0 ( P ~ + P ~ ) ~ - ~ E I  4.0 
9.0 

a=PIIpI 19.0 
00 

P 

33 I & I .  

1.1934 
1.2307 
1.2871 
1.4196 
1.4934 
1.5708 

I Buckling conditions 
s tan dl tm Bl*=- 

Upper end free. 
Lower end fixed. 

35 

34 Pinended 
at both ends. 

Buckling length l k  = 1 , 36 

34 e a  J 
j - f i $ - . i  

Tension Compression Approximation equatiofi-% Positive: Compression on both sides. 

4%(1.5708): Pt= EI 
35 

3 Left end free, 
Right end fixed. 

4%(4.3128)' 
1' 

Pr= 
36 

Both ends fixed. 

36 

- -  
36 

(Left end free, Right end fixed. I 

39 

38 

General calculation of 
compression member. 

I I 

Left end fixed.Right end free. 

(1) o==E (%-)I $ is computed 

I 
where kpd! 

37 

(2) The q corresponding to  thew from Tables, 4 . 1 ,  
44.2 is de t e rmied .  
The required cioss-section area A is determirled from 

Slenderness ratio X 

(3) A = P/f 

(4) This cross-section is analyzed byordinary 
c I 

method- - 
23 1 
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- 
40 

- 
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(P' 

E,IJE 
9' 

EotIE 

DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES,  
COND I T I ONS NOTES / 180 

108 110 

126 1 128 I l?O I 140 1 I50 I I60 1 170 I 180 1 
112 I 114 1 116 I 118 1 120 1 122 1 124 

0.467 0.441 0.420 0.403 0.392 0.386 0.383 0.382 0.382 

0.382; 0 382; 0.381 0.332; 0.215: 0.088, 0.014; 0 

- 
Table 44.1 TABLE OF STEEL S T R U C T m  

@ 1.001.00' 1.00 1.04 1 1.07 1 . 1 1  I I . ! ?  11.24 I 1.34 11.48 

loo, 0 1.67i3.44, 2.46 4.77 16.41 8.44 10.9 13.9 17.5;21.7 

1 - j - 1 - 0.034 0.171 0.2iS 0.421 0.606 0.85E'I 30 1 . -  i l  I (U 1.672.02 2-40 2.82 3.27 3.75 4.27 4.82 5.40 '6.02 

Table 44 2 TABLE OF WOODEN STRUCTURES 

1.0, 1.0 1.2 1 1.3 i 1.4 j 1 .5  1 1.7 12.0 12.3 !2.7 11 f 1 - - 0.048 0.1171 0.224 0.375' 0.612 0.980 1.47 2.11 
3., 4.0 4.8 1 5  6 16.5 7.5 

6.91 9.46 12.7 16.9 1 1 1 
38 

I 
Round column which does (1) Compressive stress-strain curve determined. I 
not follow Hooke's law. 

_ .  . 
compressive stress 

pin-ended at  both ends 

- s W E  A*-€& 

Reference Chart 

0' 1 90 92 1 94 96 I 98 100 I 1024 104 1 106 
EolE l.CO3, 0.848, 0.714 0.610. 0.516, 0.437, 0.37 0.312 0.263 

I I I 



NUMBER 

41 

limit, the buckling coetficient is . -. . . . . 
42 

- 

D I A G R A M  & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  

- CON0 IT I ONS 

Upper end free. 
Lower end fixed. 

~ ~ 

Reinforced Concrete 
:olumn, axial compressioi 

suffix b in concrete. I. 
suffix e is reinforcing 
steel 

--- 

o r = n * z  I!* a : Buckling coefficient 

Cast iron a=(I-8)- d at (z46.1 a) 
a8 

tmU/(O-b U )  

t is strain, Cox-Lang's stress strain 

bft steel Elastic a=( 1-8) E ( Tiyuie 46 2) 
reg1 L-.... 8ne part yields, calculation by graphic 

REFERENCES, 
NOTES 

39 

/181 - 

ecluation 

- - -indicr:c that 
inTetmver's equal 

q =  13E0, b=190 I 

I Figure 46:l 

where 

:: Modulus of Elasticity, duiing reduction in force 
in  con:rete,in reinforcing steel, within. 
proportional li" it or during reduction in  force, 
if a foice is apk lied. 

': Modulus of El-aslicity, ._ during appiication of force 
in concrete, a b w e  proprtionsl limits in 
reinfGrcing steel 

3 = A,,'bh. A,: Total cross-section area of 
rtiniorcing steel. I -X) '  i+6pf T~=v-E~(I -~ )*>  

!d: Reinforcing steel, skin thickness. J 
(2) When the stress of the reinforcing steel exceeds 

I the. pIoporti&al l imit ,  

I 
I 

233 
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.- 
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I 

! 
i 
1 

- 
43 

44 

- 
45 

- 
45 

For the short co1w-m 
it is assumed (propor- 
tional limits) . ; 
(buckling stress) 
(yield F .int) 

DIAGRAH & BOUNDARY 
COND IT1 OFiS 

I 

1': buckling length 
';k: Normally yield point, where wall 7% 

surface birc!ding occurs, this is due 
the wall surface buckling strength. 

= 2 ,  Johnson's equation 

I I 

m: C b & w t  where-m z 1. line connected to Euler (sic) 

In thi 

FORMULA OR TABLE FOR RESULTS REFERENCES, 

.ase, the 
figure to the right Jw 
i f  obtained. Here, 

in the concrete is ~ ~ . )  

reached, i t  is assumed 153 

that plastic deformation ;do 
is applied until it  is Jo 
twice that &due. 

i aftcr the maximum stress 

l/i - 
at=c;i'E A' 

I I 
I Generalized I 

Column 

'Boundary conditions 
are various. 

30th ends th ends One .end iOne-en fixed 
' ~ ~ n n ~ ~ ~ $ ~ ~ . i  oLhel'eid free 

-welded steel to tubular - ti4 

e=2 
e-1.7 

column' 
Tension shell structure 

NOTES /182 - -  

train 

41 

1 Round tube 
Wall surface buckling 

I 
t 

p E- - R I 41 
P theroetically is =O.  6, according to test values, 

= 0.3 as design safe = 0.18 is safe I 
~~ 

I Tubes, short coiumns i Dwaluminum member 

! 

~ 

41 
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47 

48 

-- 

DIAGRAM & BOUNDARY FORYULA OR TABLE FOR RESULTS REFERENCES, 
COND I T  I ONS 

Pin-ended a t  both enc 

r;i 
B IB P h  

Pure support 
steel column 

e l  
-&ST Correct solution when 

e/b 1 0 11/24 12/24 Fl I- 4/24 

b d m / 2 \  1.57 1.35 1.17 1 .E  10.839 
--- 

[he average unit s t res  when; hemaximum%d- 
lber stress 1s qual to the yield Doint stressor. P. . 
s assumed to%e(d&. p .  ;eo L e,l 

In a short column, at member end A,  
(i) a maximurr bending moment is generated. 

(1) 
(#:)r .p.  0-22. or r 

ea I +y 
where S: radius of nucleus 
(%)In a long column. ir. the intermediate cross- 

section, a maximum bending moment & ger 
(a.Jr.r. = qr. r. 

I + ~ d @ - 2 @ c m Z u +  I =cosec2u - 

2 u = ~  J&c$&- 

The critical value of condirions (i) , (in is 
Hssumed to-be (1) = (2). 

(3) 

+ l - ~ - 1 - o V 1 f  we draw the curves, E 
become as follows: 

they 

. where E=K).IO.lb/in~. 0r.p.  =M,003lb/in* 

/183 - NOTES 
43 

Solved by an ec-  
,centric compress- 
ion member series 

1 based on material 
which cannot re- 
sist tensile force. 
Error within 3.5'70. 

42 

ated. 

' a  40 t o  120 160 Jug 
Slenderness Ratio Slenderness Ratio 

235 
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48 

49 

50 

2s 

Disi 

DIAGRAM & BOUNDARY FCRMULA OR TABLE FOR RESULTS 
C O N D l T l  ONS 

Member where-Gitial 
c:!lection 

0 .  

If 

I- 

Simple support 
Steel column 

Long reinforced concrete 
column 

Simple support 

Long reinforcement 
concrete column. 

2 
z .D 

b 
a’ - 

dlenderness Ratio 

The broken lines 
indicate the 
condition (3). 

where 
e m= - k , P.. .comPressi~. k : b d i u s  of nucleu 

breaking point 
a-0. S 5 + ( 0 . 0 4 + 0 . ~  a)m 

b-0.01 m C0.OOO32~~+0.0l(S-~)l 
5: ‘OnCrete SUerrgth 
Applicable 

range 

Mi is computed (related fn  

elasticity range) 

a : Reinforcement Ratio 
In short cross-section m 5 3, e & 0 

Mi = Dda +DSe,+z&~+z*s,  
We determine the maximum deflection and the 
eccentricity by graphic solution. where M = M1 
obta-ins . 

M =PL( S+c) 

If we  determine the values with respect t3 e, 
given the following chart is obtained: 

REFERENCES, 
NOTES 

/184 

a considered 
infinitesimal 

14 
e is eccentricity 
h is cross-section 

,s X 150 

Is 
il,Sel.S2,Se2 are 
respectively the points 
3f action and the dis- 
rance from the neutral 
axis of the compenents 
Db,De7 Z b , Z e .  



NUMBER D14GRAM E BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
CONDIT IONS NOTES - 

5 0 1  
d is thickness of coverin of 
reinforcement.  he tendin 
moment caused by stress: i6 
The bendin moment caused 
by externalgorce: hi 
The downward stress expresser 
compression, upward stress 
,expresses tension 

j 

wllere 

p=AJb*h. 
= Total cross-section 
area of reinforce inent 

I c m=- k 

A 
e 

k: 

D 
I 

Nucleus radius 
: :Maximum 

snain of concre 

1 
Pcolumn with both 

?ends having elastic * SUPPOft, both( 
ends pinned. The 

a=-+( ms+L OZ% EI 
m is the minimum integer which is larger that the 

values in the equationhbelow, expressed as the number 
support is for thehalf -wave length of the buckled member. 

sproportional to the 
displacement y . 9 = y. 2 

I 
Member on elastic 

I base. Both ends 
9 pinned. 

8 : base coefficient 
9=B9 

P t  

@'/16EII I I I 3 1 5 I IO 
Lll 0.927 0.819, 0.741 0.615 

< ~- 
z 1 6 E I :  I5 1 20 1 30 I 40 [ R 

lrll 0.537. 0.482 0.4371 0.421: 0.406 

-*/16EI 75 I 100 1 md 300 ! 500 
Id1 1 0.376 0.351: 0. 0.263 0.235 

W/16 E I '  4oOO ' 5000 EOOO j10,m' 
lk l l  1 0.140, , 0.132 0.1171 0. I10 

Number of half wave .--.-,_. - . - 
lengths in buckled fom;'. $:I =mx(m+ly 

Energy method, even 
Iwhen-an Tndepeildent 
elastic support is present, 
hen there are more 

thazthree-between the 
lialf-irive lzngths, i this equation 

I n=--q-& t -  An integer is taken from;The , 

minimum value of P with respect to this n is taken 
t O  be pk 

/185 - 
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c 

H 

238 

NOTES - 
Buckling condition equation 

,{ember on Elasiic Base. 

?* 

Both ends fixed. 
W B Y  

Member-on Elastic base. 

Both. ends free. 
. Base Coefficient 

4 = Y. 

L I 
hlember width assumed to be tan tl- 2 

t.n t.- 2 

1 tan t,- 

tan cl- 
2 

; RtY - d 
4 
-- 

Buckling equation 

o+ri=l,i, -a+Ti=k& 

Generally, the minimum Pk is 
determined from the third equation. 
It becomes as shown in the chart below 
me (c) When is large, PPV'TET 

99 

Member width b = 1 



NUMBER DIAGRAM E. BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
COND I T I  ONS N n T t C  

151 
hckling of rails. 
Denoti b 1 h buckling 
inte raReXgtL6, w 
are Jetermined and using n, 
1 is determined 
Convenely, determining 
1, w, it is possible to 
determine the buckling 
load P corres onding to 
the integral gngth .  

A t  both ends deflection 
= deflection angle 
= bending moment 
= o  

blember on elastic base. 

Both ends fixed, 

distributed load w 

nfinitely iong compressec 
member on elastic base. 

P P 

1-- 

---,= - 
lase constant@; 9 ~ B y  

dembef partially; sustainil 
elasiiE support 

Base coefficient B 
q=Bo 

length of interval not, 
sustaining elastic support 

3) Buckling shape- 
&- 715974 E% I@' 

vhere in the case of (3) the boundary condition is 
)nly  deflection^= bneding moment-= 0. = bending 
noment = 0 .  

50 

bckl ingof  rails. 
Experimental values are 
used to de ermine the 
resistance d s f r o m  force a roadbed, sustained 
ah this is taken into 
consideration. 
b d ' .  . 

n=Pb 1 V 2 i S  
Assuming 

Minimum buckling load is 

:n this case, the buckling 
P + 2 v f l m i  

' Buckling equations 

P 
EI a*= -- 

Ir If 1, is very large, 

P iY , This does not have a.  

52 

_.-- 

53 

Member length 

"For example, 
a mast set inl 
the ground. 

b =1 -  

239 



COND I T I  ONS 

.+JS min P 0 t e bucklin valueT'isobtaiiied 

NUMBER DIAGRAM & BOUNDARY ' FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOTES /188 

___. ~ 

( A  beam sustaining lateral 

compressive force p 
59 I load Q and axial 

- 
60 

- 
61 

62 

63 

- 
64 

'in-ended at both ends. 

Both ends pinned 

2*t 
1. I.  I. 1. 1, 6 1. 

loth ends pinned.. Load 
ntisymmetrical. 

.p'. . pinned ends 

Both ends. pinned. 
Lateral periodx torce 
applied. 

#JLnWB 

L-z 
loth ends pinned. A later: 

iifferentid displacement to be 
#EI 

P k = 4 -  - 1. 
s o h i n e d  (similia (Similarly for 60, 61 below) 
(here 1 is total: length of member. 

P e e p -  .'EI 

-- 

x*EI Pt=4 

Where I is total length of member. 
n*nsEI Indicates the n Euler order load 

qually distributed periodic 
course isaPPlied. 2n+ I)*xaEI. lWhere LP-!ndicares the (2n t 1) Euler loa 

bending inoment 
due to the lateral 
load Q .  

54 

56 

56 

240 



NUMBER DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES,  . 

- 

65 

66 

- 
67 

- 
68 

69 

_c 

70 

COND I T I ONS 

Memberpibrating in 
lateral direction. 

both ends pinned, 

Member vibrating 
in lateral direct- 

Member vibratip 
in lateral &rec& 

Upper end free, 
lower e!< fixed. 

ection. Lower 
end fixed 

~~~~ ~~ 

thermal expansion 

direction of axis 
.- - -- 

(+)' Ignoring 

Ptf kPe-W-(2f 1 1' 
0 

where total weight W = gl ,  1-A 
vibration number 2;r 

EI 1 
P 0 

Pkf=4 fl-- 0.778 W-(2 f )' 

.) 
. -  

,Where total weight W = gl, : I=- 2% 
vibration n u m b c  

Ptf =2 z'-- 0.819WL(2f )' 
P 0 

e 
where total weight W = @, f = -  

. 2% 
vibration number 

f when f is small 
# EI 
4 P  
-- 1 

l++f >' 
where total weitht W - 

vibration number 

Ptf = 

0 
gl,: f=>; 

f when f is small 

k: linear expansion coefficient 
or : buckling temperature 

NOTES 

51 

*1- 

_ .  . .. 
tesonance when 

57 

57 Assuming 
y=A 

#( 1 -ca3g) 

sin, The energy 
method is used. 

. 

A is an arbitrary 
constant 
- ~- 

57 
Energy method 

24 1 



NUMBER DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES,  

P~=v.:, ,  R t ) = P . - L  3 L  pn=(nz)'El 1 
V: compressive 

stress velocity -kg*cm-*/sec 
'he effect of the axial compressive force P(t) witrres, 

COND I T I ONS 

:t to 

NOTES 

- 

graduallyjncr_eases to 

P ( t ) = V . t  

Slender strip sustaining a- 

otating ends (both ends). 

In the case of a rec- 
angular plate, and 
rotating around edge. 

[we take into considerationCox's hypothesis that 
ne strain withrespect for the axial forces for the 
late in its entirety is uniform, and also take into 
ccount the effect of the plate shear. 

Basic equation 

60 

In the case of a 

S'Y 6% 6'Y 
a 1' a+ a PA- +EI-+P( t ) -  -=D 

y=xan(t).sinnzr If we solve, assuming 
1 

. *in Y A L  z. 
1 

i 1190 
I 
I -  

i 

area, a f i  = bending stiffness of plate, E = Youn,@l .-rY- 
I --  Zd - .modulus, 

,Here, substituting 
= mass per unit area 

Equation (t), becomes 
:xaLtkY-the' same shape. 

2 b  
wI-~ ( t )  By means of Galerkin's 

bmethod, we determine the a x  

equation which satisfies approximately (t) 

Here 
D nn * 
P D 

Furthermore, introducing 
3 p'=p.'+-B&' -.... 

becomes approximately. 
The above equation1 

__ d'* - +(p*-a@*c0soot)=3 
dt' 

, e .  , This becomes Mathieu's differential equation 

Where the consant 
n 

Po'= - P 

P 
a@'=-- 

P 
1 Eh 

8 - p  3 2  

*K%Y 
+(Z 7s 
h = plate thickness 



NUMBER 
c- 

12 

c. 

D I A G R A M  E BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  
C O N D  I TI ONS 

h' gnttiestabil ' t  co d'tions a c rdip toVander 
10) s paDep is de%ne?l kom the f d o w &  equation 

o;n E&,.-,~ E&- E&&i sin E?*. I 
0 0  a 0  ZPlP, 0 0  0 0  

Pa'~Po'--cro', P ~ = P o ' + ~  Here 
The resultsof numerical computations a re  
2xpressed in  the graphs below. 
where CIS, s e i  a re  Mathieu's functions 

3 00' ps-  - 0o5;maxirnum amplitude 

- a  I 2  3 4 5 
_c) 

Figure 7 2 . 1  

Figure 1 2 . 2  

R E F E R E N C E S ,  
N O T E S  

/191 - * Balth van 
derPol : 
phi 1. Brag. 
(1928) 

c1 



NUMBER DIAGRAM & BOUNDARY 
COND I T I  ONS 

FORMULA QR T A B L E  FOR RESULTS REFERENCES,  
NOTES 

73 

74 

75 

(Member with linear 
ariationsiin cross-section 

ends pinne 
Imin , 

1 

P Im,, 
41. 

h is section height 

Upper end free 
Lower end fixe 

t 
Distributioi 

I wh ere holhn,20.2. 

Buckling length lk determined from the following ' 

0' 
t 16.283; 1.954 1.656, 1 .44 ,  1.325 1.243 p 

0 10.0" 0.1 I 0.2d 0.3 1 0.4 

- W + - ! - I 4 -  
0' 0.5 0.6 0.7 0.8 0.9 1.0 
t 1 1.18d 1.134 1.0911 1.0.54 1.024 Loo0 

I I I 
qpproxim'ation ' I 

equation rt=3.20-2 20{(-&7 

herk  ho/hm 20.2.  

s I --2.4671 n' 2067 I 1.510 
4 

d co I 20 14.0 I 2 2 5  1 1.44 11.00 

1 -  
L 0.3721 4.428, 0.5841 0.7008 0.8411 1.00 
Ce - I0.96Qi 3.20 6.32 10.517 - 1 

/192 
61 - 

62 luation 

64 

244 



NUMBER D I A G R A M  & BOUNDARY 
C O N D I T I O N S  - 

16 

- 
78 

- 
79 

Upper end free 

Xrcular column having a 
;loping part in upper secti 

t 

4 8 26 P 

Upper end has no lateral 

Both ends fixed. 
resistance. 

FORMULA OR T A B L E  FOR R E S U L T S  REFERENCES, 

a I 0.4 1 0.6 I U.8 1 1.0 
c 0.896 0.955 0.987 1.00 

where 1 It 

I S  

-Atan{*;&l} 

the first root of 

tanl - -  

NOTES 
/193 

61 - 

I E EIe 3ircular column having I 
Pk = - m 31 p - ioping section in upper part. 4 1' 

Both ends fixed 

a I A ab where m=- is the first root of 

63 

64 

65 

1 

indicated by chart on next page. 
.. - 
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NUMBER DIAGRAM & I o  3RY 
CON3 

79 

- 
80 

- 
81 

246 

Circular column having 
loping portion 

d l  

- 4  $ P b 

Upper end pirmed 
Lower and fixed 

f.=$ rb4 

kcular column with 
;lo?i.ig portion 

.. ~. . 

Lower end free. - 
Upper end fixed. 

x b* 
I . - ,  

FORMULA OR TABLE COR RESULTS REFERENCES, 

lor K=- b--o is  first root of 
b 

I + ~ A E ~ ~ ( ~ = A  L I-a 1 

- - t f t m ( - ~ A  rA 1--1 ' ,) 

I .  . 
-at (rA)=-i d c a t e d  A 

by gaph to the right. 

%here A I t  

I tan{-:*- (1-C) (b-a)  a}-mt (+) A 

.S the fist  

root 
c indicated in graph b-low 

NOTES 

/ 194 

- 
66 



NUMBER 

- 
82 

I 

83 

'IAGRAM & BOUNDARY 
COND I TI ONS 

Xrcular cclumn having 
loping portion . g& 

Both ends pinned. 
I b4 I.- 4 

.inear variation of widrh 
hickness constar.-, t 

d T: l i  

- b  

Doth ends fixed 

CORMULA OR T L B L E  FOR R E S U L T S  

is  first root of 

indicated below 

hckling equation 

where A=Zrnv/5- 

R E F E R E N C E S ,  
M I T E S  

/ 195 66 - I 
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NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOT E S 

67 / 196 

- 
84 

- 
85 

CONDIT IONS _- 

inear variation of width, 
hickness constant, t 

Both ends pinned 

Upper end pinned,S 
lower end fixed. 

Buckling c( idition equation 

Assuming its root to be 

p indicated below 

~ 

Buckling condition equation 

Assuming the root to be 

indicated in grhph below 

c 
N 
16 
.4 

f2 

m 
8 
6 
0 u2 04 =a 10 

- 
67 

248 



NUHBE 

86 

:R DIAGRAM & BOUNDARY FORMULA 3 R  TABLE FOR RESULTS 
COND I TI  ONS 

87 

I I Suckling condition equation 

Assuming the root of this to be 

EIe :Pi ( b;a ) a  p p p -  ---a= P 
Both ends fixed. 

No lateral resistance in 

I -.- 

upper end. is indicated by the 

graph on the right 

I 

a 

. upper end free, 
lower end fixed. 

(I-a)(b-a) A } 
In the case of a slope over the entire 

I indicated as below 

REFERENCES, 
NOTES 

249 



NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 

D. 75 

CONDIT IONS 

with varying indices and 

- 
88 upper end is cross-sectior 

inctions, plate thiches onstant. 

1 
2 
3 
4 

Borhends fixed, 
no lateral resistance 
in upper end. 

* *  
2rccZ”’Z 

I =B*T 

IIIBb? 

NOTES -- 

“““ip E1* - ,, is as indicated in the table and 
the graphs below. 

l x i  1/10 115 I/4 1 1/3 I In , 2/3 i 3/4 1 4/5 i 9/10 
&4%# 9.085; 9.321: 9-44 9.666 
7.053 8.252 8.73; 9.034 9.470 

3.305, 4.701: 6.585, 7.532, 8.079, 9.050 

I 
5.744 7.408 8.136 8.543 9.265 I 

I. 

3.G 5.lC-i 5.668 6.3481 7.438; 8.373 8.783 Y.0;9. - 
0.309, 1.181 1.702, 2.585 4.313 6.059; 6.970; 7.528 8.653 
0.055: 0.428 0.768, 1.503: 3.248 5.165; 6.216; 6.6% 8.311 

I 1  1 - 3 4  2.677 3.~49~ 4.114 5.m 7.115, 7.818 8234 9.0% 
I I 
I 
I 

I 

3.054 1.3i8 4.914 5.678; 6.974 8.102 8.55d 
0.824’ 1.858 2.376; 3.226 4.911, 6.57i 7.399, 
0.176,0.716 1.61; 1.781(3.434, I 1  5.353 6.399, 

I 

0.031; 0.246; 0.4511 0.9371 2376; 4.3527 5.534 6.304 7.993 

2 50 



NUMBER DIAGRAM E; BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES,  
NOTES 

~~ -~ 
C O Y D l T l O N S  

1 
2 
3 
4 

I 
2 

OS5 3 

4 

I 
2 
3 
4 

0.2 

up erend iscross-sectioned 
varyin iadices and 

ifunctions. s a t e  thickness / 199 - P F , ? ~ ~  e indicated by the table and graphs below. 

2435 2.448' 2.4541 2.455' 2.461'2.W' 2.464 2.466 2.465 
I I I  2-310 2.4051 2.421 2-43; 2.452, 2460. 2.4631 2.463 2467 

1.9471 2.287 2.352 
0.3021 1.7671 2.147, 

I 
I 

2.025) 2.202 2.252' 2. 30gi 2.3i6 2.419' 2.436! 2.4%' 2.455 
1.052: 1.699 1.872, 2.054 '2.250'2.355 2.394 2.411, 2.442 
0.270 0.947 1.2158 1.667) 2.089 2.?95 2 . ~ 1  2.379, 2.249 
0.0491 0.371 0.646 1.1%; 1.871 2.2c)2 2.2978 2343' 2.415 

1.483, 1.805 1.906 2.033, 2 . B '  2.3181 2.360 2-38; 2.430 
0.534; 1,056 1.259 1.555 1.904 2.156' 2.2501 2.W0 2.331 
0.122j0.47110.680 1-02; 1.%6'1.582 2.133,2.213 2.351 

I 1  I l l  
I 

I I  I 

I 
! I 

I - 

0.022~0.159,0.~5~0.€0, t 1.259 1.798, 2.010;2.122~2.311 
I 

.. 
'canstant. 

Upper end hee 
-lowerend fixed. 

rrcezi-T 
a b  

70 
71 

1 
I 

I 



NUMBER 

90 

L 

252 

1 

2 
3 
4 

I 
2 
3 
4 

I 
2 
3 
4 

1 
2 

. 3 
4 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 

9.322: 9.5731 9.621/ 9.7031 9.773 9.817; 9.839' 9.846; 9.860 
6.6451 8.760 9.079 9.3611 9.6221 9.7471 9.7ESl 9.838 9.843 

0.323; 2. 4?9i 4. 326i 7.104 0.083, 9.561! 9.t8Sl S. 732 9.8 I 3  

5.452 6.93<#/ 7.40051 7.083; 8.749 $.239! 9.228: 9.533 - 
1.641! 3.613 4.4711 5.675' 7.4661 g . 5 ~ 1  8.953' 9.170: 9.551 
0.335, 1.424 2.1551 3.475' 5.933, 7.750 8.434 8.786 9.385 

l l  I 

I I  I 
1.814 6. 17; 7.563 I 8.6911 9.411'9.666 9.733 9.773, I 9.829 

I I 

I 
I I 

0.057; 0.474 0.884 1.88'ii I 4.472' 6.914 I 7.E81; 8.376, I 9.: '2 
? I  

3.571 5.0871 5.655' 6.436: 7.631' 8.5381 8.?81! Q.126' - 
0.873 2.1211 2.7551 3.781; 5.655( 7.275 7.994, 8.401, 9.171 
0.167; 0.7501 1.175/ 2.0241 4.021j 6. 107' 7. I I 6  7.703 8.826 
G.0271 0.2371 0.454: 1.036; 2.755j 5.058i 6.283' 7.0m1 8.482 

I 1 -  

I 
I 

2.715, 4.114 4.688' 

0.58821 1.509 2017' 
I I 

0.105 0.496 0.7?8 
0.014 0.150, I I  0.294, 

CONDIT IONS -- 
Jpper portion varies i n  
.ndex and functio,i, I 

thicknesses .constant. - 

- 
a - 

0.2 

- 
1 

0.5 

- 

0.7! 

- 

1.a 

- 

NOTES 

pt=,,--,,- el 0 indicated by table and graphs below 

rap0 

60 

40 

70 
71 

--- 



NUMBER 

- 
91 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
COND I T I  ONS 

([ember with constant 
hickness, in  which the 
pper part varies by an 
:xponential function. 

NOTES 

EX 
P - P I L  I ,  P is as shown in the table and figures below. 

s lx, 1/10 1 I/5 I 1/4 I 113 I 1/2 1 2/3 I 3/4 f 4/5 1 9/10 

I I  I (27.39 ;30.:4 '31.41 

2 118.25 24.22 '25.71 
0.2 

1 I 118.50 1 124.38 '26.38 i29.03 132.81 '35.55 I 

i l l  

0.5 

I I  I I I I l l  

68 
69 

253 



NUMBER DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  REFERENCES,  
C O N D I T I O N S  NOTES 

-- ~- ~ - ~ -  I I 
92 plember of constant thickness 

in which the upper part 
varies by an exponential 

P.=I,E;fl P as shown in the table and figures below I 

- 
2 54 

Upper end pinned, 

- lower end fixed. 

Z = W X b s T  

I =B.' 
x.==~t~7 

m b  

'. 

1 

2 

3 

4 

3.5 

1 

2 

3 
1.0 

I '  
m 

-- 



NUMB E R DIAGRAM S BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES, 
NOTES - -. ~ 

CONDIT IONS 

E l  I If PL=F~:- 1.I will be as in the follwoing 

_ -  

93 

- 
94 

I 
aph. 

I 
Member of constant width 
but  varying thickness I 

- - 
0.467 
1.082 

I 65 
I 

0 
0.757 

, 1.529 
3.02a 

I where ma-- A VT, 1 is initial root of 
following equation 

2 (1 -4 (b-@ =-+cot --- 
A { l a b  )’ 

Asscming the initial root to be 

Both ends pinned 

,, shown by the graph and table below 

‘ 0  
1/20 
1/10 

115 
114 
113 
112 
2/3 
a4 

.. . 

67 

- 
255  



NUMBER D I A G R A M  E BOUNDARY 

95 (Member of constant width 
ind varying thickness 

C O N D l  T I ONS 

Upper end pinned 
Lower end fixed. 

- 
% dember of constant width 

nd';arying thickness 

FORMULA OR T A B L E  FOR R E S U L T S  

Buckling condition equation 

Assuming the initial root to be 
P E c b  ( a s  EI Pk=- 

as shown in :he table and graph below 
483' (- I P O T .  

- 
I 

0 
0. a74 
2. i20 
2.845 
4.192 
7.363 

11. I I  
12.19 

- 

-- 

- 
.!I2 

0 
2.194 
4.510 
5.685 

7.625 
11.340 
14.720 
16.346 

Buckling condition equation 

LSSUming the initial root tobe 

P E c b  
1' 

z as shown by the table and graph below 

0 

I R o (  I I 
0.321 
0.597 
0.728 
0.935 
1.337 
1.721 

112 
0 

0.c 46 
I .  103 
1.618 
I .  772 
I .  953 
2.174 
2.308 

314 I 1.972 I 2.359 

- 

- 

R E F E R E N C E S ,  
N O T E S  

67 

67 

2 j6 



NUMBER D I A G R A M  & BOUNDARY 
C O N D I T I O N S  

Non-uniform plate cross- 

97 

- 
98 

ection where thickness 
nd width of r-oss-section 
n upper part are inversel) 
sroportional 

Upper end pinned. 

Lower end fixed. 

dembcr of non-uniform 
xs-section in which . 

rri c kness of cross-section 
md width of upper parts 
.re inversely propoi 

I 

c 
c ,  

:tional 

Both ends fixed. 

F 9 K ; I u L A  OR T A B L E  FOR R E S U L T S  R E F E R E N C E S ,  
N O T E S  

in the b hove equation 

/205 - 
72 



NUMBER 

9: 

- 
99 

dember of non-uniform 
xos-section in which the 
hickness and the width of I ! -- 
he cross-n ction in the 
ipper part are inversely 
mportional . 

-Upper end free 
lower end fixed. 

REFERENCES, 
NOTES 
- 

/ 206 

@ as in the graph below 

! 

i 
! 
I 
! 

i 

i 
! 
I 

i 
I 
I 



NUMBER DIAGRAM 5 BOUNDARY FORMULA OR TABLE FOR RESULTS 

- -- 
100 

- 
101 

- 
102 

)per pans are I 

.I 
- -I-  

C 

< c =I - 
E. 
Y 

3, 

0, 
0 
3 . -  - 
c A b  Both ends pinned. 5 ~ c o t ( ~ h 0  7 ) + ~  

is an shown in 
graph below 

I 
,mmetrical memkr havine 

d. his 'secuon 
I 

. .. \ height- 

I 
i 
1 

Upper end free. n i  i n .  I !  2 

I 
i I 

p 9  I 1.959 I 1.446 1 0.25 

REFERENCES, 
NOTES 

73 
/207 

74 

75 

259 



NUHBER DIAGRAH & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 

GL.1 0 !O.l j 0.2 10.3  

p 14.0 17-60 I 18.15 18.52 

103 

- 

- 
D 

0.4 0.5 

8.81 9.05 

COND I T I ONS 

Both ends pinned. 

I d . (  ,+y 
where 

EZi 
. p D-PI-17 

B~ is shown in Figure 103.1 
EZe 

is shown in Figure 103.2 

P&.==p. -1. 

k= Io- 
I ,  

Figure 193.1 

Figure 103.2 

where B=F( P r. 2 r + ~  +1) 
w2r--l 

NOTES 
/208 

'5 

Diffirential 
equation solved 

by power Eries. 
- :r .--- 

_. . .-e . 

260 



NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
CONDIT IONS 

I .  I- (*+:y- 
where 

1 
L' 

- . ... - 
Both ends pinned. 

O g ~ f i  kaL. 
Both ends pinned. 

apI when 

.&e e--.- P-r. '- Zr 2s-1 EI.  * 

6.79 

P A L  

c. is the minimum root satisfying the 
buckling condition 

* equaticn. where p = c . * ( 2 - n ) J E Z  

1.0 I 15.i6 1 - - - - 
3.83 I 5.14 6.38 

p 17-02 15-06 14.25 4 3.21 , 2.49 
i 2-12 12-70 I 3.30 4.30 5.20 

2.40 3.00 ' 
0.6 p 18-41 I - - - - I C. 1 1.74 2.15 j 2.M 3.00 I 3.30 

c. expressed in the following table: 

xai 0.1 1 0.2 I 0.4 I 0.6 I 0.8 - 
1.0 1 2.EO 3.29 4.C6 7.32 1 
0.8 I 2.40 2.70 3 50 4.iO; 7.00 
0.6 I 1.W 2.05 2.45 1 2.53 3.60 
0.4 1.30 1.30 1.50 1 1.60 1.85 

NOTES / 209 - 
r6 

16 

77 
'he buckling condition 
quation is expressed 
hy the Bessei 
unctian relating 
0 5 . Here, 5 is the 
bllowing equation : 

2 
2-n 

=- 

26 1 



NUMBER 

101 

I !! 
3 
4 

DIAGRAM 6 BOUNDARY FORMJLA OR TABLE FOR RESULTS REFERENCES, 

9.27 ' 9.54 f 9.68 i 9.83 

9.23 r.50 1 9.69 9.81 1 9.86 
9.23 . 9 . 4  1 9.69 9.81 , 9-86 

9.24 1 9.50 I 9.70 ' 9.82 

CONDIT IONS 

I-I: (<-J 
c s r s t .  

A! the end, 1 = lo, 

both ends pinned. 

O S x 5 h .  
I=&. 

Both ends pinned. 

I J I e i X i  0 I 0.2 1 0.4 1 0.6 i 0.8 - 
6.48 ! 7.58 j 8.68 f 9.40 9.82 
5.40 ; 6.67 8.08 i 9.24 9.79 
5.01 6.32 : 7.84 I 9.14 ' 9.77 
4.81 I 6-11 , 7.68 I 9.01 1 9.77 

7.87 8.53 i 9.19 i 9.74 ' 9.84 
7.61 , 8.42 ' 9.15 I 9.63 9.84 
7.52 i 8.33 : 9-11 f 9.62 9.84 0.4 1 1 

4 7.48 j 8.33 9.10 1 9.62 ! 9.84 

1 i 8.61 1 9 12 9.55 9.76 9.85 
8.51 ! 9-04 9.58 9.741 9.85 
8.50 j 9.02 9.46' 9.74 9.85 
8.47 j 9.01 1 9.45 1 9.74 9.85 

76 

The correction coeffi&nr. 
of inetia is shown below. 
I . / I t / x ' /  1 10.2 , 0.4 0.6 10.8 i 1.0 

for the geometric moments 

0.6%' 0.766 0.879 0.958' 0.995; 1 - 0 0  
0.5G 0.076 0.819 0.937 0.992 1.ooO 
O.%, 0.64  0.794 0.926 0.990. 1.OOO 
0.487: 0.619, 0.778, 0.920, 0.990, 1.ooO 

0.710 0.809' 0.904 0.974 0.995 1.003 
0.645 0.759 0.872 0.956 0.994 ] . O N  
0.622 0.740 0.860 b.951 0.994 1.ooO 
0.610, 0.729, 0.653; 0.C'Xl 0.993, 1.OOO 

0.797 0.871' 0.931' 0.983 0.997 1.ooO 
0.77'11 0.853 0.927 0.976 0.997, 1 . M  
0.762 0.849 0.924 0.976 0.997, 1.003 
0.758, 0.844, 0.922, 0.975* 0.9971 1.W 

~~ 

0.968 0.9871 0.996 1.ooO 

0.957, 0.9871 0.98,  1.003 

0 960 0.987 0.9?8 1.000 
0.959 0.987 0.998 1.009 

~ 

0.9391 0.967 0.282 0.Wi1 0.999' 1.030 
0.936 0.?62 0.982 0.935/ 0.999 1.000 
0.935 3.?GZ 0.982 0.9941 0.W ].Coo 
0.935; 0.961 0.982, 0,9941 0.599, 1.003 

NOTES 

262 



NUMBER DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES,  

0 
0.2 
0.4 

- 

I I C  

- 
I l l  

5.87 
7.04 
8.35 

CONDl T I  ONS 

7.1 I 7.58 7.99 ! 8.59 
8.40 * 8.63 1 8.90 I 9.19 

9.W , 9 . 8 2 ,  9.82 9.83 

I 
9.40 9.46 1 1  9 - 7 3 ,  9.70 

5 
1-11 fT)* 

9s rs L- 
1 = 12 at ends. 

Both ends fixed. 

9.12 ' 9.53 
9.55 9 . a  

9.85 ' 9.86 

I 
9.76 I9.eZ 

- 
O S e S L .  

Both ends pinned. 

0 
0.2 
0.4 
0.6 
0.8 

P t = = r T  EIa P shown by table belok 

20.36 
22.36 
23.42 
25.44 
29.00 

7 120.36 122.36 I 23.42 I 25.44 129.00 
18.94 j 21.25 22.91 ! 24.29 127.67 

0 2 '  3 i18.48 ! 20.88 22.64 :23 .% 27.24 
i 18.23 120.71 22.43 j 23.80 127.03 I 4 

30.20 
33.08 

31.04 I 3 2 . E  

33.80 1 36.84 
35.80 1 37.84 

28-96 30.20 133.08 
28.52 29.69 i 32.59 
28.40 29.52 f 32.44 
28.33 I 29-45 I 32.35 __ 

32.72 I 33.56 ! 35.63 
32.69 i 33.54 135.56 

pI=p*. II shown i n  table below 

os rSL. 
Both ends fixed. 

P t = P p - .  EIo shown in  table below. 

0.4 1 0.6 0.8 

-- 

NOTES 

/211 16 

78 
e .g . ,  

rectangular 
plate of  
varying width. 

7P 



NUMBER 

0 
0.2 
0.4 
0.6 
0.8 

DIAGRAM E BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 

1.00 
1.56 
2.78 
6.25 
9.51 

CONDl T I  ONS 

9-04 
9.48 
9.74 
9.84 

I=Ia (5)’ 9.50 
9.70 
9.82 
9.86 

Both ends pinned. 

25.54 
27.35 
28.52 
29.69 
32.59 

1 Both ends fixed 

30.79 
32.02 
3277 
33.63 
35.64 

Path ends pinned 

6.14 
7.31 
8.49 
9.39 
9.81 

r 

7.52 I 8.50 9.23 
8.38 ’ 9.02 9.50 
9.10 I 9.46 9.69 
9.62 9.74 9.81 
9.84 1 9.85 1 9.86 

I =I1 ( t T .  
Both ends fixed 

1111 
0 

0.2 
0.4 
0.6 
0.8 

NOTES 

0.2 I 0.4 1 0.6 1 0.8 

18.48 25.32 30.72 35.32 
20.88 27.20 31.96 35.96 
2264 28.43 3?.72 36.32 
23.96 29.52 33.56 36.80 
27.24 32.94 35.60 37.80 

pLLP- EIi -. p shown in table below 1’ 

0 10.1 10.1 

3.45 
4.73 
6.58 
8.62 
9.71 - 

5.40 
6.67 
8.08 
9.25 
9.79 - 

8.61 9.15 
9.44, 9.63 
9.81 19.84 -- 

P p # P - - - -  EIi P .  
shoun in  table below 

0.2 I 0.4 1 0.6 1 0.8 

0 
0.2 
0.4 
0.6 
0.8 

18.94 
21.25 
22.91 
24.29 
27.67 

35.35 
35.97 
36.34 
36.80 
37.81 

0.01 1 0.1 

0 
0.2 
0.4 
0.6 
0.8 

2.55 
3.65 
5.42 
7.99 
9.03 

5.01 
6.32 
7.84 
9.14 
9.77 

78 
e.g. , rectangular 
plate with varying 
thickness. 

- 
18 

264 



NUMBER 

117 

- 
1 ia 

- 
I19 

- 
12C 

- 
121 

2.15 
3. I 3  
4.84 
7.53 

9.56 

DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR RESULTS REFERENCES, 

4.81 6.02 7.43 
6. I I 7.20 8.33 

9.08 1 9.38 9.62 
9.77 I 9.60 9.E4 

7.68 8.42 9-10 

CONDl T I ONS 
-~ 

0 
0.2 
0.4 
0.6 
0.8 

z=r.( t ) . .  

18.23 25.23 30.68 ' 35.33 
20.71 27.13 i 31.94 35.96 

I 36.32 22.49 
23.80 19.46 

I 
27.03 1 32.35 1 35.56 I 37.EO 

i 
28.33 :::: I 36.78 

Both ends pinned 

y 4'+t 

I-.(%): 

Both ends fixed. 

True hexagonal plate 

Both ends pinned 

Both ends pinned. 

&f  
I c 

Both ends pinnzd. 

NOTES 

/213 - I 78 
EIx pr=p--,,-. shown in table below e g. e Case 

- Jwhere and is a either member xi 0.01 1 0.1 I 0.2 1 0.4 

0 
0.2 
0.4 
0.6 
0.8 

- 
0.6 

8.47 
9.01 

9.45 
9.74 

9.85 

- 0.8 

9.23 
9.49 
9.69 

9.81 

- 

9. 86 

P =P?:-. P shown in table below 

pyramid or cone 

-- 
7a 

79 

79 
The upper half 
is considered 
IS divided into 
one isodeles 
trian le and oae 
rec thgle .  

80 

265 



NUMBER 

- 

m 

122 

- 
123 

- 
I 2' 

- 
I2 

a 0  0.4 0.6 
2.228 1 tL 1 1.680 1 1.151 

i 
_I 

taken as far 
as the oectior. 
term Here, 

DIAGi lAM E BOUNDARY FORMULA OR TABLE FOR RESULTS 
CONDl T I  ONS 

Upper end free, 

lower end fixed. 

, %- 
Uppzr end pinned, 

lower end fixed. 

Upper end pinned 

Both ends pinned. 

Ebta 
P P. =O. 1206--. 

E W  P'P0.5493- 
1s 

REFERENCES, 
NOTES 

80 

80 

--- 
81 
Slightly larger 
than the test 
v lue. When 
r?t is large, 
is it  applicable. 
Test equation 
When r/t is ,mall, 
it is used. 

a = W r .  

,,, Approximation equation for m 
m*-6.81 m+10.264(1--o')r0- 

181 
W. .n the whole 
diameter is nor 
verylarge 
when is not vel f, e) this agrekis 

wi t i  the experiment 

where 
95 onl the 

first t e r J  was 
taken. 

I __-._. 

265 



NUMBER D I A G R A M  S BOUNDARY 
COND I T I  ONS 

2.505 
1.815 
1.520 

12 6 

2.169 
1.602 

1.368 

4 'ti 
Both ends pinned. 

1.163 
1.106 

FORMULA OR T A B L E  F O R  R E S U L T S  R E F E R E K E S ,  
N O T E S  

I .  IC6 
1.067 

The buckling lengthcoefficient, r ,  as trle basisfor the maximum cross section. . -  

which is the root o i  E 1 is 

r is as in the following table 

\ b l l  
IdII '.. 
a2 
0. I 

0.3 
0.4 

a5 
0.6 
0. ? 
0.8 
0.9 
1.0 

_c__ 

0.7 

1.775 
I .  360 
1.204 
I .  127 
1.082 
I .  053 
I. 033 
1.019 
I.oc8 
1.003 

- 

- 

1.347 
1.131 
:.069 
1.041 

I .  027 
1.017 
1.01 I 
1.006 
1.003 
1.ooo 

1.039 
1.015 
1.008 

l a c 0 5  
1.003 
1.092 

1.001 
1.001 

1.ooO 
1.03i3 

I.OC0 
1.KO 
1. oco 
1.OOO 
1. OOO 
1. ooo 
1.0.-0 
1 . 0 0  
1.c00 
1.ooO 

8 1215 2 - 

Energy 
method 

1.812 

I. 163 

1 1.03 

a, 2 expressed by the table below I 

I 
I 

V X = i . r  when a1=t.COO. 



NUMBER DIAGRAM d BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES 
- CONnlTlONS NOTES 

I 
P.=~x ( 1 - n w 7  EX 

Upper end pinned. 
Lower end fixed. 

I 

i 

fkoth ends fixed 

IP 



NUMBER 

133 -7 

Iw) 

I 
I - 

I35 

1 16.1 13.0 
2 27.3 23.1 
3 4f.3 36.1 
4 -  52.1 

m e .  Cross-sectionvariable. 0 7.84 5-78 
prr end free, lower end 
x d .  

P==P0\ t 1 --) s m  
I 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
CObJDl T I ONS NOTES - 

I 

9.87 6.59 2.25 
3-67 1.0 - 

18.9 14.7 10.2 
30.9 25.7 20.2 
45.8 39.5 33.0 

1 
I 
1 IB ~ 0 t h  ends 

4 
pinned. 

13 
u1 1 

0 
0.05 
0. IO 

0.20 
a 1s 

a 25 
a m  
0.35 
0.40 
0.45 
0.50 

1.01 0.9 I as/ 0.71 0.61 0.51 0.41 0.31 0.21 0.11 o 



14 UMBER DIAGRAM E BOUNDATY 
CONDITIONS 

! 
' Cross-section variable. 
I 

n the- direction 
of the center. 

85 

formula is: 

I t 1=1*(1-+)' I 
I 
1 

Distribution of compressive fxce  

. = p a t (  1-2T) 1 
Symmetrical at center point 

1.w 
1.25 
1.50 
1.75 
2.00 
00 

FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOTES 

1.00 1.06 
0.95 1.01 
0.91 0.97 
0.89 0.94 
0.87 0.92 
0.73 0.75 -- 

84 /218 The load Po 
along the line 
of the axis is 

- 

1.18 
1.11 
1.07 
1.04 
1-01 
0.81 

The load on the 
axis having a 
distribution expressed by 

25 
P I P b T  

is applied 
I P - 

1.24 
1.16 
1.12 
1.08 
1.05 
0.53 

bistribution of compressive force 

Symmenical a t  center point 
- I  

139 Member in which there is 
rapid change in the load 
nd the'cross-section in 
enter. y?& 
Both ends pinned. 

. .  . 

FI 1. = k8n -=.LA Pl 11 

PI+PO'PI 

(PdP -(rl)*-, is buckling length 

r is shown in the table below, its apporximatio 
coefficient 

0 
0.2 
0.4 
0.6 
0.8 
I .o 

0.729 
0.784 
0.840 
0.8% 
0.951 
1 .om 

0.781 
0.855 
0.926 
0.994 
1.064 
1.129 

1.00 1 1.25 
-. 

2 

0.832 
0.922 
1.008 
1.088 
1.168 
1.249 

1. I2 
1.06 
1.02 
0.99 
0. w 
0.77 



- 
I 4 0  

materials 

Left end free, rizht end 
Ifixed. 

D I  

i 
I 
i 
I 

3 2 '  ..\ 
h' L' 16Ch- 

&=- .4+ d A'-B 
Here 

AP -c-+- 

I EJi %It *EJt' 
h%* . k' I.' Bra- -- 

COND I T I ONS --- 

App;oximation equation. I Jcined member consisting 
of members of 2 differait 

Left end fixed, right end 
pinned. 

P,+ P,=P, 

Member in whichload 
a dcross- cti n 
ctange susfdenfy, 

Left end pinned, 
right end fixed. 

P,+P*=P, 

i where P. is the first .a-t of 

EL; 
t&h=P*=-- 

Where P. . is first root of ! 
1 %  
I 

' mn .t -- - ( 3 +- 
cos# 

I "  E.r, In (P,). -- m c*-- 
(0.7 1): ' 

P 
- m is stiown !.,y the graph on the following page. 

i = - P >- 
Whc re 

27 1 



NUHBER DIAGRAM & BOUNDARY 
COND I T I  ONS 

FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOTES 

.- 

I43 /220 

! 

- 
144 lember in which load an( 26 

cross-section change suddenly. E& 
ha * 



NUMBER DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
CONDIT IONS - 

I- - 

I 

I /221 NOTES - 

( P I ) k n  m IP- Et 
P .  

where SpFJPa m shown in  graphs below 

Wl,  - 

273 



Long spring under - 
145 compressim. . 

REFERENCES, 
NOTES 

Effective geometric mJment of inertia 
sin= r=x.---. 

I+(+) .co9~s 

EI 
le=- GI,  ' 

88 /222 - 

ompression and torsion. 

With respect to q p e r  end 
free, lower end fixed. 422 

Below, in  place of 1, if 1' is used, ihis is the samt 
as the case of a solid column. 

X*EI' 
Pk=- 

cross-section 

I I - 

I n = number of ==- 1 
windings'c- t 

i 
i 

2 = geometric moment of inertia parallel to principle axis 
L1 = geometric moment of inertia perpendicular to this 

I . .  
= geometric moment of inertia 

-- - 

2 74 

&=@ffne+ -Y-=c?~*, 40: =lateral displaciment 

r=stiffnes= __ =re*, Ab: =contraction 

&=:stiffness= -- = d o t .  
I 

da 
P 

torsion A b  v 
AX 

compression 

A =torsion angle per unit length 
I 

k = cross-section auxiliary number (when circular, 
(when sqtiare, 1 

Buckling condition equation 

When 
P X I  

4d a 1' 
Morzover, when P 0 

L r, 

- w* +-r-. 

2no 2 m o *  waP--P- - 
When W = 0 

1.000) 
132) 



LATERAL BUCKLING OF BEAhlS 
Explanation of Boundary Conditions 

zdm7 
UkV---- 1 '  I Both ends have simple 

Simple support: Rotation possible around x,  y axes a t  end, 
I rotation impossible around z axis. 

. _ -  

U r n  U k P  -- ,/ego 
(2) When e is small 

n*Bi I 
&=T nDBl e? 

Both ends with simple 
support. P acts around, 
plane yz. 

.. .. ! 

'+p i - .  

I-, Couple: Rotation possible around x axis a t  ends, rotation 
around axes y , z impossible. 

z Fixed: Rotation impossible around axes x ,  y, z a t  ends. 
. 5  

- 
148 

- 
149 

I 

i 

i-- I 
! I 

Both ends coupled 

90 

275 



NUMBER 

150 

DIAGRAM & BOUNPARY FORMULA OR TABLE FOR RESULTS REFERENCES, ,  
C O N D I T I O N S  ' 'STES 

I 

hb' b Cantilever beam sustaining "pz' E.  C - - ( 1 - 0 . 6 3 9 ~ ) Q p  3 concentrated load at  member -- 
ends. 

p p  m -/BIB 
P .  

I I I blh I < - [  T I  + I -j- 
m I 4.013 I 4.085 I 4.324 I 5.030 I 

Left end fixed, right 
end free. 

P actya$ggh,e,j>axis a t  

I I I I 
AssurninR'that a is the distance in thedirection of y between the - 
point of application of the load and ths center of the cross-section 
the effect of the point of application is expresse 

equation: m-*.013( I-+%: 

where y in  the -figure is positive I I 
Beam sustaining central 1 

hba I B,=-E. concentrated load I2 151 I 

1 I ,, The effect of a is approximately 
( a  is the same as in the previous column 1150). 

. I  

Both ends with simple support. 

- 
152 

153 

) acts on plane yz. 

Both ends pinned. 

Bean! sustainin equally 
distnbuted loa%. 

Both ends withsimple support. 

90 

by the following 

9s 

90 

90 

/224 

276 



NUMBER 

Left end free 
Right end fixed 

the cross-section 
p a c t s  on the centroid 01 

D I A G R A M  6 BOUNDARY F t X t i U L A  OR T A B L E  FOR R E S U L T S  
COND I T  I O N S  

156 

Beam sustaining con- 
centrated load in  
middle 

&2E=$zfz 
A 

7'- 
0 

_P n 
A 8 

support 
Both ends with simple 

J acts on centroid of cross 
iection 

*J* 

@---+ 
Both ends pinned 
P acts on centroid -4  
of cross-section I 

I 

B1= bending stiffness around Y axis 

Values of k 

I 0.90 0.9? I 0.95 0.97 1 0.99 1.00 I I  
120.1 1 00 

Values of k (From Ref 941 

Values of k (From Ref. 90) 

Valqgs of k 

R E F E R E N C E S ,  
N O T E S  

94 

94 

/225 - 

277 



D I A G R A M  & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  R E F E R E N C E S ,  

which is approximately equal to 2D 
Where D= bending stiffness around yz 
axis of flange of 1 side 

NUMBER 

15; 

90 1% 

- 
159 

- C O N D I T I O N S  

1 beem sustaining 
simple bccding 

Both ends with 
simple support 

b = flange width 
t = flange average thick- 

h = height of beam 
tl= web of thickness 

ness 

Cantilever 1 beam 
sustaining con- 
trated load at free end 

Left erd fixed, right 
end free 
b = flange width 
t - flange average 

tnickness 
h = beam height 
t i =  web thickness 

P acts on centroid of 
cross-section 

1 16 1 20 i 24 1 28 I 32 1 361 401 100 

4.00 3.83 3.73 3.66 3.59 3.55 3.51 3.29 

m o w  Pr- p * 

Here B1 = bending stiffness around y axis 
C=G ( - j - b P + T h t , ' ) ,  2 I 

-I e p -- 2 c  D hl' r D ~ T B z .  1 

Where D = bending stiffness around Y axis of flane 
L 

of 1 side . _. 

I 1  I 1 

Z?/aa 1 12 I 14 16 24 f 32 i 40 I >40 
I I 

(NOTE) a k r H ~ E B , <  4 0  I' B,  proportional limit 

where 
- .  

B,=bending stiffness around x axis of be: 

90 

n 

/226 

278 



NUMBER DIAGRAM E. BOUNDARY 
COND I T I ONS 

t = flange avera e thickness 
h = beam heighp 

= web thickness 
P acts on centroil of 

P/O' 1 0.4 4.0 I 8.0 

m 1 86.4 31.9 125.6 
I 

cross-section. 

1 beam scstaining cen- 
Itrally concentrated load. 

I 

16.0 124.0 32.b 48.G 

21.8 20.3 19.6 18.8 

-- 

I 

- 
161 

FORMULA OR TABLE FOR RESULTS REFERENCES, 

__-- 

B1 = bending stiffness around 

Bc:h ends pinned. 

cross-section. 
P acts 0- centroid: _ _  

P/o' 1 M.0 1 80.0 196.0 I 160 1 240 1 320 I 400 
sa 18.3 18.1117.9 17.5 17.4 17.2 17.2 

(Note) b a r -  -E-  '' - Bx Cproportional 16 o 1' Bi 
l imit  

where €+ = bending stiffness around 
x axis of beam. 

Here 

B1 = Bendins stiffness 
around y axis. 

C= Q (f bP+ ~ h t ~ l ) .  I 

NOTES 
1227 - 

90 

-- 
90 

2 79 



NUMBER 
- 

162 

DIAGRAM & BGLINDARY 
COtiDl T l O N S  __ 

I. Beam $us th ing  equal1 
distributed load. 

i z 
simple support. 

h = flange width 
f, 1 p&e &ygfg thickne! 

t1 = web thickness 
9 equal ly  distributed loa! 

acting m plane yz on 
center line 

I 

i 

B e n  sunain'n eqJall 
distributed loaf. 

. &--I 
Both ends pinned 

. -  

280 

FOt J L A  OR TABLE FOR RESULTS REFERENCES, 

3 = Bending stiffness around 
y axis 

C ==Q(ptx+-j-htls 2 I ), 

here ID = bending stiffnsss ,.: 
around y axis of flanRe of oneside 

FE.' I 0-4 1 4.0 

I -  
.L ! 1.43 f 53.u 

I 

u I 30.51 30.1 29.4 29.0! 28.8 1 . 6  1 . 5  u 
where 4 = bending stiffness 

around x axis of beam 

where. 

& = bending stiffness around 
y axis. 

-- I 

NOTES 

90 /228 



NUMBER 

- 
I64 

I 

i 

i 
- I 

i 
'651 

/ 

i 

i 

i 
i 

DIAGRAM & BOUNDARY 
CONDIT IONS -- ~~~ 

I I n= c ,  
I 

L Y 

Both ends with 
simple support. 

D = maximum radius of 1 inscribed circle 
' h = distance between 

flange centers 

Left end fixed, 
Right end free. 

f 
h = stance between gange centers. 
Load P acts on the 
center of gravity Jf 
the crbss-section 

Both ends with free suppor 

I 

FORMULA OR TABLE FOR RESULTS REFERENCES, 

I,, = geometric moment of inertia of 
ehtire crosslsectio". w i  th rec-rt . .  '9 
v axis : 
1 = eometric moment of inertia of1 side 

Qxp=tortionil strength of the cross-section 
%ange with respect to y axis. 

In me diagram on the left 

I p = 2  IPI + ZPf t 2 a 1)L. 

*her& 

Zpl=ubs -!--O. 21 - f (1-+)]m 3 

I --cd'. I a= -1--(0.15+0. Is). 
Pa- 3 11 

where 
b<d whenr=b. d<b whencd.  
b<d whenh=d, d<b whentl=b. 

here 

. --  
1 = geometric moment of inertia of Y 
entire cross-section with respect to 
y axis. 
1 - eometric moment of inertia ot 

- -&%ge of 1 side wi  th respect to y axis. 
In the diagram to theleft. 

1p=2 Ipl + I,.+ 2a D.. 
Here. 

1 
3 xp. = -cas, 

r=-(O.15+0. t IT). t 
4 

b<d when t=b, d<b when t-d. 

b<dwhentl=d, d<b whenr=b. 

Here: 
m % 1 6 . 9 3 + 4 5 ( 7  IfEh' ) '*' 

2 1  Gl- 

NOTES 

91 

- -  

91 

91 

1 = eonetric moment of i ertia of . 

. lf = geometric moment of inertia of 
Y gntire cross-section wit! respect to y axis 

entire cross-section with respect to y axis. . 

/229 

28 1 



NUMBER 

I simple support. 

DIAGRAM & BOUNDARY 
CONDIT IONS 

P 2c 1' 
a' D ha* 
-I-- 

D = bend1.n stiffness around y . 
' axis otf lange of 1 side. 

a 

a 

FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOTES - 

l 466 I54 114 86.4 69. I I 

h = distance between flange centers 

In the diagram on the left.  

Is=2 I n  + I 4  + 2 a DL. 
Here 

Play 

- (I) 

1 beam in which centei  
is constrainzd by press. 

B1 = bending stiffness around y axis. 
C + Q ' b + ~ b t ~ ~ ) .  1 I l 3 -  

- .- 
I 

I 0-4 I 4.0 I 8.0 I 16 I 64 I 96 I 128 200 I 
673 I 221 I 164 1 126 I 101 179.5, I 76.41 72.8 

Bpth ends with 
simple s u g y .  

b = flange wi t 

f, % e a k  heigi?. 
c1 = web thickness 

an e aye a e thickne 

I 

Both ends with 

(NOTE) #ay--E-- '' Ba <broportional limit 

where. 
32 J 2' Ba 

B2 = stiffness around x axis ofbeam.  

.D = bending stiffness around y axis. 
of flange of 1 side, 

aq/C-. 
p k =  1' 

~~ ~~~ 

m L  
(NOTE) ~,=----EZR, 16 a L2 BI <Proportional Limit 

/here,& = bending stiffness around x axis of beam. 

B, = bending stiffness around y axis. 

C = Q ( - - j - b t * + ~ W ) .  2 I 

90 

2 82 



NUMBER 

_- 

It 9 

c 

in 

- 
I7 

Both ends withsimple .- support. 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
COND 1 T I  ONS NOTES 

T~~~~~ vibration stability limit The critical wind velocit) is 95 
(sheets eel irder) of a reinforc- 

direction of a suspension ,ridge 

b' 

ing stiffenekn the case when 
the wind force in the horizontal 

acp perpendicularly to *'ie bridg 
axis. 

' of reinforcing stiffener 
b = f)& ncq bety 

i = effective spmi- 
El = bending stiffness of total cross-seCUonof 

b::rmn'on S t i f f n y  of entire c r S i - s i X o n  of 

1: z homontal  tensll force of cable due to d c h  

n 2 cables or wiAth of 
: -inforcing suFener 

reinforcing stiffener 

.ein#orcmg sa ener 

I 

1. loat  
Tie-plate .of no.i-uniform 
cross-section sustaining 

I / 8  1.016 1.191 1.264 1.395 
I /4  1-06 1.251 1.261 1.372 

simple bending. - 
a. 

1.801?! 2.2351 3.557 
1.701' 2.055; 3.213 I 

I 

0 

3/8 
1/2 

1 B=B*-"(Bending stiff- 
j axis 

Re'ctan 1ar uoss-&tion. 

ness around y 

j C-Cm~-~, .-+. 
' 
whereb = wj&h of beam 

!h = hei ht of beam 

I 

1.1 1 - 2 1  1.333; 1.m 2.033' 2.MoI 4.003 

I.IC4 1.27 . 1.3291 1.416 1.693 1.W' 2.%7 
1.333, 1 1  1.438, 1.4741 1.5471 1.7791 2.025; 2.8.14 

Both ends with 
simple support 

B =Be ( I  + ba)-"', 
C=C.(I+bu)-", 

2 u= - 
1 '  

b,n or 

92 

92 

b(l+n) p=-- P iS shown in the table 
below ( I  + b)'+'h-  I - 

I) b 
!-;/31 1/21 I 1.51 2 I 3 I 6 I 9 - 

/23 1 - 
283 



NUMBER 

- 
i 

172 

I 

with simple support 

(b<<h).  

n4 

- 
175 

z& I 1.031 0.951 0.901 0.801 0.601 0.4 0.24 0.w 

p 1.275 
I !  

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS REFERENCES, 
COND I T I  ONS NOTES 

.. _ _  --- 

?he value o f r  is an shown below: 
Both ends with Jlmpk supp6n 

p 0.03'0.215~0.317'0.39113.4970.6550.7890.9031.a30 
l l l l l l l l l  

j ! 9 p  

1, -'.-I 
k - k -  

Both ends with 
simple support. 

c - & C L - J  
Both ends with 
s i q l e  support 

I P I m  {I-(:)). 

(b<<hI* 

Assuming V 3 I Z I . -  
&=P- L--. 

L-r, Q- -____ 
I.' 

Values of /I shown in the table below 

of P given below. 
I a I 1.w; 0.951 o.mi 0.89' 0.60 o .a l  0.29 0.00 

I l l  

93 

93 

93 



NUMBER 

176 

b 

- 
178 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS 
CONDIT IONS 

Cantilever beam of non-uiiform 

I,=-b'h, 12 I,u-b'h, 3 

Left end hee, right end fi: 
ridth, h = height, b<<h 

I,=&; rm=rm+ 

(C) -damp 4 
(d) Case when sustaining 
a concentrated load P at 
the front end. - 

Vhen sustaining dead weig 
p = dead weight at fixed 

I .  

(a) r=4.012. 

(b) p = 12.852. 

(C) pr26.52, 

REFERENCES, 
NOTES 

93 

/233 

I) Case when sustaining a dead weight 

)) When fully. loaded with distributed load p 
s) When sustaining dead weight(&' = dead weight at fixed end). 

(P = dead weight at fixed ends). 

93 



NUMBER 

I 

DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  
CONDl T I  ONS 

Symmetrical eUi tical plat€ 
sustaining cenuaiy  concefl- 
mated load 

Both ends with 
simple support. 

a - 
I"= I.(+)'* 

(b) p=11.493 

REFERENCES,  
NOTES 

93 

93 

- 

286 



NUMBER 

Where Depending on the configuration of the cross-sectic 
orrections are made for by multiplying by in  the fcll 

181 

DIAGRA'? & BOUNDARY FORMULA OR T A B L E  FOR RESULTS 
COND I T I ONS 

The allowable buckling unit stress is deter- 
mined from the following equation: 

f=- f 
8 

where f=': Allowable unit stress of ec entric 
Y compression m e m L  

f,+Allowable buckling unit stress of 
centrally compressed member. 

4 =*: Ratio of buckling unit stress of cen- 

centrically coinpressed member. 
Y : Safety factor 

ueI : Buckling unit stress oicentrally corn- 

8 s  trally compressive member andec- 

: Buckling unit stress of eccentrically corn' 
pressed member 

pressed member 
The values O ~ B  are determined from the following 
Equations with respect to each type p m b e r  
Structural steel members 
a .  a,=34 kipslin'. 

aO<l/i<lOO integrals B ~ ~ .  B,,. is lineraly interpolated 

I ,,,:yield point unit eccentricity I stress ..' s 

REFERENCES, 
NOTES 

1 10,600 t/F 
(NiV 

--r95s200, Bel+ 1 For i . .  I 75<1/i<95 integrals B , ~ .  B,, are linearly interpolated 
c .  u1=50 kipslin' I 

96 

1 
wing 



NUMBEP 

h.3. 
I+' d u & ~ ~ . E . - . K  I' 

geometric moment of inertia with 
respect to the x,  y axe! I.. I v :  

: beam height 

182 

10.39 ' 12.18 
11.39 13.20 
12.41 14.22 
13.43 15.25 

183 

288 

14.24 8.954 10.14 11.49 
15.26 9.802 11.00 12.33 
16.28 10.65 11.85 13.18 
17.30 z1.51 12.72 14.04 

DIAGRAM E BOUNDARY 
C O N D I T I O N S  

2 
3 
4 
5 
6 
7 
a 
0 

10 
11 
12 
13 
14 

Arbitrary cross-section 
configuration. 

5.411 
6.2P7 
7.33 
8.476 
9.696 
10.94 
12.22 
13.52 
14.84 
16.17 
17.51 
18.86 
20.21 

6.eE1 
t 579 
8.' .Y 

9.494 
10.47 
11.46 
12.45 
13.45 
14.45 

ditionsof actionof theioad 
Simple beam (K table) (a) Simple beam 

I 7.069 
7.995 
8.944 
9.909 
10.89 
11.87 
12.86 
13.86 
14.86 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
c_ 

b) Beam with Lateral Direction Constrained in Center. 97 

Concen- I Equally distributed load 

TOP I Center 
!Ih I trated I 

load Bottom 

4.381 
5.018 
5.780 
6.620 
7.589 
8.432 
9.378 
10.34 
11.31 
12.30 
13.29 
14.29 
15.29 



NUMBER 

184 

185 

. 

DIAGRAM & BOUNDARY F ~ R M U L A  OR -TABLE FOR RESULTS REFERENCE$ 
C O N D I T I O N S  . - ,  -_--------- 

I = I ,  + Z' \ 

NOTES , ! 
--.. 

Practical Svstem for Calculatine Buckline Unit Strtss I 
U u 

1237 - I JfSimple h a m s  
:a) Equally Distributed Load (Idin.') 

b) Centrally Concentrated Load 

I : span length 
h :beam height 

1: =(TT) I h  
b : flange width 

: flange thickness 

,ateral buckling of 1 beam 
OCentrally concentrated load 
Zross-section with 1 axis symmetrical 

4s n'E 
Pk'EiGFj  

h e  in which the tension side is constrained 
n' 1 1 %  

hl,  z' Pk = A ' ? I ~  h' 
f I + - & p )  

Cro.:s-section with two axe: symmetrical 

:ase in which the tension side is constrained 

pk= EM$--,/= I,=z,=z, 
6i-72 

z' 2 %  P c = E I F h -  
-$+l 

0 Pure bending cross-section with 
one axis symmetrical 

M,=E&p,  - z ' + J r + ]  
C : Torsion stiffness 

Case in  which tension side is constrained 

Cross-section with two symmetrical axes 
= E - - L T , / I ~ W + ~  n' a,- E- 

,' 

289 



NUMBER DIAGRAM E BOUNDARY FORMULA OR TABLE FOR REYLJLTS 
COND 1 T I  ONS 

7 

I. - I 
186 Cross-section configuratioi ' 1. PI I 

2. I Ellipse 

3. Square 

4. Rectar.Ale 

114 
I 2 a  4 

5. Equilateral Triangle 

6. Hollow Circle 

I .  Hollow Ellipse 
I 

S t .  Venant 's torsion resistance JT 

1 Jr=T*t'  

REFERENCES,  
NOTES 

99 
96 
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NOTES - COND I T I ONS 

e- 

8. Closed cross-section of 
arbitrary thickness. Jr = 4 Aa/J% 

I 

9. Bulb angle cross-secti 

10. I Cross-section 

11. T Cross-Section 

U. Angle 

13. [. 2 cross-section 

W t m  t is constant 

Jr=4 A'/+ 

A: Area dtscribed b;- centerline of wall 
s: Length of centeriir., of wall surface 

1 1 J 4,14+4.71(r/f)' 
Jr w-pp 1 1 + 

v : Bulb radius. 
S: Length of expansion of centeriine as 

far as center of bulb 

12 T Same as 12, total of JT of all elements 
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i 
I 

i 
I 

I 
1 

I 
I I 
i 

I I 
! 

-- 
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DIAGRAM t BOUNDARY 
CONDl T IONS -- 

YXEar center 
0: Center of gravity 

P 

3. Bulb attacheG 
Z shape 

4. Lip Z shape 
I - b l  

I 5. A q e s  with equal si 

FORMULA OR TABLE FOR RESULTS REFERENCES, 
NOTES 

wading Torsion Resistance CBT 
c ~ t = C ~ r .  +Car. 

:BTu: Direct strain and torsion resistance of wall  
surface due tc changes in the warp of the 
cross- section 

8Tn: Direct strain bending and torsion resistance 
in direction of thickness caused by changes 
in the curvature cf the wall surface. 

2 t P )  +2e( 3 + 2 p  +6 I( 1 + P )  + 4e'( 1 +2p ) + 2 e 7  
1+2@+2 8 

(For 0 , s )  

A' (For 0 , s )  Cat. =m 
A : Total cross-section area 



NUMBERS 
c-- 

187 

\ 

I 

~ 

I 

I - 

DIAGRAM & BOUNDARY 
CONDITIONS 

6. Angle with unequal si 

7. Lip angle 

I 4  

8. Angle with bulb 

9. T shape 

10. 1 Shape with one 
axis symmetrical 

P 

--- 

FORMULA OR TABLE FOR RESULTS REFERENCES, 

S 

(For s) 

1 , 12 ,'geometric moment of inertia of upper and 
danges with respeFt to the y axes. 

NOTES ~- 

ewer 
I 

~ 

I 
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REFERENCES,  
NOTES 

/242 

187 11. 

"Y 

t = Constant 
1': flange center of gravit 

12. C Cross-section 

!E -i i 

#+Phi 

14. 

A: Total cross-section area 
1,. ly:  Geometric moment of inertia with 

AF: Cross-e@on- area .o? lower flanae 
lF: Geometric moment of inertia of lower 

flange with respect to web axis 
C: Distance from center of flange from 

to web axis 

respect to x. y axe 

The f in the above equation employs 
(-) with respect to form c and + 
for <. . 

' 101 
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DIAGRAM & BOUNDARY 
CONDl T I ONC 

FORMULA OR TABLE FOR RESULTS REFERENCES, /243 
NOTES 

I 2. Semiicircle 

3. Channel 

4. Non-symmetric 1 shal 

Position of shear center 

frr e = h -  I? 
I r r :  Product of inertia of area 

When t is uriiform-and small 

, 1 are the respective geometric moments of ineI 
ie fianges with respect to the x axis. 

1 is the geometric moment of inertia around the nc 
:xis of-the rth element. 

295 



NUMBERS 
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DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS 
COND I T I  ONS ~ _ _  - _ _  

Rectangular tube with effec- 
tive wall surfaces only for the 
shear in 4 columns, each of * 

which is symmetric-1. 

6. 

7. Angle with unequal 
sides 

5. Angle with unequal 
sides 

9. I shape 

i 

I 

B1 2:  Cross-section area of 
coiner columns 1. 2 .  

j is point of intersection of the 
centerlines of both sides. 

s is point of intersection of the 
centerline of both sides 

Matches centroid 

Point of intersection of center- 
lines of web and flange 

A: Total cross-section area 
1 Geometric moment of inertia around F' 

web axis of lower flange 
I : Geometric moment of inertia around 

axis 

REFERENCES, /244 - 
NOTES - 
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188 

- -- 

DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS 
- CONDl T I ONS 

12. Cross-section 

13. 3 Cross-section 

14. having concentfatel 
members 

{ l + ~ b , / b , - - g ( b : ! W )  1 4 

1 

’osition of shear centers of each cross-section 
iimension 

= 6, ( l + b , / b , + ~ h / 4 - 2 ( b , / ~ r ) ( ~ - - f ~ ~ / ~ ) )  

b (1+2n) I =  
( P + $ ( U b  +4 n) 

n: Variable relating to the cross-section 
area of the concentrated members 

REFERENCES, /245 
. -  NOTES 

- 
100 
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NUMBERS DIAGRAM & BOUNDARY 
CONDl T I ONS 

FORMULA OR TABLE FOR RESULTS REFERENCES, /246 - 
NOTES 

'agneris theoretical equation taking member end 
lnditions into consideration. 

CJr:  St.  Venant's torsion stiffness 

L : Member length 
kd &: Coefficient determined by 

Bending torsion stiffness 

1).Pin end (p=O, (p"=O 

h=l, k,=1 

member end condition! 
9 : rorsion angle of cross wctior; 

Corresponds to Wagner's theoretical equation 
2)Fixed end v=O. r ' -0  

&=1 
k,=4 

3) Spherical end 
2 

#=O, ECBr(p"' +(Pi,,'-CJr)(p' -Pf,'(p'x=O 

r,: Distance between shear center and 
strictly. denoting centroid 

From the following chart. the value of m2 with 
.espect to To - 

kd = 1 s  

101 



NUMBERS DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS 
C O N D I T I O N S  

t, 1.076 

c -  

REFERENCES, /247 - 
NOTES 

1 . 5 5  1.562 2.015 2.84 3.37 

where 
if mn>* Ld- 1 

1,=4 

Conditions ui?der which torsion bucklillg actually -7 i 
buckling): actually ?c:urs as long as it i S  smaller 
than the local burKing load. 

Condition K,, 6-( 1--r :d, 
1 k - 4  --- equation 

t d  6, 

&: Local buckling coefficient 

t-, t d  : Coefficient determined by member end  I conditions (re: Ref. 189). ’ .=(+>’; 
i Geometric radius of gyration of cross-st 
6 :Plate width of basic wall surface of 

cross-section in  which local buckling C 

I 

! 
i 

101 

:tion 

:curs. 
a,, d.. t,. d. :Coefficients determined by crossLse&ion 

configuration when determining JT, CBT 

Member length I =[z) Assuming 
condition equation 

6 ’  

4 
I-= 

I 
kd I 

L: Member length i 
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 pr proportional limit unit stress 

DIAGRAM & BOUNDARY 
C O N D I T I O N S  

FORMULA OR TABLE FOR R E S U L T S  

_. - 
REFERENCES,  1248 - 

_. NOTES 

C. C Values of K, of 
Cross-section 

O P ) M , E 6 M L o  
A 

a 

n.d 
of 

Nf 

Condition equation when the lip wid& of the crm: 
ection is adequately large. 
Iithin. I 

. . _  

I --- proportional 
limits &f 4 

Qo 

Outside of 6 ( l - - v ) d ,  
1 -., - & > 1 d d -  Nroportional limit ----A 

4 be 

c, c Values of kl for cross-section 

F 
-. a 

e equation 
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191 

A P,: Wagner *s buckling value 
x y : Coordinates of center of gravity 

- *  -*-o:7 with respect to shear center ary cross-section 

FORMULA OR T A B L E  FOR RESULTS REFERENCES,  /249 - DIAGRAM E BOUNDARY 
CON31 T I  ONS NOTES 

3) Arb. 

T-x Y 

Seneral formula for compound buckling considerin4 
bending and torsion 

a ) .  Center compressed load l 
1) Cross-section with 2 symmetrical axes and 

symmetrical points 
Wagner's equation PI== (c/.+ 7 8 - j  ~ E C B ~  

2) Cross-section with 1 symmetrical axis 1 
Case where x axis is symmetricaL When the y 

axis is symmetrical, Y is reread as X 

b) When pure bending moment is acting I 
1) Cross-section with 2 symmetrical axes or point .-. ...-..-a,.,.. ,,-,I 

My-0 when 
Mx=* J P.x.Pm.iSpl 

where 

;) Cross-section with 1 symmetrical axis - (X axis symmetricaly 
;e of Cconfiguration My = 0 

Case of T configuration M = 0 

&. MY: Bending moments around X I  Y 

& = f P'P.~.P.- is 

Y 

I 
axe 

k ~ = J y ( Z + y ' ) d A - y , A i ~ p '  I . Distance from shear _center to centroid 
# e *  indkectio,l .-.- .---I- 

A : CiOSS-section are.a I 
:) Case in  which an ecqentric compressive load is sustained. 

Minimum value of PK determined from followir 

ex, 3.: Eccentricity in direction, X ,  'I 

equation 



191 

. P 

Pe: Flexural buckling load 
Pk:Critical compressive load acting on end 
Mk: Critical bending moment acting n end 
Mk =’ 0 , buckling occurring with minimum value among Pe, P, 

The relationship hetween Pw, Pel Mk, Rk is shown by *he 
follbwing graphs I 

Ip k - - 0 ,  Mk12 = isp2. PW. P, 

ra,  Lhl 

I 1) Cross-section with two Symmetrical axes, 
where ex = 0 
---{- 1 1 1 1  1 1 * 4 81.’ 

’ p a - 2  P g ~ + ~ * ~ ( ~ - ~ )  P g x P z  
2) Cross-section with one symmetrical axis (y axis syrrmetrical) 

where e,, = 0 - - . . 
= P or smallest root from following equation 

--- I Also, from the previous equation 

pa’ P.r pw p, i s p * I r - k  

+ p + ~ ~ - - x p ~ - ] P . ~ P w  -0 
d r  (Qr +YO)’ 1 

d) Torsional buckling in the case when a central compressiv: 
load and pure bending moment act on the meyber  en3 

1)where the cmter  of the buckled cross section and the center of 
the figure are identical, and the condition at  the ends with re- 
s ect  to bending and torsion are the same. Simple support a t  
tge Tds and free camber of the cross-section. 

daad=iSpt( P,-P,)( Pg-PK) 
isp= 7JA 1 J ~ A  

the a rcve 
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C 0 N I ) I T I O N S  NOTES - 

one en ree 
tr = 2.247 

191 

1 
I#.) = s-JA 4 d A  i 
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~ b) Symmetrical shape 

-C,isp'(P,-P) ( P.-PE) = 0 
C,. C,xe constants dztermined by the end 
conditions 

192 

I APLT is symmetrical with 
respect to the rivet line 

A:  Half wave length of bucklinc curve 
tangent modulus 

with respect to Point T 
&cEt: Bending and torsion stiffnes of stiffener 

St. Venant's torsion stiffness of 

of stiffener and inertia 2nd flat plate 

i 
i 

I with respect to T" 

I D :  Some OS extreme geomezic  moment; 

NUMBERS DIAGRAM & BOUNDARY FORMULA OR T A B L E  FOR R E S U L T S  R E F E R E N C t S ,  cc /252 
C O N D I T I O N S  NOTES 

I 

ding 

90 

1 ' 1  1 1 -  --- 
r&. Jcr. do. * 1  K -  K D , + K , , + K ,  

o : Average unit stress K 1: Bendit? stiffness of a flat plate 
cf  a flat plate L i t e r  P Case oFanti-symmetrical deformation 
buckling 

plate after buckling 

which A ~ L T  is sym- 

ae: End fiber stress of flat I 
, CJ p: Compression unit stress in case where flat plate 

2) z cross-section i n  I Et' Case of symmetrical deformation K , l = )  

KSt: Stiffener bending stiffness = EP 
3 ( h + 4 p )  

Kr: Bending stiffness of rivets 
Z stiffener - 

Pure torsion buckling 
a) Anti-symmetrical 

sham 

buckles 1st 

metrical d t h  respect 
to the cross-section 

Torsional buckling of stiffeners attached to 
flat plates 

1) Pure Torsional bcckling 

Z cross-section, Point T are on a straight line 
during deformation, forming center rotation. 

Two cases in which the pure torsion buckling unit 
stress around Point T are symmetrical and anti- 
symmetrical are expressed by the following 
equation 

web 

Lb ' I 
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NOTES 

S: Shex  center of above 
T: Center of rotation 

of pure torsion 
R Hypothetical center 

192 

CONDIT IONS 

0: Center of gravity of I effective cross-sectior 

of stiffener 

b 
tS: stiffener w a l l  thickness 

is symmetrical with respect to the web 

c =x, 
PL T 

When A 

(Case shown in Figure 2) 

A : Stiffaer cross-section area 

Since ~~~i is small. eliminating it 
S 

2) Compound buckling consisting of bending 
and torsion. Tne compound buckling i n  the 
case where stiffeners of arbitrary cross-section 
are attached is expressed by the minimum 
root of (3 k in the following equation 

0.: Euler's buckling unit stress 

0.: 
Torsional buckling ucit stress around 
Extreme radius of gytation of area wi 

'PR )t 
4 ips: R=( 

Extreme geometric moment 
Ir.: of inertia with respect to R 
As: Stiffener cross-section area 

A,,,=br *: Effective cross-section 
u8 area of flat plate 

Dint R 
I respect to 

305 



NUMBERS DIAGRAM & BOUNDARY FORMULA OR TABLE FOR RESULTS 

192 

306 

CONDIT IONS 

A I  so 

The amin determined from 

the above equation i s  ex- 
pressed in  the f o l l w i n g  
d i agram. 

REFERENCES, /254 
NOTES 
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3. FRAMES A N D  ARCHES /259 

1 .  FRAMES ( C O N T I N U O U S  MEMBERS,  BU I L T - U P  MEMBERS,  
T R U S S E S ,  R I  G I  D FRAMES)  

3 . 1 . 1 .  H I S T O R I C A L  REMARKS 

I t  i s  possible  t o  construct bas i c  equations f o r  the  case of handling the  
buckling of frames which cons is t  of an assemblage of various components such as 
continuous members, t ru s ses ,  bu i l t -up  members, and r i g i d  frames, on t h e  bas i s  * 

of the  proper t ies  of s o l i d  members i n  which bending and force i n  the  d i r ec t ion  
of the axes occur together .  
applied as i n  s o l i d  members. There i s  merely a requirement f o r  an increase i n  
the  procedures f o r  solving simultaneous equations f o r  t he  case of assemblage of 
p a r t s ,  and conceptually the approach i s  exact ly  the  same as f o r  s o l i d  members. 

In o ther  words, exact ly  t h e  same approaches a r e  

I t  i s  possible  t o  f ind  the  f r e e  moment equations f o r  members sus ta in ing  
forces  i n  the  d i r ec t ion  of t he  ax is  i n  Muller-Breslau's book [l] which i s  a 
bas ic  appl ica t ion  of t h i s ,  while we must a t t r i b u t e  t o  F. Bleich [ 2 ,  31 success 
i n  expanding t h i s  fu r the r ,  analyzing the  s t a b i l i t y  of frames and applying t h i s  
t o  ac tua l  practi-ce.  
Eembers having various t ru s ses  by means of a four-moment equation, and found 
approximation formula(s) f o r  t h i s .  
l a ( s )  was first adopted f o r  German spec i f i ca t ions  14, 51 and i t  has come t o  
be adopted i n  the  spec i f i ca t ions  of  var ious countr ies .  Timoshenko [6] and 
Ratzersdorfer [7] have described i n  d e t a i l  the  bas i c  theory and methods f o r  
appl icat ion t o  problems i n  the s t a b i l i t y  of  frames. 

F. Bleich ca lcu la ted  the  buckling values f o r  compressive 

H i s  proposal f o r  such approximation formu- 

In the  analysis  of the  buckling of continuous members, t he  th ree  moments 
equations o r  four  moments equations mav be u t i l i z e d  o r  as i n  the  case of a 
s o l i d  member, i t  i s  possible  t o  obtain r e s u l t s  by solving d i r e c t l y  from t h e  
d i f f e r e n t i a l  equations of the  member, introducing boundary conditions.  With 
regard t o  two-span continuous members, K i m  Shunzo [8] found a numerical solu- 
t i on  f o r  t he  case of various member and support conditions and f o r  t he  case i n  
which the  geometric moments of  i n e r t i a  between support po in ts  d i f f e r s  according 
t o  the  span, from the  matrices of t h e  so lu t ions  of  t h i s  d i f f e r e n t i a l  equation. 

J. Ratzersdorfer [7] has exemplified the  so lu t ion  of various cases f o r  de- 
termining the  buckling load of t ru s ses  and frames by means of a hypothet ical  
work method. The der ivat ion of a def lec t ion  angle equation f o r  members sus- 
t a in ing  an axial force has been car r ied  out f o r  general  cases,  by many authors.  
D r .  Saka was the  f irst  t o  wr i te  a paper on t h i s  subject  i n  Japan [9 ] ,  and it i s  
one of t he  most important. Mizuhara a l so  derived the  def lec t ion  angle equa- 
t ions  f o r  a b a r  [ l o ]  i n  h i s  discussion of t he  v i b r a t i m o f  r i g i d  frames, and in -  
dicated t h e i r  appl ica t ion  t o  determining the buckling load of mul t i - s tor ied ,  
r i g i d  frames. [ll] 
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Hans Sievers [12] has conducted research on the  buckling of gate  frames 
having angle braces o r  t r u s s  beams. 
so lu t ion  d i r e c t l y  from d i f f e r e n t i a l  equations f o r  the  buckling of t h ree  pinned 
type gate  frames having var iab le  cross-sect ion beams o r  columns, and indcates  
h i s  results i n  a numerical t ab l e .  
rectangular  r i g i d  frames includes the  papers of Chwalla and Jokisch [14] .  
q u i s t  has applied t h i s  t o  a i r c r a f t  engineering and has presented a large number 
of papers [15] which include numerical t ab l e s  t o  simplify the  design calcula-  
t ions .  The research of George Winter, HSU, e t  a l .  [16] and Thomas C .  Kavanaugh 
E171 a l so  merits a t t en t ion .  
Tsuboi; Wakabayashi [19],  Sugano [20], [21]  and Fujimoto [22]  has been reported 
recent ly  t o  the  Japan Archi tectural  Society [16]. 
buckling standard ( D I N  4114) a l so  merits a t t en t ion ,  [57]. 

Wilhelm Bultmann [13] obtained an accurate /260 

Recent important work on the  buckling of 
Lund- 

In our country, the  research of Hiruta  [18] 

Moreover, t he  new German 

3.1 .2 .  METHODS OF STAB I L I TY A N A L Y S I S  

In the  analysis  of the s t a b i l i t y  of continuous members, t ru s ses ,  bu i l t -up  
members, and r i g i d  frames which cons is t  o f  a combination of s o l i d  members, the  
bending and member ends deformation (def lec t ion  angle o r  displacement) a r e  
merely added t o  the  ana lys i s  as unknown q u a n t i t i e s ,  but bas i ca l ly  the  method i s  
the same as f o r  t he  ana lys i s  of s t a b i l i t y  of s o l i d  members. 
t h e  same approach as f o r  the  buckling of s o l i d  members, t ak ing  i n t o  considera- 
t i on  the  member end cons t ra in ts  and deformation. The methods which can be gen- 
e r a l l y  used f o r  s t a t i c a l l y  determinant s t r e s s  may be employed by expanding them 
f o r  such analyses. 

One may use exact ly  

I t  i s  poss ib le  t o  d iv ide  the methods i n t o  the  following f i v e  types:  

( 1 )  Di f fe ren t ia l  Equation Analysis 

This .is a prec ise  method, i n  which the  ana lys i s  i s  ca r r i ed  out by numeric- 

I t  is e f f ec t ive  when the  frame and the  load conditions a r e  simple. 
a l l y  solving the  d i f f e r e n t i a l  equations f o r  a member and introducing boundary 
conditions.  
Although i t  i s  possible  t o  obtain as mathematically prec ise  a so lu t ion  as one 
wants, it is d i f f i c u l t  t o  employ f o r  complexed frames. 

( 2 )  Stra in  Energy Method, M i n i m u m  Work Method, Hypothetical Work Method 

A s  a bas i c  p r inc ip l e ,  so lu t ions  a r e  obtained by employing the  s t a t e  i n  
which the secondary degree of change i n  t h e  overa l l  po ten t i a l  energy of the  
system is  0 i n  the  case of buckling. 
t h i s  system. 
t o  determine spec ia l  cases i n  which the  s t r a i n  energy va r i a t ion  is 0 ,  by hypo- 
thes iz ing  a deformation curve. J .  Ratzersdorfer [7] gives examples of severa l  
cases based on a hypothet ical  work method, f o r  determining the  buckling of 
truss% and frame members. 

F i t z ' s  approximation method belongs t o  
These methods a re  convenient when u t i l i z e d  f o r  rough ca lcu la t ions  
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( 3 )  Simultaneous Equations, Solut ions,  Matrix Solutions 

I f  one takes the  s t r e s s  ( the  ax ia l  force and bending moment) and the  d i s -  
placement (def lec t ion  angle and deformation) of a member as  an unknown quant i ty  
i n  the equation, of a l i n e a r  quadra t ic  simultaneous equation of the  same order  
as t h e  unknown number i s  es tab l i shed  on the  bas i s  of t he  ordinary hypothesis of 
l i t e r a l  displacement. 
method [9] ,  [16], [ZO], the  th ree  moment method, four  moment method, [ 2 ] ,  [3] 
and Mises' equation. I t  i s  pos ib le  t o  determine the  buckling condition equa- 
t ions  by taking t h e  determinants of these equations as 0.  

Forms of such equations include the  def lec t ion  angle 

(4) Convergence Method, Ser ies  Method 

These a r e  based on the  theory f o r  the  solving of i n s t a b i l i t y  by the  elim- 
ina t ion  of the  cons t ra in ts  on the  end of a member by means of sequent ia l  approx- 
imations, and can be c l a s s i f i e d  i n t o  mathematical methods and graphical calcu- /261 
l a t ion  methods. 
Hoff's Method a re  examples of t h i s .  

Lundquist's method [15], t he  f ixed  moment method [21]  and 
- 

(5) Mixed Method 

The mixed method obtains  a so lu t ion  by combining the  above methods. For 
example, using ordinary t r i a l  methods, i n  t he  case based on matrix and series 
so lu t ions ,  one approaches an accurate so lu t ion  by successive approximation, 
from the  values of the  first apy:oximation t o  the  second, e tc . ,  and the  energy 
method is general ly  employed f i rs t  i n  order  t o  determine the  first approxima- 
t i on  values.  

3.1.3.  CLASSIFICATION OF FRAMES 

In analyzing the  s t a b i l i t y  of frames, it is convenient firs,t t o  c l a s s i fy  
them as follows i n  terms of  t h e i r  p roper t ies .  

( 1 )  H inged  Frames 

The member ends a re  a l l  hinged. 
following c l a s s i f i c a t i o n s  : 

This t p e  is  sub-divided i n t o  the  two 

(a) Cases i n  which va r i a t ion  i n  member length i s  considered. 

(b) Cases i n  which va r i a t ion  i n  member length i s  not considered. 

For s t a b i l i t y  aulalysis, it i s  poss ib le  t o  employ the  so lu t ion  f o r  s o l i d  
members, taking i n t o  consideration the  displacement of the  j o i n t ,  without any 
ex t r a  modifications on the  analysis .  

( 2 )  R i g i d  Frames 

(a) Case i n  which the displacement of t h e  j o i n t s  i s  constrained. 
In t h i s  case,  i t  is possible  t o  obtain a so lu t ion  by cnly 

I t  is r e l a t i v e l y  simple as a merhod of 
(Figure 3.1.1). 
using the so-cal led j o i n t  equation. 
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s t a b i l i t y  ana lys i s ,  and the  so lu t ion  is  easy. 
j o i n t s  occurs, the  def lec t ion  of  the  member and the  displacemsnr of the  j o i n t  
i s  0,  the  unknown quant i ty  i s  merely the  deflec'ion anglds f o r  each member end, 
m d  f o r  t h i s  reason one can get along with a small number of equations.  

Since no displacement of the 

Figure 3 .1  1 

(b) Cases i n  which there  i s  displacement 
of t he  j o i n t s  (Figure 3.1.2) .  These cases can 
a l so  be divided i n t o  those i n  which the var ia t j -on 
i n  member length i s  considered, and cases i n  
which such va r i a t ion  i s  not considered. In the  
former instance,  considerable time and e f f o r t  
a r e  required,  so  i n  most cases the  so lu t ion  i s  
obtained ignoring t h e  variati.on i n  member length.  
However, i n  cases such as ladder  columns, vaT 
a t ion  i n  member length accumulates and has a 
la rge  e f f e c t  on thc  so lu t ion ,  and f o r  t h i s  reason 
it must be heated. Moreover, i n  the  case of 
ordinary r i g i d  frame, t he re  i s  no p a r t i c u l a r  ob- 
j ec t ion  i n  p rac t i ce  t o  solve the  equations ignor- 
ing va r i a t ion  i n  member length.  

( 3 )  Elas t i ca l ly  Connected Frames 

In t h i s  case,  the  p a r t s  arz member ends, a r e  
ne i the r  hinged nor r i g j  .i ZonnectiLns, ins tead  the  
connection i s  e las t ic .  That i s ,  they s t raLule  
angle 8 i n  d i r e c t  proportion t o  the  bending 
moment M ,  var i e s .  

e=$&. 

Fiqure 3 . 1 . 2  In t h i s  case,  by employing the  proportion 
constant B (bending coqstant o r  s p i n g  constant;  

as a parameter, i t  i s  possible  t o  obts in  a so lu t ion  based on the  case of a 
r i g i d  j o i n t .  

/262 -- (4)  Frames i n  General 

For frames i n  general ,  a combination of t he  above three  cases i s  used. 

In the case of ordinary,  concinuous members, t ru s ses ,  bu i l t -up  members and 
r i g i d  frames, one very frequent ly  obtains  a so lu t ion  by assuming the  case jn 
which the  displacement of the  j o i n t  of a s t i f f  jo in ted  frame is constrained, o r  
t he  case i n  which the  j o i n t  va r i e s ,  without taking i n t o  consideration va r i a t ion  
i n  member length,  as i n  (2a) and (2b) respec t ive ly  above. 
i a l l y  accurate so lu t ions ,  t he  va r i a t ion  i n  member length i s  taken i n t o  account, 
and a so lu t ion  i s  obtained as f o r  an e l a s t i c a l l y  jo in ted  frame. 
any of the above cases,  there  a re  instances i n  which a support point  of t he  
s t ruc tu res  are e l a s t i c a l l y  supported. Figure (3.1.2 a )  i s  an example of t h i s ,  
and i n  such cases,  as i n  the  case of e l a s t i c a l l y  connected frames, one employs 

In obtaining espec- 

Moreover, i n  
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the  r t l e t i o n  
--k,R 

i n  which the  resi7::m.: k and the  displacement 
i s  possible  t o  obtain a so lu t ion  using the  propoicional constant k l  (bearing 
constant or spring constant)  as a parameter. 

are proport ional ,  and then it 

3.1.4. HYPOTHESES i N  STABILITY A d A L Y S I S  

As v i t h  s o l i 2  menbers, i n  amlyz ing  the  s t a b i l i t y  of frames such as con- 
tinuous members, trusses and r i g i d  frartes, na iu ra l ly  the  e l a s t i c i t y  Etd non- 
e l a s t i c i t y  regions pose 9 problem. However, within the  non-e las t ic  range, s ince  
the  propert ies  of the regicn beyond the  proportional l i m i t  of t he  material; i . e . ,  
t he  cha rac t e r i s t i c s  of y i e ld  and e l a s t i c i t y  have a la rge  inf luence,  t he  ana lys i s  
is r e l a t ive ly  d i f f i c u l t ,  and outs ide of experimental inves t iga t ions ,  it is  not  
handled very frequently.  

%e derivat ion c ?  metho& f o r  t he  analysis  of s t a b i l i t y  t h a t  are normally 
car r ied  out is based on the  follewing hypothesis. 
one nust remember t h a t  these assumptions are being made. 
ago" the type of frame, e r ro r s  i n  these  assumptions may accumulate, causing con- 
s iderable  differences front r e a l i t y ,  so caution must be exercised. 

In ap?lyjng these  methods, 
bioreover, depending 

(1) Buckling per ta in ,  tc, L:,e buckling within t h e  s t ruc tu re .  

(2) The extension of her due t o  normal s t r e s s  is  not  cmsidered .  

(3)  The extension of a member due t o  deformation i s  not  considmed. 

i4) Di?ending on t h e  conditions of the  r i g i d  connections, t he  s c i s s o r  
angles between the p a r t s  a t  the  j o i n t s  do not change. 

A s ta te  of equilibrium is Inair,ta:.ned without external  forces  L u s i n g  
any curvature of the  pa r t s .  

(Sj 

Among the  methods for the  analysis  of t h e  s t a b i l i t y  of such frames as COIL-  

tinuous members, trusses, bui l t -up members and r i g i d  frames, we s h a l l  describe 
b r i e f ly  the  def lec t ion  angle method which is considered t o  be the  most repre- 
sen ta t ive ,  a id  t h e  analysis  based on t h e  fixed moment method. 
i n  mind tha t  the  metnods i n  the  two sec t ions  below a r e  derived on the  bas i s  of 
the assumptions aentioned above. 

I t  must be borne 

3.1.5. ANALYS IS BASED OW THE DEFLECTIGN ANGL E METHOD 

f l )  Basic .?quations. A member A, B which connects jo in t s  AB of a r i g i d  
frame rJhich is e l a s t i c a l l y  €'xed a t  both ends undergoes the  deformation indicated 
i n  Figure 5.1.3, and is assumed t o  be i n  a c t a t e  of equilibrium. 
foilowing auxi l ia ry  numb- .. I 

Using the  
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(3.1.1) /263 

or  

The following equation is es tab l i shed  as a general  equation f o r  t he  de f l ec t ion  
angle method f o r  a member sustaining an axial force.  1141, 1161, [20] 

Here, when the  member A3 sus t a ins  a 
compressive force  

F i g u r e  3.1 .7  (3.1.3) 

b 

When member AB sus t a ins  a t e n s i l e  force,  t he  c i r c u l a r  funct ion i n  Lhe above 
equation becomes a h y p e 3 o l i c  function, becoming 

zsinha-z'cosht 
f ( cosh t - i ) -~s inh t  aa= (3.1.4) 

Since it i s  considered convenient i n  p rac t i ce  t o  have a t a b l e  ind ica t ing  
t h e  numerical values of a and B i n  equation (3.1.3) and (5.1.4), t h i s  t a b l e  is 
given i n  Section 3.1.7. 

When the  end A is  pinned, equation (3.1.2) becomes 

When end B is pinned, s imi l a r ly ,  equation (3.1.2) 'oecont,'is 

(3.1.5) 

(3.1.6) 
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where 

(3.1.7) 

the  values of y are a l s o  given i n  Section 3.1.7. 

(2) Joint  E q u a t i o n .  Generally, t h e  j o i n t  equation is expressed by 

(3.1.8) 

and f o r  t he  values of  Mm i n  t h i s  equation, equation (3.1.2) o r  equations (3.1. /264 
S ) ,  (3.1.6) may be subs t i tu ted .  

- 

When no displacement of  t h e  j o i n t  occurs, s ince  the  de f l ec t ion  R = 0, equa- 
t i o n  (3.1.2) i s  expressed by 

(3.1.9) 

Since equation (3.1.8) holds f o r  each j o i n t ,  a j o i n t  equation is obtained only 
f o r  n number of j o i n t s .  Since the  unknown quant i ty  with respec t  t o  t h i s  is 
only the  def lec- ion angle 0 of each j o i n t ,  it i s  poss i3 le  t o  write n l i n e a r  
simultaneous equations having n unknowns. If w e  assume t h e  detCxminant t o  be 
0, t h i s  immediately becomes a buckling condition equation and using t h e  numer- 
ical t a b l e  i n  sec t ion  3.1.7, t h e  buckling load i s  determined by t r i a l  method. 

Using t h e  symbols i n  Figure 3.1.3, t he  following 

mu = E d r d Q A d & b A d x )  

(3)  Shear Equation. 
shear  equation [s torey moment equation] is es tab l i shed  f o r  a member sus ta in ing  
a compressive force.  

Qml= *&&dbr +EKz'RM. (3.1.10) 

In the  case of a member sus ta in ing  a t ens i l e ib rce ,  t he  t h i r d  tern becomes 
negative and the following equation 

is  obtained. 

In a t r u s s  o r  i r r e g u l a r  r i g i d  frame cons is t ing  of  members of d i f fe r ing  
lengths,  it is convenient t o  employ the  following shea: equation, by dividing 
both s ides  of t he  above two equations by the  member length 1. 

Q=T(Nls+Jfs~fEK**R~s) .  1 (3.1.12) 

Here, i n  the double s igns  i n  the  above equation, t h e  upper one i s  f o r  t he  case 
of a compressed inember and the  lower f o r  t h e  case of a tension member. 
s ec t ion ,  the  s ign w i l l  be  used i n  the  same way below. 

This 
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Inser t ing  equation (3.1.2) i n  equation (3.1.12) 

4 = - S - E ~ ~ i < 4 + 3 ) ( e . + e s ) - ( 2 ( a + 8 ) ' + . r } R 1 1 ) .  1 
L 

when the  o the r  end is pinned, i n se r t ing  equation (3.1.5) 

f o r  the  shear  equation, 

2 Q r = O  
r 

(3.1.13) 

(3.1.14) 

(3.1.15) 

is obtained. 

In a r i g i d  frame with a constant s t o r y  he ight ,  and with a constant member 
length h f o r  each column, i f  w e  i n s e r t  equation 13.1.13) i n t o  the  story moment 
equat i on 

thus rev is ing  it 

When the  lower end is f ixed,  with 8~ = 0 

When the  1ower.end i s  Tinned, from equation (3.1.14) 

(3.1.16) 

/ 265 

(3.1.17) 

(3.1.18) 

(3.1.19) 

That is, it i s  poss ib le  t o  replace a l l  def lec t ion  by de f l ec t ion  angle funct ions.  
Consequently, adding the  stmy equation, o r  using equations (3.1.17), (3.1.181, 
(3.1.19) and a necessary and su f f i c i en t  equation is  cbtained t o  der ive the  buck- 
l i n g  condition equation and as i n  t h e  previous case, by using the  numerical 
t a b l e  i n  Section 3.1.7, t he  buckling load can be determined by the  t r i a l  method. 

3.1.6. SOLUTION BY THE FIXED MOMENT METHOD 

(1) Relationship between fixed moment method coefficients and deflection 
angle method coefficients. The following r e l a t ionsh ip  obtains  

1211 between t h e  coe f f i c i en t s  f o r  the  def lec t ion  angle equation f o r  a member 
sustaining an ax ia l  force ,  and t h e  coef f ic ien ts  f o r  t he  case i n  which the  
f ixed  mown- method i s  used. 
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Member end s t i f f n e s s  =ak. (3 .1 .20 )  

J o i n t  S t i f fnes s  p= 2 ah. (3 .1 .21 )  

Dis t r ibu t ion  f a c t o r  p- ak = mk (3 .1 .22 )  
p X a k '  

Carry-over f a c t o r  c=--. B (3 .1 .23 )  
a 

The numerical t ab l e s  f o r  a, B and c are given i n  Sect ion 3 . 1 . 7  and were included 
f o r  the  convenience of designers.  

(2)  Graphic so lu t ion  paper. I t  is convenient t o  use t h e  paper shown i n  
The method of Figure 3 . 1 . 4  i n  t h e  graphic so lu t ion  of t he  f ixed  moment method. 

using t h i s  paper i s  exact ly  t h e  same as in t he  method for solving by the  f ixed  
moment method, and the  procedure should be carried out as follows: 

(3) Preparatory Calculations . 
The procedure f o r  preparatory ca lcu la t ions  
by t h e  graphic so lu t ion  method i s  as f o l -  
lows. (See Figure 3 . 1 . 4 ) .  

(a) The s t i f f n e s s  r a t i o  k of the  mem- 
b e r  is introduced. 

-wpj$++ . -7- 7 e  

d L  a 
I 

Figure 3.1.4 

(b) a, B i n  t he  case when a load is  
assumed and it is sustained i n  t h e  ax ia l  
d i r ec t ion  a r e  introduced. For t h e  beams of 
ordinary r i g i d  frames, s;.nce the re  i s  no 
ax ia l  force ,  it i s  always the  case t h a t  
a= 4 ,  B = 2 .  

(c) 

(d) a K  is ca lcu la ted  and introduced. ' 

The carry-over f a c t o r  c = @/a i s  computed and introduced. 

(e) The j o i n t  s t i f f n e s s  o = S a k  i s  ca lcu la ted  and introduced. 

a k  ' ( f )  The d i s t r i b u t i o n  f a c t o r  cc=- Pork 

(4) Sequence of Solution. 

is ca lcu la ted  and introduced. 

(a)  When there  is no displacement i n  a l a t e r a l  d i r ec t ion  (when t h e  
joints do not move). 

/266 - 

In s t ruc tu res  i n  which the re  i s  a load only on the j o i n t s ,  an 
a r b i t r a r y  moment is  added to an a r b i t r a r y  j o i n t ,  reaching a p a r t i c u l a r  moment 
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and the cons t ra in ts  on each j o i n t  are eliminated. 
overs converge, t he  system becomes s t a b l e ,  m d  i f  they a r e  dispersed,  t he  system 
i s  not s t ab le .  The carryover method is  exac t ly  t h e  same as i n  t h e  case f o r  t he  
f ixed moment method, bu t  t he  s t i f f n e s s ,  d i s t r i b u t i o n  f a c t o r  and carryover fac- 
t o r  a r e  based respec t ive ly  on equations (3.1.23), (3.1.2:' (3.1.22),  and (3.1. 
23). 

In  t h i s  case,  i f  the  carry-  

(b) Case i n  which there is displacement i n  l a t e ra l  d i rec t ion  (case when 
j o i n t s  move.) 

Except i n  the  case when the re  i s  reinforceTent by rieans of a . - i - g ~ ~  1iC!i1 

and a r i g i d  f l o o r ,  ordinary r i g i d  f r m e s  buckle because t h e i r  j o i ~ t s  ,il~de ;:i 
a lateral  d i rec t ion .  
method, i s  as follows: 

In the  so lu t ion  f o r  t h i s  case using t h e  f ixed molr,:nt 

First, one assumes a load c lose  t o  t h e  buckling load, and a r i g i d  irme 
which sus ta ins  an ax ia l  force  when such a load is received and then an a rb i -  
trary def lec t ion  is assigned t o  the  frame. 
i s  0; i .e. ,  

When the  s t o r y  shear  i n  such a case 

(3.1.24) 

The hypothet ical  lead becomes the  buckling load. 

Here MF i s  the bending moment when the  upper and lower ends A&.' - . "go 
def lec t ion  while t he  i o i n t s  remain r i g i d .  

d MF= - E K d a A B + B a ) R u =  -EK&aa+ B d - p  (3.1.25) 

The symbols a re  d = lateral displacement of j o i n t s  
1 = member length 

In ac tua l  so lu t ions ,  one follows a t r ia l  method, by assuming a load, f ind- 
ing the case i n  which C Q s 0 and narrowing i t s  range, bu t  s ince  MAB,  MBA a r e  
proportional t o  MF i r r e spec t ive  of  de f l ec t ion  R t h a t  should be given, and the  
absolute value of the  displacement d ,  CQ should be determined, by giving a 
f ixed  moment MF, i n  proportion t o  

-- E h X a A s f  BAB) 
I 

and then cancel i t  out.  

3.1.7. A U X I L I A R Y  NUMERICAL VALUES 

Since i t  i s  very convenient and p r a c t i c a l  i n  ca lcu la t ions  tcJ prepare '. 
t a b l e  of numerical values f o r  t h e  aux i l i a ry  terms a ,  0 ,  and c used i n  the  solu- 
t i o n  method based on the  def lec t ion  angle (Section 3.1.5) and the  so lu t ion  
based on the  f ixed Foment method (Section 3.1.6),  these  a re  given i n  Tables 
3.1.1-2 fP1' 

/267 - 
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(1) Graph. Figure 3.1.5 is a graph of the results of calculations.* 

Figure 3.1.5 

(2) Numerical values of auxiliary num- 
bers for members sustaining compressive 
load: 

(3.1.26) s sin 2 - 2  cos z a= 
. 2(I-~osa)-tsins ' 

3 - e s i n z  (3.1.27) fi= 2 (1 - c x  2 )  - t sina -' 

a'-B' - &in t -- (3.1.28) t=-- a sint- tcoss ' 

c----- 8 #-sins (3.1.29) - -  
P sins-tCoss' 

Where 
EX 

(3) 
bers for Tiiembers sustaining tensile force:  

Numerical values of auxiliary num- 

z sinhs--z'cosha 
(3.1.30) a=-- 

3 LCosh 2-1) -3 sinh- * 

@=-- z f - t  sinh ~. z _~__ 
2 (cosh 2-1) - Z  sinht ' 

z'siiih 
U 

(3.1.31: 

(3.1.32) 

(3.1.33) 

where 

I 

~ ~~ 

"Please note: Where z = 0, ci - 1, 0 = 2 ,  y = 3, c = O..q 
Where z = TT, a = 2 = 2.167, y = 0, c = 1.0 
Where z = 2 ~ r ,  3 = -a, 6 = a, y = 0, c = -1.0. . 
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T A B L E  3 . 1 . 1 .  T A B L E  OF C O E F F I C I E N T S  FOR A MEMBER S U S T A I N I N G  A C O M P R E S S I V E  FORCE / ; !68  -- 
C a 

0.00 
0. IO 
0.20 
0.3c 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1 . 4  
1.50 
I . ' )  
1.70 
1.80 
1.90 
2.00 
2.15 
f. 20 
2.30 
2.m 
2.50 
2.60 
2.70 
2. EO 
2.00 
3.00 

3.10 

3.20 
3.30 
3. $0 
3.50 
3.50 
3.70 
3.60 
3. sa 
4.00 
4. IO 
4.20 
4.30 
4. 'io 
4.50 
4. co 
4.70 
4. EO 
4. $0 
5.00 
5. IO 
5.20 
5.30 
5.40 
5 '50 

5 .  EJ3 
5.70 
5. d G  
5.90 
6.00 
6. IO 
6 .  20 
(2:) 

4.003 
3.999 
3.995 
3.985 
3.979 
3.957 
3.952 
3.93.f 
3.914 
3.891 
3. sir5 
3.836 
3.804 
3.763 
3.732 
3.691 
3.647 
3.579 
3.548 
3.434 
3.436 
3.374 
3.303 
3.239 
3. I66 
3.088 
3. m5 
2.918 
2.825 
2 . 7 3  
2.624 

2.515 

2 . 3 9  
2.276 
2.1% 
2.006 
I .  862 
1.706 
1.540 
1.363 
1.173 
0. ('637 
0.7510 
0.5149 
0.2592 

(2. @7) 

-0.0191 
-0.3234 
-0.6580 
-1.029 
-1.443 
-I.W? 
-2.439 
-3.052 
-3.7C? 
-4.625 
-c ,.07? r 

-6. K Y  
-8.721 

- I f .  I l l  
-14.671 
-20.637 
-32.934 
-74.362 

(-=I 

B 

2. Goo 
2. ooo 
2.001 
2.003 
2.035 
2.038- 
2.012 
2.017 
2.0'2 
2.025 
2.034 
2.012 
2.050 
2.959 
2. 0iO 
2.081 

2.0,3 
2.105 
2.120 
2. 135 
2.152 
2.170 
2.189 
2.210 
2.233 
2.257 
2.283 
2.312 
2.342 
2.376 
2.41 1 

2.450 
(2. %7) 
2.492 
2.53s 
2.5% 
2.642 
2.702 
2.767 
2.838 
2.017 
3. oo-) 
3.1 IO 
3.207 
3.327 
3.462 
3.614 
3.787 
3.984 
4.21 I 
4.475 
4.785 
5. 151 
5.592 
6. I 3 0  
6.798 
7.647 
8.759 

IO. 269 
i2..r29 
15. 745 
21% G57 
33.478 
7h.617 
(XI 

T 

3.000 
'2.998 
2.9?2 
2.352 
2.968 
2.950 
2.927 

2. 
2. i 

2. I -)'4 

2.749 
2.599 
2. (1-14 
2.5s.: 
2.518 
2.446 
2.367 
2.252 
2.189 
2.088 
I .  979 
1.850 
1.737 
I. 5?4 
1.438 
1.270 

9.6812 
0.65S? 
0.408; 

2. o m  

I .  03s 

0.1273 

-0.196 
-0.55a 
-0.0744 
-1.468 
-2.059 
-2.751 
-3.691 
-4. SEO 
-6.5 I6 

(0. -1 

-a. 940 
-12.95 
-20.08 
-46.00 

+44.00 
+23.46 + 16.21 

12.44 
IO. 08 
8 . W  
7.196 
6.200 
5.364 
4.638 
3.480 
3.370 
2.791 
2.2% 
I. C65 
I.  0'7 
0.5ir) 

+682.0 

(0.r)O) 

C 
- 

0.5333 
0.5032 
0.5rJlO 
0.50?3 
0.59)io 
0.5013 
0. '032 
0.5126 
0 . 5 1 ~ 6  
0,521 1 

0.5:?3 
0.5159 
0.5.if?3 
0.5546 
0.3037 
0.53Q 
0.555 I 
0.5374 
0.6111 
0. ti263 

. 0.6t3rJ 
0.4':16 
0.6413 
0.7053 
0.7510 

0. 328 
0. 7923 
0.8?21 
0. ai03 
O.<l1&9 

0.52b4 

0,9744 

I ,  039 
1.115 
1.206 
1.316 
1.451 
1.622 
I .  843 
2. 1.IO 
2. so0 
3.187 
4.271 

+6.451 

( l . @ m  

4-13.36 
--188.7 

-11.71 
-6.053 
-4.0',3 
-3.102 
-2.507 
-2. I12 
-1.233 
-1.626 
-1.470 
- I .  ?L8 
-1.253 
- I .  177 
-I. I I "  
-1.073 
- 1 . 0 4  
--;.017 
-l.\N3 

(-l.0C-Q) 
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TABLE 3 . 1 . 2 .  TABLE OF COEFFICIENTS FOR A MEMBER 

s 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1. to 
1.50 
1.60 
1.70 
1.80 
1.90 
200 
2.10 
2.20 
2.30 
2.40 
250 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.60 
3.70 
3.80 
3.90 
4.00 
5.00 

S U S T A I N I N G  T E N S I L E  FORCE 

a 

4. 000 
4.001 
4.005 
4.012 
4.02 1 
4.033 
4.048 
4.065 
4.085 
4.107 
4.132 
4. IS? 
4.189 
4.221 
4.255 
4.292 
9.330 
4.372 
4.415 
4.460 
4. 508 
4.557 
4.608 
4.661 
4.716 
4.773 
4.831 
4.89 I 
4.953 
5.016 
5.081 
5.147 
5.214 
5.283 
5.353 
5.424 
5.497 
5.570 
5.645 
5.720 
5.788 
6.608 

B 

2. ooo 
2.000 
1.999 
I. 997 
1.995 
1.992 
1.988 
1.984 
1.979 
1.974 
1.968 
1.961 
1.954 
1.946 
1.938 
1.931 
1.921 
1.912 
1.902 
1.892 
1.882 
1.871 
1.869 
I. 849 
1.P37 
I. 826 
1.814 
I .  802 
1.791 
1.779 
1.767 
I. 754 
1.742 
1.730 
1.718 
1.706 
I. 694 
1.683 
1.671 
I. 659 
1.647 
1.541 

3. OOO 
3.002 
3.008 
3.018 
3.032 
3.050 
3.07 1 
3.093 
3. I26 
3.158 
3.194 
3.232 
3.277 
3.323 
3.372 
3.421 
1.478 
3.536 
3.596 
3.656 
3.722 
3.789 
3.858 
3.928 
4. 000 
4.076 
4.152 
4.228 
4.304 
4.384 
4.468 
4.548 
4.632 
4.716 
4.800 
4.888 
4.376 
5.0f0 
5.152 
5.240 
5.328 
6.248 

0. so00 
0.4998 
0.4990 
0.4978 
0.496 1 
0.4938 
0.4912 
0.4851 
0.4845 
0.405 
0.4762 
0.4716 
0.4665 
0.4612 
0.4555 
0.4497 
0.4436 
0.4373 
0.4308 
0.4742 
0.4174 
0.4105 
0.436 
0.3966 
0.38% 
0.3825 
0.3755 
0.3685 
0.3615 
0.3546 
0.3477 
0.3409 
0.3341 
0.3275 
0.3210 
0.3146 
0.3056 
0.3021 
0.2950 
0.2m 

0.2231 
0.2842 

3.1 .8 .  ABBREV I A T E D  METHOD O F  C A L C U L A T  I ON FOR A BU I L T - U P  COMPRESS I ON 
MEMBER 

In a c t u a l l y  designing a b u i l t - u p  comr,ression member, var ious  methods are 
employed. The method given i n  D I N  E 4114 [SI, i s  given below: 

(1) Calcu la t ions  f o r  a s o l i d  web axis (See Figures  3.1.6-11). 
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i Y '  

Figure 3 . 1 . 6  Figure 3 . 1 . 7  

F i g u r e  3.1.11 

For buckling with respect  t o  a s o l i d  web ax is ;  i . e . ,  buckling around x-x, 
calculat ions may be performed exact ly  as i n  the  case of a s o l i d  member. 

(2)  Calculations with respect  t o  an ax is  where no s o l i d  web i s  involved 
(Figures 3.1.6-12). 
web; i. e . ,  buckling around y-y, is calcuiated using t h e  following hypothet ical  
slenderness ra t  i o  A y i .  

The buckling with respect  t o  an ax is  which i s  not a s o l i d  

(3.1.34) I 
Ipi-q: 
I I 

Figure 3 . 1 . 1 2  X y  = slenderness r a t i o  of t o t a l  member based on buck- 
l i n g  length l k y  and geometric moment o f  i n e r t i a  Iy 

with respect  t o  the  y-y axis  (See Figure 3.1.6-11). 

/270 

As i n  Figure 3.1.12, i n  the  case of an ax iz  where 
there  i s  no s o l i d  web i n  both d i r ec t ions ,  the  
hy i s  taken f o r  t he  axis giving the  smallest  geo- 
metr ic  moment of i i i e r t i a .  
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A 1  = buckling length l k l ,  geometric moment of i n e r t i a  11. The I1 here i s  
taken as per ta in ing  t o  the  ax is  1-1 of an individual  member p a r c l l e l  
t o  a non-solid web ax i s ,  when there  i s  only one ax is  (Figures 3.1.6- 
l l ) ,  and per ta in ing  t o  the  ax is  of an i n d i r i d u a l  member given the  
smallest geometric moment of i n e r t i a  when there  a re  two non-solid 
web axes (Figure 3.1.12). 

l k l  = Suckling length o f  individual  member, i n  l a t t i c e  column. This i s  the  
length of t h e  t r u s s  l i n e ,  and i n  an open web column the  center  d i s t -  
ance of the t i e  p l a t e s  i s  tiken. 

n = number of individual  members. 

(3) Detai led Regulations on Structures.  When using the above abbreviated 
ca lcu la t ion  method, it i s  necessary t o  follow the following de ta i l ed  regula t ions  
on s t ruc tu res .  
e r  the s t a b i l i t y  o i  the  overa l l  bu i l t -up  member i t s e l f ,  but t o  design i t  so 
tha t  no loca l  buckling w i l l  occur i n  the  individual  members o r  i n  the  jo in ing  
members. 
i n  design. 

In ac tua l  bu i l t -up  members, i t  is necessarv not only t o  consid- 

I t  can be s a i d  t h a t  the  de t a i l ed  regulat ions a r e  extremely important 

/271 - (a) 
than 50. 

The slenderness r a t i o  of  A 1  of an individual  member i s  t o  be l e s s  

(b) In open web columns, t i e  p l a t e s  a r e  i n s t a l l e d  a t  both ends a t  i n t e r -  
vals of 1/3 the  buckling length.  

(c) In l a t t i c e  bui l t -up  compression members, t i e  p l a re s  are i n s t a l l e d  a t  
the member ends. 

(d) In  members having a Jr the  t i e  p l a t e s  a re  i n s t a l l e d  a l t e -ma te ly  (see 
Figure 3.1.8). 

(e) Each t i e  p l a t e  is at tached t o  each individual  member by more than two 
r i v e t s .  
number of r i v e t s  on the intermediate t i e  p l a t e s .  

The t i e  p l a t e  r ivets  on the member ends a re  t o  be one more than the 

( f )  Only when it is i r r rossible  t o  use r i v e t s  i n  the  s t ruc tu re ,  b o l t s  can 
be used f o r  connecting the  L i e  p l a t e s  f o r  l a t t i c e s .  
a re  used. 

In t h i s  case ?olished b o l t s  

15; The dis tance between the centers  of gravi ty  of t h e  i i idividual members 
e In, !ximum dis tance when the  number of i nd iv i% ua l  members exceeds 2) is  smaller  
than the W.en e i s  espec ia l ly  
large,  the . ,lowabls u n i t  s t r e s s  of t he  t i e  p l a t e ,  l a t c i c e  and connecting p a r t s  
must be reduced t o  l e s s  than 80% of normal allowab1.c s t r e s s  (Figures 3.1.6, 
3.1.9, and 3.1.10). 

5-section height  11 i n  t he  d i r ec t ion  y-y. 
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3.1. BUC KL I NG SHEAR 

When a member begins t o  buckle, a shear  force  occurs in  the compressed 
member. 
must be designed so t h a t  they a r e  safe  with respect t o  t h i s  shear  force.  
Theoret ical ly ,  thdre a r e  methcds f o r  ca lcu la t ing  from the  def lec t ion  or bend- 
ing moment of the member when the buckling deformation occurs,  %ut  the  follow- 
ing methods a re  used as an abbreviated form of computation. 

The connecting pieces of bui l t -up members ( t i e  p l a t e s  and l a t t i c e s )  

( 1 )  German St ruc tura l  Stee! Buck1 ing Standard ( D I N  E 41 14). This is  de- 
termined from Table 3 .1 .3 corresponding t o  the slenderness r a t i o  A, m d  the 
t o t a l  s t rength  P of the frame work members. 

Sp.b o 1 s p= A - f a  (3.1.35) 
0-  

A = cross-sect ion area of comTression member, 

f c  = allowable compression u n i t  stress 

wx = buckling modLlus 

Tab le  3.1.3 Q (Percent w i t t -  Respect t o  P) 

where when X > 40, intermediate values are  1ine.arly in te rpo la ted .  

(21 Japan C iv i  1 Engineericg Society 

(3.1.36) P1 Q= - 
4 m y  

I 

Symbols P = t o t a l  s t rength  of frame work members o r  compressive 
force  kg 

1 = buckling, length cm 

y = distance cr from neut ra l  ax i s  of cross-sect ion t o  
end f i b e r .  
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(3)  Japan Archi tectural  S o c i e t y  

The design is ca r r i ed  out considering t h a t  t h e  following shear  force  Ck 
acts a t  r i g h t  angles t o  the  member axis. 

Synbols Sye = buckling modulus corresponding t o  Aye 

P = campressive force  

3.1.10. S T I F F E N I N G  OF SUP?ORT POINTS 

The d is tance  between support  po in ts  'n compression nembers forms t h e  bas i s  
for ca lcu la t ing  buckling s t rength .  
t h e  member axis, and begin t o  move, they have a considerable inf luence on t h e  
buckling length,  so i n  ac tua l  design, it is necessary t o  provide adequate 
s t i f f n e s s  i n  the  j o i n t s  so t h a t  mveraent o f  t he  j o i n t s  is prevented. (See 
F i g u r e  3.13.) In order  t o  study the  degree of  s t i f f e n i n g  i n  d e t a i l ,  it is  
necessary t o  lollow accurate  theo re t i ca l  analyses;  e.g. ,  DIN E 4114 111 b(5)) .  

Men t h e  support  po in ts  are removed from 

However, these  accurate  analyses are extremely troublesome, so i n  normal 
abbreviated ca lcu la t ions ,  i f  it is safe after 1% of  t h e  compressive force  i s  
appl ied at r i z h t  angles t o  the  sur face  of  t h e  structure, the re  is no object ion 
t o  considzr i  ng t h a t  t h e  j o i n t  is a non-moving poin t  [SI. (Figures 3.1.13-15) 

_ -  

When the re  are no s t i f f e n e r s  

With s t i f f e n e r s  

F i g u r e  3 .1 .13  Figure 3.1.  I4 

F i g u r e  3.1.15 



However, when these j o i n t s  are i n  long, comected compression nembers with 
e l a s t i c  supports, s ince  considerable e r ro r s  may a r i s e ,  i n  such cases an accur- 
a t e  analysis is necessary. 

Yoreover, the  lateral force is applied i n  order t o  check the  s t i f f e n e r s  is 
applied not only t o  t h e  s t i f f ened  portion, but t o  t h e  column, the  base, and a l l  
of the  s t ruc tures  tha t  support it. I t  i s  necessary t o  make sure  tha t  each pa r t  
is safe with respect t o  th i s .  

/273 3.1.11. EXA~PLES OF THE CALCULATION OF BUCKLING LOAD - 
(Supplement) 

Below are given examples of t he  calculat ion o f  actual  buckling load i n  
frames, toge-Lher with an explanation. 

( 1 )  Example I of Analysis by D e f l e c t i o n  A n g l e  tlethod. C a s e  of column 
l e g  pin 71 type r i g i d  frame. 

(a) laen there  is no movement ir. t he  j o i n t s  (Figure 3.1.16). 

When there  is no movement i n  the  j o i n t s ,  s ince no def lect ion 
angle is formed, t he  buckling condition equation is establ ished only f r o m  the  
monent equation. Using the  symbols indicated,  

urr=EKn-3 &E ; M’.=EKidra@r; 

~ r , = & ~ r ( 4 e r + 2 e , ) = E I G I - 2 0 r -  

In t h i s  case, the  moment equation C&==O becomes the  buckling condition 
equation i t s e l f .  

3&r+~K1.+2 Ks~=O. 

K‘ -k, 
1yI. Here, i f  z- 

Moreover, when k l  = k2 = k, t h i s  becomes y + Sk = 0 .  

3 kr+f+2h=O 

Solving t h i s  by the t r i a l  method o r  
graphic formula, i f  

pa=-=- 2 E I  &I 
h1 h1 

the  values of z, P are shown i n  the  fol low- 
ing table:  

Figure 3.1.16 
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& I O  10.21 0.41 0.61 0 . 8 )  1.01 1-51 2.01 2.51 3.01 4.01 5 -01  6 0 1  a~ -- 
I 13.411 3-59 
9 . 7  11.6 112.9 1 3-91! 4-04 4-13: 4 . d  4.231 4-29: 4-3d 4-34 4-19 

I I I I i I 13.3 j 16.3 17.0 17.5 ! 17.9 18.1 I18.6 113.8 ' 20.2 

(b) When the j o i n t s  do not nove, (Figure 3.1.17). In t h i s  case, it is 
a l s o  necessary t o  complete the  de f l ec t ion  equation. 

MIA=EKri.3 ; 

M=, = EKEr-r (8=--Rd ; 

I 0 0.2 0.41 0.6 

2 0 1.04 1.24 1.33 
0 1.09 1.53 1.n 

k 

0.8)  1.01 1.51 2.0) 2.51 3.0 4.0)  5.0 

1.38 
1.91 

L 

From the  def lec t ion  equation 

QI = + ,wza A F KP PH=O 
f igu re  3.t.17 

ex + ( tt - r ) R a ~ = $  

From these  two equations,  if 9~ and RE- are eliminated, t he  buckling condition 
equation 

/274 
P-r 

3 kr+6kr+f  

I T  

is obtained. When kl = k2 = k, expanding the  above equation 

1 ( 9  k+T)-9 kT=O 
Solving t h i s  graphicai ly ,  assuming 

(2) Example 2 of Ana lys i s  by the Deflection Angle Method. 
type r i g i d  frame with column legs f ixed.  

Case of a 
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F i g u r e  3.1.18 

z 4 . d  4.76 5.02 5.ld 5. 5.441 5.6% 5 . d  5.84' 5.91 

@ 20.2I23.0I 25.2 127.0I 28.7 29.6 [31.71 33.1 I 34.1 134.9 

Therefore, i f  

5.99' 6.04 6 . d  2% 
35.9 I 136.4 37.31 39.5 

t h e  buckling condition equation be- 
comes 

~ + 3  kt+2 kr=O 

When kl  = k, = k, 

a+5 &:=O 

I f  we solve t h i s  equation, assuming 

p&=----- JEI pEI - 
K - kz 

(b) C a s e  i n  which t h e  j o i n t s  move (Figure 3.1.19). 

(3  &1+6 k Z + a ) h -  (a+B)RrB=O Figure 3.1.19 

(=+B)@p -2( P +B)RBB+z'RsB=Q 

From these two equations,  i f  we el iminate  BE, REB, t h e  following buckling con- 
d i t i o n  equation is  obtained 

3 k X + 6 h + a  -(a+B) 

u+B . 2'--2(a+B) 
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When k l  = k2 = k ,  ex2anding the  above matrix 

is obtained. If w e  solve t h i s  equatinn, a s s m i n g  

t h e  following r e s u l t s  are obtained: 

(3) Example of Analysis by t h e  Fixed Moment Method. 

We s h a l l  attempt t o  determine by the  buckling mode of a 2-span steel  r i g i d  
frame shown i n  Figure 3.1.20. 

(a) Case i n  which the  j o i n t s  do not move i n  lateral  d i rec t ion .  

(i) Preparatory ca lcu la t ions .  

'The s t i f f n e s s  r a t i o  ca lcu la t ions  are exac t ly  t h e  sitlle as f o r  
an ordinary r i g i d  frame. 
case, it is  necessary t o  assume a load and t o  attempt t o  so lve  by the  t r i a l  
method, using a and B .  
r e 1  a t  ionship 

Next, it is  necessary t o  determine a ,  8 bu t  i n  this 

Now, considering the  case i n  which P = 260 t, from t h e  

z is  first determined and then t h e  balues of a a+ 3 corresponding t o  t h i s  are 
determined from Table 3.1.1. 
are used: 

That is, the  followulg computations and nota t ions  

Member1 N: I-' I l e m )  t 1 4 1  1 8  

1,600 5.27 -3.554 +5.969 

CD 1.600 900 +4.000 +2.000 

D E  600 4.72 -0.732 +4.029 
+4.000 +'LOO0 BC I, 200 600 

carryover f a c t o r  c = a/e, k, the  j o i n t  s t i f f n e s s  
t i on  f ac to r  P = ak/p are ,-alculated,  r e su l t i ng  i n  
Figure 3.1.21 below. 

The values of a,  B i n  t he  above t a b l e  are inse r t ed  i n  f igu re  3.1.1, next  t he  
p = z a k ,  and t h e  d i s t r ibu -  

/276 - t h a t w h i c h  is  shown i n  
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T 
E 
Q 

I 
Figure 3.1.20 

- .  

Figure 3.1.21 

( i i )  Graphical ca lcu la t ions .  

Calculations are ca r r i ed  out  i n  the  same manner as the  o rd j~ ia ry  
f ixed  moment method, using the  d i s t r i b u t i o n  f a c t o r  and carryover f a c t o r  de te r -  
mined above. 
t he  u n i t  moments applied t o  j o i n t  B,  a f ter  one cy'cle, are reduced by 0.559 and 
converge. 
respect  t o  P = 260 t .  

moment applied t o  j o i n t  B a f t e r  one cycle increases  by 1.655 and d isperses .  
(Graph is omitted here . )  
is  seen t h a t  the buckling load i s  between 260 t and 270 t .  
by gradually contract ing t h i s  region, t h e  P = 266 t is very close t o  the  buck- 
l i n g  load. Tile ca lcu la t ions  in  t h i s  case a re  performed as follows: 

Figure 3.1.22 ind ica tes  t he  operation f o r  t h i s .  I t  i s  clear t h a t  

Consequently, i n  t h i s  case, it can be seen t h a t  t h i s  is  safe  with 

( i i i )  Similar ly ,  ca l cu la t ing  f o r  the  case where P = 270 t ,  the  u n i t  

Consequently, i n  t h i s  caso, it is unstable ,  and it 
I t  can be seen t h a t  
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A4318 
+a559 ( A-a801 
+ 1.000 0 +O 565 

0 (i +0.448 
0-0.356 

Figure  3.1.22 

Member I t a 6 

-0.992 
+4.000 +2.000 
+4.000 +2.000 CD 

c- 

The graphical ca lcu la t ions  a r e  as shown i n  Figure 3.1.23 

0 
+a356 

Figure  3.1.23 
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(b) Case i n  which the j o i n t s  move i n  a l a t e r a l  d i r ec t ion .  

(5 )  Preparatory compta t ions  

The t r i a l  me'hod is  used even when the  j o i n t s  move i n  a l a t e r a l  

Ne s h a l l  give examples of t he  
di rec t ion ,  bu t  it can be seen t h a t  stabi!ity i s  reached i n  the  v i c i n i t y  of 
P = 80 t and t h a t  buckli  ng occurs a t  P = 81 t .  
analysis  io1 the case where I.' = 81 t .  

First, as preliminary ca lcu la t ions ,  we J e t e r n h e  a ,  5 but  t h i s  method i.s 
exact ly  t h e  same as tha t  used above. 

- 
Member/ -.- N t  I Icm' I icm I . l = i ~  

D E  1.200 2.971 2.293 
BC 1,200 600 4.000 2.000 
C D  1,600 , 900 4.000 2.000 

Note: We assume E = 2,100 t/cm2 

We i n s e r t  the  values of a, B from the  above t a b l e  onto ca lcu la t ing  paper, 

B and then ca l cu la t e  and introduce the  carryover f a c t o r  c=--. ak. o = z a k ,  

and u=- 

LT 

(See Figure 3.1.24). Ul: 
0 

Next, we ca l cu la t e  the  fix-d end moment (a + P)k i n  the  case when a u n i t  
def lect ion is  applied t o  a column. 

( i i )  Grap;iic ca lcu l  a t  ioiis 

/?78 

The graphical ca lcu la t ions  f o r  the  case when the  above u n i t  
def lect ion is  given, ore shown i n  Figure 3.1.24. 
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0 

+O.?M) 
0 
- 
+asos 

Figure 3.1.24 

(iii) Determining the  story-shearing force from these r e s u l t s  

( iv )  Similar ly ,  so lv ing  f o r  t he  case where P = 80 t 

(v? Therefore, the  buckling load i s  l i n e a r l y  extrapolated between 
(iii) ard ( iv)  and becomes 

P# =80 + - l6 -80.6t  - 16+9 
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UMBSR 
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GRAPH AND BOUNDARY 
COND I T I  ONS 

Geric r a  1 Con: i nuous 
Member 

2-span continuous 
rnembe r- 

' Both ends pinned 
I. 

2-span c m t i n m u s  
member- 

r f  
I I D i  spl aced const ra in t  

2-span continuous 
member- 

Both ends pinned, 
Support i n t e r -  
med i a t e  

When k-?h  0% 

Both ends pinned 
Support i n t e r -  
mediate 

~~ 

E Q U A T I O N  OR T A B L E  O F  RESULTS 

CI - 
Buck!ing condi t ion equation 

where 
&lasin kl-klsin kh. sin kk-0. 

LEFERENCES, 
IOTES 

I 

23 

m 

23 

-3 

24 
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;RAPH ANC BOUNDARY 
CONDITIONS 

3-span continuous, 
nembe r 

1 
I 
9 

2-spac continuous 
meher  

2-span continuous 
member 

L- 1, 

LeFt end f rse 
Right end f ixed 

_. . . 

EQUATION OR TABLE OF RESULTS 

Buckling condition equation 

EX ( I )  P,=,.--EI- 4' =*-. P 
(2) A = s 3 . 7 6 E  I' =8 184z=- P '  

EI 

-, 

I 

Buckling condition equation 

tlh e re  

9ssuming t h i s  solution to be ro 

EFERENCES 
NOTES 

24 

I 
25 

25 

I '  
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IUHBER 

m 

GRAPH AND BOUNDARY 
CONOlTlONS 

2-span continuous 
member 

Both ends fixed 

2-span continuous 

+ I +  

Left end pinned 
Right end fixed 

2-span continuous 
mem be r 

p+w-F c 4 - 4 + 
+ l l  

Right end fixed 
[sic] right end 
pi nned 

EQUATION OR TABLE OF RESULTS 

Buckling condition equation 

+[ 2 +(AS- 1) ( I  -A)] s. 

The symbols are the same as in (7: 
i n the prev i ous co 1 umn 

<P*kt-&. 2% 
. Y - 

Buckling condition equation 

Symbols the same as in (7) 

4ssuming the solution of this to 
be xo 

E L  (P*)&==Z& e -  

Buckling condition equation 

2 a ;  tans +k( &F I -1) sin & tans 

I 
+$la- 1) ( 1  -81) 

=;2+y(is- I)( I-BJ? tan z+ ----tank# - - I  Cak ‘ 

/ Is- 1 

Symbols the same as in (7) 
Assuming -the solution of this to 
be xo 

8 1 s  (P*)p& = - - L’ - 

tEFERENCES 
NOTES 

25 

- 
25 

25 
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I3 

14 

__I 
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GRAPH AND BOUNDARY 
COND I T I  ONS 

2-span continuous 
member 

- 

p y - q  

L A 2  

l - t - 1 - l  

& 2 4 4  

’Both ends f i xed  

2-span continuous 
member 

Ct c - 

L Z f 4  

Left  end f i xed  

2-span cont i nuous -+ 

ne.nber 

- Right end pinned 

Both ends f i xed  

‘2-span continuous 
member 

Le f t  end pinned 
Right end f ixed 

2-span continuous 
member 

- 

A 

Lef t  end f i xed  
Riaht end pinned 
3-span continuous 
member 

Energy method 

EQUATION OR TABLE OF RESULTS EFERENCES I 
NOTES 

25 

25 

25 

25 



NUMBER 

B 

17 

1 -  

I8 

I9 

GRAPH OR BOUNDARY 
CONDl T I  3NS 

One end pinned 

b - ~ p a n  continuous ~ 

-~ 

2-Span continuous 
member- 

LizT 
One end pinncd, 
one end f ixed  

2-Span con t i n u o u 5  
menbe r 

P 

One end f ixed ,  
one @ D i p p e d  
P-Span continuous 

member 
hp. I 

A K::Il 
Both ends f ixed 

2-Span continuous 
member 

V2P I g 

m e  end f ixed  

2-Span continuous 

One end fixed 

EQUATION OR TABLE O F  RESULTS 

H e.r e 

REFERENCES 
NOTES 

25 

25 

- 
25 

- 
25 

25 
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NUHBER 

23 

24 

a42 

iRAPH AND BOUNDARY 
CONDIT IONS 

Continuous member 
with overhang 

2-span continuous 
member 

30th ends 
p i  nned 

- 
2-span continuous 
member 7- 2 L  

Both ends pinned 

EQUATION OR TABLE OF RESULTS 'REFERENCES I 

NOTES 
- 

When l k  = y-I, r i s  as shown 27 

i n  the  t a b l e  below 
I 

I l l (  
(p 1 0 1 0.1 j 0.2 , 0.25,  0-3 0-4 I 0.5 

7 1 2 . d  1.874 1 - 7 4  1.668 1.609 1.473 1.344 

(p i 0.6 1 0.7 I 0.75 i 0.8 0.9 ' 1.0 

I l l  

I I I  

1 ' "  
I .  I I I 

t i  1 1 ;  
t I 1.2311 1 . m  1.099 1-055 1.012 1.m 

I I !  i !  I 
Between o<$<o.s, approximately 

7=2(1-0.65~). 

~~~~ 

Buckling condit ion equation 

The solution under these conditions !f xo is given is: 

I 

25 

25 
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GRAPH AND BOUNDARY 
CONDIT IONS 

2-span continuous 
member 

- 

-rb + 
L c L r 4 °  

EQUATION OR TABLE OF RESULTS 

Roth ends pinned 

REFERENCES ,I 
NOTES 

28 

Buck1 i ng 
Cef 1 ec- 
t i o n  

/I85 - 

-- ~-~ 

2-span cont I nuous 
member 

% x k I  
i B o t h  end? f ixed 

-TTiGFcontinuous member 
with movable intermediate 
support points 

2P P 

: l--l&&J 
I 
'Both ends pinned 
2-Span continuous member 
with movable intermediate 

Both ends pinned 
2-Span continuous member 
with movable intermediate 
support poiiirs 

i c  

JP * 
Both ends pinned . 

2-span continuous 

wG I 

--- 

member 

Both ends pinned 

2-span continuous 
nembe r 

'. P A < %  p 

L l A l r r r  

Both ends pinned 

suFpor: points 

i8 EI P P t . ~ .  
A s  above 

29 

De: 1 ect  i on 
angle 
method 

E l  F.=30.9-p 

120 EI 
A s  above I 

p'= 14.06- a= 

I 

EZ P&=I3.91- 1' - 

E1 
P q=2&4-. 

I I 
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GRAPH AND BOIJNDARY 
CONDIT IONS 

33 

- 

- - 
34 

35 

. %  

c31 

n 

i 
38 

I I 
i 

J i  1 
I 

344 

4-span continuous 
member 

Both ends pinned 

- -- -- 
5-span continuous 
member 

Both ends pinned 

2-span continuous 
member 

Both ends f i x e d  

3-span continuous 
member 

WJ 
Both ends f i x e d  

4-span continuous 
member 

. f?, % q- 
- 1  

,>l -P r - f c ;  3. I 

Both ends f i xed  
I 

5-span continuous 
member 

5 5 5 5 .?P 

I &Fli-r.LFlXrJ 
.. 

Both ends f i xed  
L 

EQUATION OR TABLE OF RESULTS 

E I  
P 55- 

BI &-2l.8a- P' 

& - 1 & 7 6 - p  EX 

EI Pp 1 1. I 

-- 
REFERENCE! 

NOTES 

29 
. Buck1 i n5 
Def lect  i 
Ang 1 e 
Met hod 

I 

29 

As above 

29 

As above 

29 

As above 

29 
As above 

_I- 
29 
As above 
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39 

-- 
40 

i 
i _  

I 

;RAPH AND BOUNDARY 
CONDITIONS 

oad is obtained-frpm A.= 0.  

When the equal span continuous member shown 
in the figure to the left buckles with each support 
point a8 a point of bending. 

mVEI  Pp=- P * 

The necessary spr ing  s t i f f n e s s  i n  
np._ t h i s  case i s  

"=TI * 

111 : of a :spring constant 

6 : cpefficient related to number of spans 
(See below table) 

m / 2 1 3 1  + I 6  
B 1 0.m j 0.333 1 0.293 I 0.276 1 0.268 

1 m I  7 1 9 1 I I  

8 I 0.263 1 0.2% I 0.255 

Continuous member 
on e l a s t i c  sup- 
 port p o i n t s  

-Z-f &:$...; 

% F y  ' 
k*-,J 2 Ilr.r ~ 

e-, 4 . t  i 

t , ?  * 
C &  

23 

D 

Continuous member 
on e l a s t i c  sup- 
port po i  n t s 

W 
Equal spans 
a i s  constant 

EQUATION OR TABLE OF RESULTS 

a: spr ing  constanf 6 :  d e f l e c t i o n  
R: reac t ion  

. RnI+Rn"=Rn=zn.Gn 

EFERENCES 
NOTES 

23 



NUMBER 

41 

42 

- 

GRAPH AND BOUNDARY 
COND I T 1 ONS 

Continuous member 
on e l a s t i c  sup- ' 
por t  po in t  

i-ptll 
g u  0. 

Degree of  corn- 
pressive  f o r c e  

~~ - 

Continuous rigid member 
based on elastic couplings 

B U I L T - U P  MEMBERS 

* I 2-member lsoceles  truss 

E Q U A T I J N  OR T A B L E  OF RESULTS REFERENCES,  
23 NOTES 

L I o.m 10.259 1 0.246 i 0.225 I o.m 10.174 I 
c ,  
Here *basic coefficient when ' 

assuming that the beam is on an elastic bed 

Genera 1 1 Y 
d f m =  - Dn (Rn+a- Rn) *'. 

Rn+lr Rn : n+ t member, displacement angle 
of part ot member n 

Dl : joint stiffness of joint 

-0. 

D (1+2cos1)%in8 
1+2cogd when (a) :  S-7- 

or 
Smaller value i n  2 EA sin3 a 

*lAssuming that 
eachreaction /288 
point has an 
equal spring con- 
stant and assum- 
ing that the 
distance betwrzn 
sup ort oints is 
a. d P  =CL a. Only 
when the bucWing 
half wave length 
is considerabl 
%!eater than tge 

istance between 
pport points is 
possible to re- 
ace the elastic 
ipport point for 
ie elasticity 
sse corresponding 
1 it. 

30 

- 

. If is assumed 
iat each pait 

the contin- 
311s column is 
rigid body. 
he bending 
iomenr of :iic 
lints i j  wumed 
) be proport- 
mal to the 
ifference in the 
isplacement 
mgle of the 
lrtS of 2 
jjoining members. 

\ 
~~ 

31 

dased on 
hypo the t - 
i c a l  work 
met hod 

346 
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45 

EQUATION OR TABLE OF RESULTS 

- -  

46 

REFERENCES, 
NOTES 

47 

- 
48 

GRAPH AND BOUNDARY 
CONDITIONS 

I soce 1 es 
3 -mem be rlrt r us s 

i ‘A c i  

+ truss 

- 
+ truss +. 

P 

+ truss 

+s P 

+ truss 

Vhen E o 4 0  = EA 

o r  the smal ler  s ide  i n  
4=Ed( 1-5) ( I  +2 sin%). 

I +2 sin% 
..(I-+) & a o  

31 
B a s e d  on - /289 
hypot he t -  
i c a l  work 
met hod 

where 
a, a0 = leng th  o f  1 ,  1 when sus- 
t a i n i n q  load P k .  .- c 

* i ‘he buckling 
imide and outside 

Ir=o.m 1.” of the structure 
surface is taken 

The bend-i ng s t i f f ness o f  the mem- into consideration 
be; i s  equal both v e r t i c a l l y  and andthesmallest  
h o r i z o n t a l  l y .  The same i s  t r u e  buckling value is 
f o r  the s i x  columns below. taken. The same 

is true for 146l. 

k-0.500 1. 

lrr0.713 1. 

1110.3931. 

I f 2  

32 

32 

._ 
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49 

- 
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GRAPH AND BOUNDARY 
CONDITIONS 

51 

- 
52 

EQUATION O R  TABLE OF RESULTS 

ith tension member 

= J , _ t p I d  
4 l.' 

where 

: truss (member inter- 
ecting with tension member) 

pdpa 

l / l k  

0 I 0.1 I 0.2 1 0.3 1 0.4 I 0.5 

1.m 10.959 10.916 10.871 10.824 10.774 

x truss (member intersec- 
ting with tension member) 

S / ~ I  1 0.6 I 0.7 I 0.8 I 0.9 

ylr 10.722 10.668 10.611 10.554 

when PdP1>0.5, buc 
str 

,Truss type bu i 1 t -up  

1.0 

0.m 

Y 

EI For non-symmetrical &a- 72 .-• 
buckling I + @  L' 

D i agona 1 member- 
A '  , E '  , a '  

i where 

I when w = 0, and t h e  i n c l  i n c d  mem- 
j be r  i s  comple te ly  r i g i d  

-- 
REFERENCES 

NOTES 

33 

33 

- 
33 

34 

- Based on 
hypothet - 
ical work 
mahod 



NOTES 

53 I 
L CONDl  T I  ONS 

General t russ  type 
bui 1 t -up member 

components i s  l i m i t e d  
E I  
L' ' 

Pk= k2X*- 

where 

D i agona 1 memler- 
A '  , E '  , I  I- 

hypot he t  - 
i ca 1 work 
met hod 

I - I  -. 

I 4 n-2 

L=(n-+)l. 

k i s  as shown on t a b l e  below 
- 

n l  I 3 i 4 i 5 / 1 0 1 0 3  

k' I 1.216 1 1.070 I 1.035 1.020 I 1.004 I 1.m 

b) When ,the diagonal member i s  weak 
and t h e  number o f  components i s  

&,,?-. EI I l a r g e  
It2 

1+-w 4n 
w.iere 

EA 1' 1 
E'Af{  . c d t '  

m).c -- -- 
c)When the d tagonal member i s  weak 

and the nuzber o f  components i s  
1 i m i  ted.  I 

2n 

P,=.E'A'rin* a cns : 
c 4 n * n  

I n  the general case 
EI I P y .  k1 

Pk'- l + l @  L 
where 

k2, A are  shown i n  t a b l e  below. 

2 1  3 1  4 1 5 ~ 1 0 ( w  

k' I 1.216 I 1.070 I 1.035 I 1.020 I !.004 I 1.003 

A I0.%7(.3167( 0.1778/ 0.1125 0.02691 0.WX 

349 
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GRAPH AND BOUNDARY 
CONDITIONS 

Rig id  frame type 
- 

I - L 4  

1 
I 

Truss type bu i 1 t-up 
member 

Chord member-E ,A, 1 
Diagona. member- 

E',A' , I  ' 

EQUATION OR TABLE OF RESULTS 

_ _  

w r i t - :  ;I 

B'I' 1 
EX h 

g=--- 

When n i s  large and K i s  small 

if f=ZI 

*) Vhen the number o f  components i: 
1 arge 

Here 
EA i' 1 

E'A' 1 C0s.o' 
e=- .-.- 

L++)L 

Approximately 

b) When the number o f  components 
i s  la rge  and the diagonal men 
ber i s  weak. 

when w + 

E FERENCES 
NOTES - 

Y 

/292 -- 

I 



NUMBER 

. p 2'' - 
@a -7- 

1 P r .  
a' EI. - La -=- -L- 

ma 
condition of no buckling L : column length 

56 

- 
57 

EQUATION OR TABLE OF RESULTS GRAPH AND BOUNDARY 
CONDlTf ONS 

REFERENCES, 1293 
NOTES - 

Truss type bu i 1 t -  
bu i l t - up  member 

1-1. I--- i to bending \ €3- 
I 

x-Curva ture  of buckled frame 

'*=prior to bucklinf -- 
.)Wanen type combmed member 

geometric moment of inertia of frame 

I -J 

+1 W e  assume 
as an approx- 
imation equa- 

FG$$fthe 
bucklin cri- 
tical pokt of 
the differential 

-Truss type bui 1F 
bui 1 t -up member 
& tubular co l .  

*-& 
(0 1 

(e) 

Or 

I 
I When the connecting members are 

extremely s t i f f  and the number o f  
, components i s  large 

where 

Approximate 1 y 

L' 
P&=u'- EI- 

b) Tubular column 

Condition o f  no buck1 ing*2 " 

P I  
7-21 

r 
L 

when - i s  small 

$25 ($-). 
2 

Taking the influence of shear stress into account 

If this is 
solved, as a 

i condition 

* More accura- 
More accur- 

ately, the con- 
ditions for the 
non-oecurence 
of bucklin 
refers tc tfe 
conditions under 
which unstable 
bucklin does 
not occir; i e. 
the conditions 
Lnder which no 
buckling will 
occur such 
th t there is 
a iecree m 
externai %Ices 
wit? respect-to 
an increase in 
I displacement. 
1 $El* 

L' Pe=---. P, P.-- 
I+-- 

2n tiQ i 

nP7, 

i 
I n: Cor rec l ion_coef f i c ien t  o f  

c ros s-sec t i on 
i - . - -  - -  ...-- 
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GRAPH AND SGUNDARY 
IT lQNS 

T r us s type 
bui 1 t-up member 

EQUATION OR TABLE OF RESULTS REFERENCES, ,294 
NOTES - 

.% 
Below are given the icsults of  calculations which See note 3 On pm- 
take into account the shcnr forces for a cclnbinatiorYioUSP%e ?!? 

columnon Condi- quare column having the planes of strucnre s!mwn riom for the &n- 
in the figure to the left on the sides. occurrence of 

BLtckline. 

Below are the results of calculations which take int5 
2ccount the shear forces for a combination triangular 
column having the plane of stmcnm shown in the 
diagram on the sides. 

buckling limit load 

c 

kling 

~ 

[ere f ,  d, h a r e  subscripts which indicate respectively 
hord member (flange), diagonal member and horizontal member 

slenderness ratios of columns and 
AD diagonal member, respectively. ! 

I 
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GRAPH AND BOUNDARY 
CONDIT IONS 

I- 

Truss- type 
bu i 1 t-up member 

io; :bl 

(C) rd) 

TIUS type built-up - 
member (case in which . 
the centerline of the 
lattice does not match 
the axis of the center of 

5 

_- 
EQUATloN OR T4BLE OF RESULTS RE F E RE N cES 

NOTES 
- 

Solution which takes i n t o  consid- 
e rs t  ion sh2ar force and bending. *l The 

of the differen- 

*EI &- e- P -  

8= shearing strength 

-=- 1 d' --+- h s WEAa lE&' 

Especia!ly w i th in  the e l s s t i c i t y  
range. 

here 4,=%, 

io = radius of rotatior.  o f  flange 
A = flange cross-section area 
Ad = cross-srictinn area o f  diagonal 

Within the e l a s t i c i t y  range 

member- 

tial equation 
which takes in- 
to consideration 
the shear force 
and bending is 
the slenderness 
ratio of the en- 
tire column 
when the effect 
of the shear 
force is not 

into con- 
sideration. Thi 
is the same in 

io) and (a) 
elow. 

36 

.- . - 
Tkss type built-up mem- ' 3 6  Sexfcase in which the 
ceiterline of the lattice 
does not match the axis 
of the center of 
of the flange) 

T * 

f 
L 

gravity 

-- 
353 
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Q 

GRAPH AND BOUNDARY 
CONDITIONS 

Compound 1 a t  t i ce  
type bu i 1 t-up 
rnembe r 

2 sections, both 
ends f i xed  

3 sections, both 
ends f i xed  

3 sect ions, both 
ends pinned a t  
j o i n t s  

4 sect ions, both 
ends f ixed 

Lt4-r- l - t lr  J 
4 sect ions, both 
ends pinned a t  
j o i n t s  

REFERENCE /296 - EQUATION OR TABLE OF RESULTS 1 NOTES 

i) - 2  sections, both ends f i xed  . - ____ - 
Buc?c'ii ng cond i t ions 

37 
d.2.3.4.5 

K= -a: 
At 

is not extremely 
He r e  I .. small, Zk has 

d. diagonal member cross-section area a value close g=- = cros-section area l r  cnommemaer 

Zp=Geometric moment of inertia of flange 
P 

.-F%!&m=,,1- 
Range o f  Zk-2=>ZL:>rw- 
If ( ~ = 7 1 ~  b w r - z )  4 
ii) 3 sections 

Buckling condit ions Z = 2?r 
8) Both ends f i xed  

2. 
ange of  2 ~ :  I,nr>&>,- 

b) Both ends pinned a't j o i n t s  
Buckl ing condit ions Z = II or 

r m  Range of zk " > G > ~ .  
iii) 4 sections 
a) Both ends f i xed  
Buck1 i ng condit ions Or 

Range of zk 

b) Both ends pinned a t  j o i n t s  

.. 
1,43O~>Zt> 5 2 '  

Buckl ing condit ions Z = r or 

to the upper 
limit value. 

Range of t k  
R 

= > Z k > T .  

354 
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-- 
62 

- 
63 

3.142 
3.553 
3.974 
4.310 
4.443 
4.310 
3.974 
3.553 
3.142 

GR4P.H AND BOUNDARY 
CCND I TI ONS -- 

3.567 
4.051 
4.497 
4.806 
4.855 
4.619 
4.203 
3.736 
3.297 

.~ 

n sect ions,  both 
ends f ixzd  

112 
114 
0 

-1J4 

- 112 

n sect ions, both 
ends pinned a t  

7.948 
8.620 
8.886 
S. 620 
7.948 

EQUATION OR TABLE OF RESULTS 

io) n sect ions 
a )  Both ends f i x e d  

2% 
n Lower limit: (Zt),,,ll I-. 

Upper l i m i t  value:"6 Values o f  z 
s a t i s f y i n g  the r e l a t i o n s  below. 

1 is-+y;d c~9- =- zcosz-sinn 
z-sinz - a 

b) 30th ends pinned a t  j o i n t s  
t iower limit  value(&),.,^^ el). 

!Upper l i m i t  value"7: Values of z 

Torsional buckling of 1 
type built-up member. 

- 1  I 
<b) H 

/which s a t i s f y  the  r e l a t i o n s  below. 
u zcos 2-sin z n is an even -=-- --- n Z-sin2 ' 

2% ZcosZ-sin2 n is an odd COS-=---- - 
number i I z--sinz - 
number 

Table 63.1 

Values of n 
b.=O I b r t  

Table 63.2 

b= IM) 

17.603 
19.563 
20.480 
19.840 
18.012 
15.793 
13.710 
11.936 
10.482 

Values of  m i  
b=O 1 b=1 

6.917 - - 
- 

9.484 - - 
6.512 

REFERENCES, 1297 
NOTES 

37 

See *6 *7 i n  
the  remarks 
on the pre- 
v ious page. 

38 
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GRAPH AND BOUNDARY 
CONDITIONS 

Latera?  buck1 i ng 
r i g i d  frame-type 
bu i l t -up  member 

U) 

EQUATION OR TABLE OF RESULTS 

liere A=bend@ stiffness within lattice plane of chord 

&bending stiffness in direction at right angles to 

&=some of the bending stiffness of each lattice 

C=torsioml stiffness of chord member 

member 

the lattice plane of the chord member 

in the direction at right angles to lattice surfal 

Pssumptions: 
1)The chord member only resists the bending and the 

torsion outside of the structural lane. 
2)The web memben are rigidly joined to the chord 

members. 
3)The support points 0, m can m a t e  only around the 

axis perpendicular to the movement in the 
direction of 0 m. 

4)ln case (b) in the diagram on the left, the upper 
chord member and lower chord member have 
equal cross-section. 

La GI, 
ha EX #e:--.- - r*M nlhere P.5- La 

'p: Torsional resistancz moment of chord member 
I: Geometric moment of inertia of chord member 

The graphs below ind ica te  the  re la -  
. t ionships of Pk/Pe and p for cases 
(a) and (b) .  

to I 

I 

REFERENCES,/298 
NOTES - 

39 



THREE-DIMENSIONAL TRUSSES 
NUMBER 

65 

661 

iRAPH AN3 B'IUNDARY 
C I ? W  i T I  OiiE 

.~ 

E q u i l a t e r a l  three- 
d imens iona 1 t r u s s  

EQUATIONOR TABLE OF RESULTS 

C a a n  which the  ends of  the-thre;  
members of  equal l eng th  form an 
e q u i l a t e r a l  . -  t r i a n g l e  on one plane. 
Assuvi ng 

h 
C0.g sr-- 

a '  
C 

coS.s=- 
0 '  

The smal ler  of 

o r  2VTEAT*-;--  i s  taken. 
arnB 

The symbols are  based on case 44 1 :  

EFERENCES,  /299 
NOTES - 

40 

Based on t h e  
hypothet ica1' 
work method. 

1 above. 1 
I 4 0  [Notation: 

Three-d mens Ona ' A. E.l = cross-section area, Younz's modulus, member . .  
length of chord member" Based on the  

A',E',V = cross-section area, Young's modu!us, member 

A",E",h" = Lross-section area, Young's modulus, member work method 

hypothet i 
length of diagonal member. 

t r uss  b u i l t - u p  
member 

E l  

! 

length ot  horizontal member. 

bers a re  very weak. 
a )  Case i n  which the  connecting mer 

(d'-O. A" - 0). 

b) Case in which the number of components 
is very large and there are very stiff 
connecting members. Assuming 
( 2 - 0 ,  1 - -0) .  I 

A'' 

As a f i r s t  approximat ion 

As a second approximat ion 

o r  

" .  

357 
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67 

Form of buckling 

GRAPH AND BOUNDARY 
CONDITIONS 

- 

(4 I (b) 

R I G I D  FRAMES 

0.0124 pk 
Unit EA I 

%laximum buck- ' 

Unit EA -- 

ling unit stress *I 0.0368 

6 8 :  

358 

0.0541 

0.1606 

- 
Regular polygonal 

. r i g i d  frame sus- 
t a i n i n g  a r a d i a l  

Form of buckling I (a) 

~~~~~~~ 

EQUATION OR TABLE OF RESULTS 

0) 

(i)When an equa l l y  d i s t r i b u t e d  pe 
pend icu la r  load P ac ts  on each 

I I 

Maximum buck- I 
ling unit stress *I 0.1337 ' 0.5375 
T i n r n +  c d  I 

IC EI 
n 1' ' u=3 : 9km?*r.l--(1.23n)'- 

where 
n i s  number o f  s ides o f  regu- 

l a r  polygon. 

REFERENCES, 
/ 300 NOTES -, 

41 
For 3-dim- 
ensional 
trusses, a 
general ana ly  
sis was 
carried out 
based on the 
energy meth- 
od, and the 3- 
dimensional 
trusses shown 
in the fi ures 
were use% as 
exam les of 
calcufations. 

The maxi- 
ium buckling 
lit stress is 
ie value of 
ie stresses 
hich occur 
ithin the 
iembers of 
ie frame at  
le time of 
ickling, in 
eel, since 
ie allowable 
lit stress nor- 
ially considered 
around 0,001 
!I, i t  can be 
:en that there 
little danger 

r bucyin 
x u  np 8 
le cfesib is 
arried out 
ithin the 
llowable values. 

42 



NUMBE GRAPH AND BOUNDARY 
C O N D l  T I  ONS 

- 
Regu 1 a r pol  ygona 1 
r i g j d  frame 

.L, 

buck l i ng  o u t s i d e  o f  
s t r u c t u r a l  p lane o f  
3 r i g i d l y  connected 
nembers 

;ate type 
l i g i d  frame 

'11 , 

Column legs 
p i  nned 

EQUATION 08 TABLE OF RESULTS 

Buckl i ng cond i t ion  

where 

.1 
6 @ ( ~ ) + 4  #' (u) -~ ' (u)=O.  

' 1  #(u)'T --- 1 

l )  
9(U)=.-i-(--- Y I  

ain2u 2u ' 

,u 2u tan2u 

us"gr- where N i s  a x i a l  
EX s t r e s s  

Nr=25.-. 

EX 

I:. 
h - i G V T = 4 3 . 7 3  7. 

Buckl i ng  c o n d i t i o n  

@.p&. 

ma= J-g. 
' -  I I 

- F a ,  FL, Fc a re  r e s p e c t i v e l y  the  
areas of BOC, COA, AOB. 

Buck l ing c o n d i t i o n  equat ion 

kltank1---6- I& K.. 
141 9b' 

where 

BY graph, i n  l k  = yh, Y i s  as shown 
i n  the t a b l e  below, 

kb- ~1~ pk t KB'- I R  I t  G - 7 .  Io 

I I I I I I I  
I 1  

t 00 2.6352.3282.2202.1662.1332.1112.0832.000 

According t o  E. Chwalla, f c r  approxs 
imat ion purposes, i t  i s  poss ib le  t o  
assume the fo l l ow ing .  

~- 
REFERENCES, 
NOTES 
-- 
43 

'*l Derived 
frm 3-mo- 
ment equa- 
t i o n  of 
member i n  
the moment: 
w i t h  r e -  
spect t o  
buck1 i ng. 

- 
44 
Outside of 
the  s t r u c -  
t u r a l  plane 
t h e  condi-  
t i o n  i s  i ;;n:;;yd 
a l s o  i n -  
c l  udes the  
tangen t ia l  
plane. 

j p o i n t  0 

-- 

359 
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13 

! 

360 

GRAPH AND BOUF!DARY 
C O N D l  T I  ONS 

EQUATION OR TABLE OF RESULTS 

Gate r i g i d  frame 

REFERENCES, 
NOTES 

Column legs f i x e d  

Buckl 1 ng c o n d i t i o n  equat ion 

&I 
tankh Io KO 

6-. kh 

where 
IO 
h y ,  Kc=--. pk ka=---, KBP- 

EIo 

Rectangul a t  r i g  i d  
frame, assymetr ica l  
buck1 i ng 

42 
4s 

I' IC 

b -  

a) Buckl i n g  c o n d i t i o n  equat ion 
tan-*. T -K-+a-lyg'f-. 6KQ t 6K- t 

Abb rev i ated f ormu 1 a* 1 
T = l + x ( - I ; +  I I. I ) .  

I,h K, 
I K  kr-=- .  

When y i s  large,  as a c o r r e c t i o n  
f o r  t he  stiffnessIyf the beam, 

1 +- Io I= I + 

b) Guckl i ng c o n d i t i o n  equat ion 
t 6K, *' 

T r K .  
* Ab b rev i ated f ormu 1 a*:) 

-L .wt---- 

T I  1 +=, I k=-=-- I& K, 
'h is  can be used as long as y i s  not  
i i g n i f i c a n t l  g rea te r  than 1 .  

I b  K 

When y i s  rarge 

c) Buckl ing c o n d i t i o n  equat ion 

Abbreviated formu1 a*5 

r- 1 +--I- 6t+9.2 ' 

n 6K, - tan---- r r K-.' 

1 t=--i-,-- I h  li; 
T- 2 +T' I b  B .  

When i s  larqe,  c o r r e c t i n g  on the 
bas is  o f  t he  s f i f f n e s s  o f  the beam 

r12+ 3k+0.1 

_- q ..- 
I 

1.041' 1.000 
I 

-. 
7 

47 

*1,3,5 

*1,3,5 

Based on 
e r g  

Based on 
energy 
method. 

*2 I t  i s  
assumed 
t h a t  I, = 0 

i n  t he  'buck 
, 1 ing condi -  
, t i o n  equa- 
t i o n  f o r  
case a ) .  

*4 I t  i s  
assumed 
t h a t  Iq = 0 
i n  the  buck 
l i n g  condi-  
t i o n  equa- 
t i o n  f o r  
case a ) .  

30 2 - 



rlUMB t R 

* 1  The con- 
d i t i o n  i s  
detcrmined 
under which 

~ M becomes m 

I from the 
, de f l ec t  ion 
~ angle 
met hod 
forma 1 as. 

*2 I t  i s  
assumed 
tha t  8 = 
i n  the  buck- 
l i n g  conai- 
t ions  f o r  
case a ) .  

14 

-- 
75 

76 . 

GRAPH AND BOUNDARY 
C O N D I T I O N S  

Gate type 
Rig id  frame 

Gate type 
Riqid frame 

/-[! 11. x _I 

kectangh 1 a r  
Rig id  frame 

I 

E Q U A T I O N  OR T A B L E  O F  R E S U L T S  

.- 

-~ ~ ~~~ 

when 

.when 
e< 2.4 Zr*2A( I +$), 
e>2.4 h % 2 h d  I +0.4c 

where 

a) Buckl ing condi t ion equati'm 

Notat ion 

u=+p;. 

I lQ(u) 6 (a* 
T + T E I  6 E I  

Pk determined by the t r i a l  
met hod. 
Buckl i ng condi t ion equation b) 

REFERENCES, 1/503 
NOTES 



NUMBER bRAPH AND BOUNDARY 

Inverted gate 
type r i g i d  frame 

79 Gate type r i g i d  
frame w i t h  non- 
symme t r i ca 1 
buckl i ng 

- 
EQU.1TION OR TABLE OF RESULTS 

P:-*' (BIk. 
Here a0 i s  tire so lu t ion  o f  the 
buckl ing condi t ion.  

(ah)tan(ah)-- 2 
e 

Buck1 ing cond i t ion  equat io f f l  

K E- 
NOTES 

42 

n l  Condit io 
determined 
under wh i ch 
fl i s  fron 
the def lec-  
t i o n  angle 
met hod 
formulas 

- 
58 

49 
* I  Condit ic 
under wh i ch 
the r i g i d  
frame sus- 
ta ins  a 
synmietric- 
a1 load 8 
symmet r i c- 
a1 defor-  
mation & 
changes t o  
nons ymme t - 
r i c a l  de- 
formation. 



IUMBER 

-- 
80 

7 

! 

! 

81 

i 

- -  

EFERENCES 
NOTES 

50 

GRAPH AND BOUNDARY 
COND I T I  O N S  

Three-pin type 
gate r i g i d  frame, 

'case i n  which a 
load i s  sustained 
i n  corner  sect ions 

h r e e - p i n a t e  
i s i d  frame, case i n  
h i c n  a load i s  sus- 
ained i n  the  i n t e r -  
e d i a t e  s e c t i o n  of  t h '  
olumn. 

EQUATION OR 'TABLE OF RESULTS 

qBuckl i ng  c o n d i t i o n  
Ztnn &3 c. 

y i s  shown 
i n  the 
graph on 
the  r i g h t  

- -  
E l a s t i c i t y  range 

e 2 2  t k 2 J T .  

e s 2  ,=2 JF I +++-. 
___- 

0.10 A f i r  
P !as t i c i  t y  
range r 4 2 + 2 J 1 +  ~ . 
where h A== ek l  using 

8t 31 uu=24001@cm8. 
St 52 uu=3€00 kglcm* 

B u d !  i ng cond i t ion 
ztan +z( I -++x)=~. 1 

where 

Co v e n ~ o n  is  made Q e uc JII len th y hnfor the case 13. wkc% a Poatflis 8ust:ked 
in the corner sectlon, 1. e . ,  (80) a b v e ,  and 
the buckling load is corrected by lJ . 

n' 3 l h  
:P,)t= - c t 6 t  d r  hIi 

e+O.lQ * 

-- U = <pt>t 9. &ah, a'=- EIn - 

+--*c+* 

liere k-0 =(2.55-2a00#+0.45#*) 9. 

I Z L , 3  I 
1 ues 

x )  

-- 
363 



NUMBER 

82 

83 

GRAPH AND BOUNDARY 
CONDITIONS 

-2-pin type gate 
rigid frame Case 
in which a load 
i s  sustained in I 
interrnedlate part 
of column. 

3-pin ty e a t e  rigid 
frame. 8 a s l i n  w h c h  
the load acts sirnul- 
tane.OUS o t e Corner 
section ana tke inter- 
mediate section of the 
column. 

EQUATION OR TABLE OF RESULTS REFERENCES, / 306  - I NOTES . 
Conversion i made to t e bu kl' 
is corrected byu 

y. h expresse% in (80) a n 8  the ~uc%r$%i~ 

The buckling load i s  

k *e+O.35 p=--- 
c+0.35 * 

k(2.55-2.W (I+O. @*) 9. 

e valces 

p1 +ma*, - z.2-p. 
ma 

mc- P' 
The bucklina load i s  converted t o  
case (80 )  a i d  corrected by 1.11. * EIb Pe-(P1+P&=--- 

d r h Y  * 
Pi is considered to acr simultaneously with P of 80 
with respect to buckling; so when converting to 80 

t#e right side of *he following equation. 
P is corrected, and it is possible to express this t y 

P~(PI+P+PI+PJ'~. 
Assuming 0 = 0'. 5 ,  for various values of m, 2 is a: 
indicated below. 

50 

50 

364 
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-- 

84 

- 
85 

the table on the right 0 1.426 
0.1 1 1.491 
0.2 1.555 
0.25 1.586 

where 
P 

GRAPH AND BOUNDARY 
-CQNOlTlONZ 

Three-p i 11 type 
gate type r i g i d  
f r a m  

1.426 i 
1.358 
1.288 
1.252 

Tido-pin type 
gate type r i g i d  
frame 

16 (3 FQ 
+ l  --I 

EQUATION OR TABLE OF RESULTS 

..-- - -  
Buckl-ing cond i t ion  

a) When P2 i s  upwards 
(I+m)Z%n Z =3c, 

( I  +m) 2--m tan Z 
P.mn P,, Z=-1 h. us= EI. 

tan z= ----2. I +m 
m e== if 

b) When Pg is dovowards = 
Values of 

I f c = m  
I -m 
m t .nZ=-- -Z.  

e=so(I,=so) when 
r- is indicated in the 

table on the right 

The value of 

I 

Downwards1 Upwarc 

0 
0. I 
0.2 
0.25 
0.3 
0.4 

I 0.5 
where 0.6 I 2.443 I 1.445 

2 . m  2.030 
2.080 ~ 1.917 
2.155 1.831 
2.194, 1.786 
2.231 ~ 1.741 
2.503 1.647 
2.373 1 1.549 

E I d  0.7 2.507 1.336 
0.75 I 2.539 1 1.273 
0.8 2.511 I 1.222 

(P1)c- -(rhjT. 

0 ~ 9  2 634 1.108 I 21695 1 110 1.ooO 

Buck1 ing condi t ions when I, = OD 

a) When P2 i s  downwards 

b) When P2 i s  upwards 

tan v/mz+m I/T- tanZ=(l+m) 6 2 .  

I / / m ~ - m  \/;;;.tanZ=(I--m) G Z .  
t -  

~ 

{EFERENCES, 
NOTES ~ - 

50 

- --, 
53 

0.4 
0.5 
0.6 
0.7 
0.75 
0. a 
0.9 
1.0 - 

I .  676 
1.734 
1.790 
1.844 
1.871 
1.898 
1.950 
2.003 

1.142 
1.068 
0.995 i 
0.929 
0.899 1 
0.873 I 

0.832 j 
0.800 I 

i 
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NUMBER GRAPH AND BOUNDARY EQUATION OR TABLE OF RESULTS REFERENCES, 
NOTES COND I TI  ONS - - /308 

86 ITwo--pin gate type' 
r i g i d  frame 

- 
81 

- 
88 

366 

ymmetrical load 

iectangu l a r  r i g  i d  
Frame. Sylmne t r i c- 
3 1  

la te  type r i g i d  
'rame symmetri- 
:aI load. 

It is assumed that the load is Pk in the case whenB 
rigid frame undergoin symmetrical deformation 
due to a s rnmetricalfoad shifts toward the as m 
metrical &formation indicated by the broken &ne 
in b) in the dia ram on the left. h4oreover. (87 
(S&,(89) , (9O),(h~,  and (32) also indicate a buck- 
ling value Pk in t e same sense. 

148 
Consideration 
i s  given t o  
the deforma- 
t i o n  of a r i -  
g i d  frame when 
a hor izon ta l  
force 1 i s  I 

I ppl ied t o  the 
enter of a 
earn, the e nergy method 

e 
1 +T 

* 5  z+'g++j(f>. 
2 

%+a e 
48+40e+(r.+3d)e' 

i t h  the sol- 
t i o n  f o r  
pec ia l  cases 

ake cor rec t  ions 
E 
P R,=P&.-. 

l(g2), below. 

Assuming an i n f l e c t i o n  po in t  , a  
height hu, the buckl ing load 9f. 

a two-pin gate type r i g i d  frame 
w i t h  heights h , h,, i s  deter-  
mined from (867, and when the 
case i s  determined ir which the 
load i s  the same on tt.e upper 

buckl ing load. 
] a n d  lower endg, t h i s  i s  the 

- Assuming an - i n f l e c t  on po in t  
he ight  h , the buck ing load o f  . a 
the 2-piH gate type r i g i d  frame 
w i t h  a height h i s  determined by 
(86) and when tRe case i s  deter-  
mined i n  which the buckl ing loads 
fo r  a 2-column member wi th  1 end 
f ixed and the other  f ree  are equal, 
t h i s  becomes the buckl inp Tosd. 



L 

NUMBER - 
e8 

- 
a9 

- 
90 

GRAPH AND BOUNDARY 
CONDlTlONS 

S ymme t r i ca 1 ang 1 e 
type r i g i d  frame. 
Symet r i ca l  load. 

Symmetrical angle 
r i g i d  frames. 
S ymme t r i ca 1 1 oad . 

EQUATlON OR TABLE OF RESULTS 

I + +  

D &=Pp-- P' 

where 

D m D m  d=yph=Qh.  

(EI)~=:bending s t i f f ness  of 
ang 1 e beam 

Assuming an i n f l e c t i o n  po in t  height 
.hu, the buckl ing load f o r  the case 
o f  a column leg p i n  [ l i t e r a l  t rans- 
' l a t i o n ]  wight a height ho i s  ob- 
ta ined by (89) and when t h i s  and 
the case i n  which the buck l ing load 
o f  the two-column member o f  he ight  
h, w i t h  one end f i xed  and the other  
end f r e e  are equal i s  found, t h i s  
i s  the required buckl ing load. 

/309 
EFERENCES, 

NOTES , - 

367 



NUMBER 

91 

GRAPH AND GOUNDARY /310 
COND I T I ONS NOTES 

- 

92 

n-type r i g i d  framei 
symmetrical load 1 

I 0 
i 

I Er:Lj;p - ' C  

t 
!b) 

I 

I .ir-type r i g i d  frame 
symnetrical lbad I 

where 

I) is use to dete ine t e Ixicld'n oad for 
{{e case of pinneci %urnn%ase w i b 8  lheight 

assumin an inflection point height h,,. 
&e require$ buckling 103d is determined 
when this, and the case in  w h c h  the buck- 
ling loads of a 2-member cclumn with a 
height h,, anr' me end fixed and one end 
free are  equal, it is found. 

i 

I b  I b  

L- * = cross-sect ion arca o f  brace. 

94 

I I L I  
3 A i c' 

I b  
I ,  h a  

r- I +-(2 o+i*v)+2- - -. 
p=- - - .  - 

! 
I 

. A = crdss-section area o f  brace. 

48 

fbbrevia solution ted by . 
energy rm . 
Abbreviated 
solution by 
m x y  Teth-  

assumed that 
the b d c e  doer 
not undergo 
buckling. 
The same is 
!fie below. 

t 1s ' 

- 

.368 



GRAPrl AND BOUNDARY EQUATION OR TABLE OF RESULTS REFERENCES, 
COND I T  I /311 N'JMBER 

ONS NOTES - 
' 

95 

- .- 

Gate type r i g i d  
t raine hav i ng 

L L -  

Case i n  which the  load ac ts  on 
the corner  sect  ions. 
Buckl ing c o n d i t i o n  equat ion 

here 

A i s  found i n  T= - 
21 

when 

l k  = y h ,  the f o l l o w i n g  diagram 
i s  obtained. 

15 20 25 

I n  the  general case, us ing  t h e  
values o f  k above, approx i t ra te ly  
I ~ k ~ ? ; ) :  

2. I +4.4 0 rk2( 1-0.65 c )J (  1-0.23 u)+ - t-. 

k > 2 3 :  

re2(1--0.656)4 I +L-. 2. I 

k==m : 
yk = 00 i s  i nd i ca ted  i n  the t a b l e  

be 1 ow 

9 I 0 I 0.1 1 0.2 10.25 ! 0.3 1 0.4 0.5 

(P I 0.6 1 0.7 j 0.75 1 0.8 1 0.9 I 

rt-. i 1.231 1 . 1 3 0 ~  l.OS9' I 1  1.055 1.012 1.033 
L_ 

50 

3 69 
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9f 
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GRAPH AND BOUNDARY EQUATION OR TABLE OF RESULTS 

Gate ty -e iigid'ffsme f 

having grace,. Case 
i n  which a $ad acts on, 
the column in  the 
lower section of the 
brace. 

0.1 
0.2 
0.25 
0.3 
0.4 
0.5 
0.6 
0.7 
0.75 
0.8 
0.9 
1.0 

The Val ues 

Buck l ing c o n d i t i o n  equat ion 

= t. 11 tan J, 21 

I-( 1 - y6+ tanr ,  2 

here 
3 e  

(l-r)* ' (a) : tL.- 

when 
o=O. 25 p i s  i nd i ca ted  i n  

the diagram below 

00 u 5 ro t5 20 25 
- 4  

Values o f  P k  = 
tab 1 e be l  ow. 

a r e  shown i n  the  

REFERENCES, /312 - NOTES 

50 

Q, 
~~ ~ 

0.0 1 0 . 1  10.2 10.251 0.3 10.4 10.5 10.6 10.7 10.751 0.8 10.9 

1.00 
o r  buck1 ing when I r = m, 

consequently k = "0, a re  obta ined 
from the above t a b l e  and the  graph 
on the r i g h t .  I n  the general case, 



NUMBE 

97 

99 

- 
100 

- 

GRAPH AND BOUNDARY EQUATION OR TABLE OF RESULTS 
COND I T  1 ONS 

2-beam-span. r i g i d  
frame having 
braces, asymmet- 
r i c a l  buckl  ing. 

Rec tangu r 'Ti i g 
frame hav i ng brace 
beams, asymmet r i ca 1 
buckl  ing. 

: t iate-type r i g i d  
frame having brace 
beams, asymmetrica 
buckl  ing. 
I 

C b  

Gate-t pe r i g  i d  
frame xav i ng brace 
beams, asymmetri- 
c a l  Suck1 ing. 

.f the results foy the gate rigid frame 95) having 

:ondition equation is 
>races are applied appropriately, the (D uckling 

v*zl*Ctnnv ti+ tan (1 -v>zll  
0 zlctan y z1 + tan( I -9) 213- tan o ~,ta~.( I --Y ) 21 

- ,.. 
6 e  k=----- ( I  -8)' ' 

Here 
P 
E b  ' ZIaah, a'=- 

h I ,  
I I A  ' e=- 

Here 

r*EI 5s- (T h)s ' 
; is the member stress of each member of :he 
)race brams when a moment M = 1 is applied 
o the point G, 1 is the member length of 
tach Inember, A is the cross-section arza of 
:ach member. 

7 I stl 
24 h A' r- 1 +-u*+- 2 - 

Notat ion:  completely the same 
as i n  (98) 

2 1  
I2 h 

r = 2 + - - v o + - Z -  I A' 

Notat ion:  the same as i n  (98). 

REFERENCES, /313 
NOTES - 

19 

47 

Calcu lated 
by energy 
method. 

~ 

47 

371 



101 

-- 
102 

1 NI'l, 

EQUATION OR TABLE OF YESULTS REFERENCES, NUMBER GRAPH AND BOUNDARY 
CONDlT lONS NOTES 

i 
The buckling condition equation is as follows if the ' 50 

rults for the 3-pin gate ty e rigid frame (95) having /314 
aces are used appropriate&. - 

v'zla Ctnn (o z,+tan(l - v ) 3 3  
vz,Ctany zl+trn( I -v)rl)-tnny z,tan( I -V)JI 

-L. 

- 
103 

3 -  pin ate type rigid 
frame laving lattice 
beams, asymmetrical 
buckling 

2-pin ate type rigid 
frame iaving lattice 
beams, asymmetrical 
buckling 

Rectangular r i g i d  
frame having l a t -  
t i c e  beam, assym- 
m e t r i c a l  buck1 ing  

here 

*%'L is the multiple E of the relative I a=z AI displacements of oinis c,  d ,  due , 
to the couples l.h, indicatej in Figure (b) on t t e  

The followin e uation i s  used for the k on the 
right side of ehezuckliilg condition equation (101) 

here 

N,=stress at each part of a latice beam I 
cross-section area of all 

*ar the parts of a latice beam. 
A,= the lengthof all parts 

of a latice beam. 

50 

lhen the  e f f e c t  o f  t he  a x i a l  forces 
)f t h e  l a t t i c e  a r e  n o t  considered 

ht I r=-= b 1 +z(~p+2 yo).  

When the e f f e c t  o f  the a x i a l  forces 
o f  t he  l a t t i c e  a re  considered 

here 

47 

Abb rev i ated 
c a l c u l a t i o n s  
by the  ener- 
gy method. 

S is the stress of each'member of the lattice beam ' 
when a moment M = 1 is applied a*. points G, 1 is the 
member length, A is the cross-section area of each I member. 

3 72 



NUMBER GRAPH AND BOUNDARY 
CONOlTlONS 

- 
Ga t e - t y ? ~  r i g i d- - 
fratqe having l a t -  
t i c e  beam, assyn- a 

m e t r i c a l  buckl ina 

- -- 
Gate-type r i g i d  

IO5 frame having l a t -  
. t ' i ce beam, assym- 
m e t r i c a l  buck l i ng  

- 
106 Two-story r i g i d  

f rare,  assymmet- 
r i c a l  buckl ing 

RE FE REN CES , 
NOTES 

EQUATION OR TABLE L F  RESULTS 

4z 

T=I +-vo+--c I I -i. S*t 
3 h  

Nota t i on  the  same as i n  (103).  

4' 

Nota t i on  the same as i n  (103). 

.) : 
'1The displace-; 
ment curve is 

11 v=f S h F K  

This is the I 

correct soh-  ' 
p n o p i n e d  
rom t e con- 

tinuity condi- 
tions and sta- 
bility condi- 
tions of the 
m e n  bers. 
&PO. P, are 
t'ne compre- 
sive forczs 
acting on 

columns 
respectively. 
The same 
is true 
below. 

:% Y&% 

3 73 



NbE('3ER GRAPH AND BOUNDARY 
CONDITIONS 

I frame, assym- 
! metr ica l  buckl ing 

. .  . 
1071 Two-story r i g i d  

- 
log Two-story r i g i d  

frame, assym- 
.metr ica 1 buckl ing 

I -  

- 
109 Two-story r i g i d  

frame, assym- 
c e t r i c a l  buckl ing 

EQUATION OR TABLE OF RESULTS REFERENCES, /316 - NOTES 
4719 the pre- 

LIOUS sec- Buckl i ng cond i t ion equat ion*] Gon~ ( 

it is assumed 
I.. = . -Y - 

6 *1 The displace- 
rnent curve is 

ch ' g+,in- xz 

- m t L ] -  -- 
c* - I L L -  

Buckl ing condi t ion abbreviated 
equa t i on"2 

Notat ion the same as i n  (106). 

Buckling condi t ion equation 47 

I t  i s .  
' ( t a n 2 + B t a n ( I - t a n -  K s  . IG t J iass.umed 

6 i n  ( l J5)  
t- 

& '  tha t  I q  = o 
* Abbreviated buckl ing equation 

Notat ion the same 3 s  i n  (1'';). 

Buckling condi t ion equation r 

a k = c ( h e + L : = K h -  
Notat ion as i n  i106). 

(a) When the compressive force 
PO = P, = P, and the geomet- 
r i c  moment o f  i n e r t i a  

. .  

(b) When the compressive force 
Po t Pu, and the geometric 
moment o f  i n e r t i a  1 0  = I, = I 

1 

! 
+-- 

47 

* l  I n  (106: 
i t  i s  assumed 
l m  = l r  = 0. 
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NUMBER GRAPH AND BOUNOARY EQUATION OR TABLE OF RESULTS 
CONDITIONS 

_- 
, lo Single-span two- In 

s t o r y  r i g i d  frame 
EI S E I  Fbd, h' ( ~ h ) '  

&=m-=- 

~ 

&=30 

40 

90 

60 

70 

m, y have the values showr! i n  the 
tab 1 e be 1 ow 

I (a) I 0) 1 (c) - 
I I 5.17 1 17.89 123.27 

t 1 1.382 I 0.743 1 0.651 

42.06 I 38.89 43.a ' 62.02 
55.75 I ! 50.33 I 52.60 69.75 

83.26 i 73.82 72.20 84.94 

69.49 62.01 62.21 77.20 

97.05 85.71 82.48 93.08 I 

REFERENCES, 
NOTES /317 

_ _ _  
51 
Prec i se i  y 
ca lcu la ted  
from the 
m a t r i x  o f  
the equat ion 
i n  tne buck- 

, I  i ng def 1 ec- 
t ion  angle 
method 

~ 

&=3O 

40 

50 

60 

70 

'ame 

41.94 1 36.23 33.22 31.63 

55.31 48.30 44.30 42.17 

69.14 60.18 55.37 52.71 

%.80 84.53 1 77.52 I 73.Q 
i 82.97 72-46 66.44, 63.26 

Single-span 
two-story r i g i d  
f r  

l i d  has the values i n  the t a b l e  
be 1 ow 
(a) When consider ing v a r i a t i o n  i n  

1 i h ~ h l 2 ~ W 4 ~ m  
niember 1 enqth 

(b) When d isregard ing v a r i a t i o n  i n  

8 1 h I h12 I h/4 I h/8 

member length 

52 

Der i ved 
from the 
equa t ions 
i n  the 
buck1 i n g  
def 1 ec- 
t i on  angle 
met hod 

375 
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112 Single-span two- 
story r i g i d  frame 

- -  
113 Two-span two-story 

r i g i d  frame 

EQUATION OR TABLE OF RESULTS 

. 
REFERENCES, 

NOTES /318 - 
52 

Calculated 
from the 
matyices o f  
tlie equation 
i n  the buck- 
l i n g  defiec- 
t i o n  angle 
method 

in .m 
52 

Ca 1 c u l  ated 
from the 
equations 
i n  the 
buck1 i ng 
def 1 e c t  i on 
angle 
met hod. 

3 76 
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GRAPH AND BOUNDARY 
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EQUATION OR TABLE OF RESULTS 

Single span multiple 
story rigid hame, 
asymmetrical buckling 

I P  a'EI a=---- (rh)' - 

,,-,number of stories - 
The above equation gives satisfactory ap roximate 
values 2 as Ion as i s  not siqifican&Rgfter 
than l.in s ite 8 n. Moreover, the e 
the axial grces is taken @to consideration 

4(*--1)+'+5.33** 

uhere d=T- 
When the beam stiffness is small, 
consequentIy is large. The follow- 
in equation is-used which is a 
fukher correction to the above 
equation R 

6+O.ZB' T==I+--- 

VARIABLE CROSS-SECTIONS, R I G I D  FR WES 

REFEREMCES, 
/ 319 NOTES - 

47 
'1 Calculated 
by energy 
mezhod. 
2 When p is 
large, ths  
is Puwei's 
equation. 
Agrees wi8h 

2 t==i +--v 3 
I -ma*--- 4n 

$3 Puwein. with 
respect to the 
a-bove equa- 
uon 

2 
3 

4n 

r=i +-Y 

.-*f 

Gate type T i  id frame 
havlng varia%le cross- 
section beams 

I I 
. 

No. Graph & Boundary Conditions Equal .on or Table of Results I References Notes - 
115 

I 

(a) !Jhen there is no displacement 1 %  
Buckling 

The buckling equation condition is angle 
met hoe 

in lateral direction deflection 
-- . ~ 

2 =--=: *1 for the deflec 
a 4  & '  I tion angle coef- 

ficients a, b see 
the followin Mhere a, b deflection an le coefficient of the 

rariable cross-section be& -1 
is the deflection angle coefficient in  the ~ ~ ~ ~ ~ ~ u o a &  

the calculations . bucwng deflection angle equation 
(bJ When there is d-i splacement in I of a frame hav- 

ing nembers 
with variable the lateral direction 

The buck1 i ng equat ion cond i t ion i s cross-sections. 

I 2 

I - .  
Architectural 
Magazine, 1931, 
Oct.). 1 

-(.+a) 
2(a+i3)-2* 

Kb a+(a+ b) -- 

I Yotation same as above. I I 
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column base 
fixed 

column base 
pinned 

GRAPH AND BOUNDARY 
C O N D l T l  ONS 

1.123 o.64, 

2.2% 

Gate type rigid frame 
having variable cross- 
section beam 

3-pin ate type rigid 
frame %aving varia- 
ble cross-seEtion 
beam 
When the geo - 
metric moment 
of inertia of the 
beams varies linearlv 

-L- 

1 -' 

EQUATION OR TABLE OF RESULTS REFERENCES, ,320 
NOTES - 

._ . 
a)  when there i s  no l a t e r a l  d i s -  '53 

'he buck l ing  c o n d i t i o n  equation i s  Done by 
placement 

r & , t h e  buck- -=-- 
a-b & '  1 ing de- 

where ~ 2-3 f l e c t i o n  
m '  angle 

6 ; o, bare respectively, the buckling method. 
C" 

deflection an le coeffirients. and the deflecrion 
angle coefficBents of the variable cross-section 

b) When there is lateral displacement 

The buck l ing  c o n d i t i o n  equat ior  i s  

r--P 

Nota t ion  same as above. - 
53 

I n  
P p - E L  the values of y are  as 

shown i n  the t a b l e  below. 

# Done by 
the buck-' 
1 ing  de- 

t f l e c t i o n  

( r  h)' 

angle 
method. 

base displacement 
zondition \, 

Hypothet ica l  geometric moment of 54 
I n e r t i a  o f  beams. 

I (n- ry I,. - - 
P p q ) ~ - ( n 4 ) + , 0 4  

I f  one uses the above equation, 
t h i s  should be handled the  same 
as i n  the case o f  a beam w i t h  a 
constant cross-sect ion.  See (80) 
above 

-- 
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I - 
I I9 

' I  

I 
3-pin ate type rigid 
frame iaving vari- 
able Cross-$ection beams 
Case in whch eometnc 
moment of ineaia of 

- 
12; 

- 
121 

Hypothet ical  geometric moment of 
i i a of beam 

GRAPH AND BOUNDARY EQUATION OR TABLE OF RESULTS REFERENCES, /321 
COND I T  I ONS NOTES - 

L a m s  
When the geomet- 
ric moment of inertia 

' of the beams varies 
parabolically 

. .  

tiypothet i ca 1- geornet r i c monen t 
o f  i n e r t i a  o f  beams I 

I f  the  above equat ion i s  used, t h i s  
can be t r e a t e d  the same as i n  the  
case o f  a beam of constant cross- 
sect  ion 

3-pin ate type ri id 
frame fiaving y a B  
ab  e cross-sectlon 
column 
Case in which the 
geometric moment 
of inertia of col- 
xnn vanes para- 
bolically 

See (80) above. 

. 

Buck1 i ng condi t ion equat ion 

Here 

154 

Where Th bucklin length of the 3-pin rigid 
frame column (80 [ann a constant cross- 
section Ih and a d a d  on &e corners 

I 
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I 

EQUATION OR TABLE O F  RESULTS 

~- 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

121 

1.0133 1.03;o I 1.om 1.0303 1.03% 

0.9926 0.9976 0.9989 0.9996 1.0330 

0.9543 0.9832 0 . ~ 1 3  0 . ~ 8 4  t.ooc0 
0.8305 I 0.0358 0.9716 0.9894 1.003J 

0.6782 0.8623 0.93& 0.9759 I.ooM) 

0.5375 0.7103 0.8876 0.9560 1.oooO 
0.4277 0.6765 0.8293 0.9297 1.oooO 
0.3451 , 0.5933 0.76iO 0.909 1.ooO3 

0.2832 ' 0.5155 1 0.7071 0.8664 I - C O X  
0.2363 0.~526 1 0.6508 0.8828 1.oooO I 
0.2300 j 0.1oOo 0.6OOo 0.8300 l.m 

- 
122 

= 3e 
2 0  

' 1  2 0 I \t--m, / t  T I O &  - 
v 7  

(l-q)(l-vT) vkq- 
2v 

Here k m V 4  6'-I . 
P(a+e)' Pk t'+ 1 p= -- 

EI;- -9  a'=--= EX* c(c+c)' 

. - l a  

IL I 

- 
123 

Values o f  L- 

REFERENCES, /322 
NOTES 

1 %  



NUMBER GRAPH AND BOUNDARY EQUATION OR TABLE OF RESULTS RE F E  REN CE S ,, 32 
C O N D I T I O N S  NOTES - 

5n'EIn *' Pt,- -I 

Values of L- 

' ! 
( t h ) *  

o I n=O.05~n=O.I~n~O.2n~O.~n==O.6'n=0.8'n=I.O ' I  - 

, / I  
0.0 1.m 

\Jhen c takes a r b i t r a r y  values 
e+O. 70 c* ~- 

+o. 70 
0, 

C - 

,n l  yh i s  the  
buck1 i ng 
length of 
the  columns 

' o f .  a three- 
p i n  type 
r i g i d  frame 
(see (30)) 
having a 
con s t a n t 
cross-sec- 
t i o n  I n  
and a load 
on i t s  cor- 
ners. 

! 

I24 TWO pin-type box frame 
with distofied cross- is 

I 
! 

L_. 

is 
I 

124 

! 
with distofied cross- 
sectior? column. 

THREE 

125 

.. 
iJ 

D I HENS I ONAt R I G l D  
Cylindrical 3 - 
dimensional frame 

e+O. 35 
n=i 

+o. 35 C - 
L= 

h 1, 
here 

e=- i-rh * - 
Values of nc = 
i c a l  values i n  ( 1 2 3 ) .  

a r e  the  

FMMS 

nume r- 

Buckling condi t ion equat ion 

55 
Calculations of 
buckling for 
r i  id joint 
sthctures is 
carried out 
2-dimensionally 
The numerical 
calculations 
are carried out 
amming the 
deflection u 
occurs within 
the plane, and 
the stcry end 
is used as a 
parameter. 
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' 125 

8-3 

-2 

n-f 

EQUATION OR TABLE OF RESULTS REFERENCES, ,324 
NOTES - 

. ~- 
Results of numerical ca lcu la t ions  
a r e  as shown below. 

Upper end f r e e ,  
Lower end f i x e d  



CONT I NUOUS MEMBERS (SUPPLEMENT) 

NUMBER GRAPH AND BOUNDARY EQUAT 
CONDIT IONS 

. ._- 

lis Two-span cont i nu- 
ous member 

a h  

{ Both ends pinned 
I 

Two-span cnnt i nu- 
oua member 

I Lg&, 
p--~--p-~+ 

P m , :  , ,  

Diagram o f  
a x i a l  f o r c e  - 

Two-span cont inu-  
ous member 1-27 

.Both'ends r o t a t i n g  

Two-span cont inu-  
ous member 

P 
- 0  P I ,I 

F m ] l : i p  

D i  agram O f  
a x i a l  f o r c e  

Two-span cont inu-  
ous member 

A 
t---t+-i 

- 

One end pinned 
Other end f i x e d  , 

Two-span cont inu-  ' 

OUS member 

k - t - C t - 4  

ON OR TABLE OF RESULTS 

Buck1 ir,g c- lnd i t ion equat ion 

K1 = S t i f f n e s s  r a t i o  o f  member A3 
K 2  = S t i f f n e s s  r a t i o  o f  member BC 

. y l ,  y2 = D U C K ~ I ~ C I  d e t l e c t i o n  angle 

bJot.at ion : KiTa+KJs=O 

method c o e f f i c i e n t s  f o r  m e w -  
b e r  A,a o r  member BC w i  t h  
o the r  end pinned 

When I ,  = 1 2 ,  l1 = 12, t he  buck l i ng  
c o n d i t i o n  equat ion i s  

t ,  + i , = O  

EI EI Pb= (3.73)- = 1 3 . 9 1 7  

Buck1 i ng cood i t ion equat i on  
Notat ion:  K,a,+Kp,=o 
K i ,  K2 = S t i f f n e s s  r a t i o  o f  

a l ,  a2 = Coe f f i c i en ts  i n  the buck- 

-.-.,.I, e. 

member AB o r  BC 

l i n g  d e f l e c t i o n  angle 
method f o r  member AB o r  BC 
w i t h  the  o t h e r  end f i x e d .  

The buck l i ng  c o n d i t i o n  equat ions 
when I1 = 12, 1 1  = 12 

aI+a,=O 
P b = ( 5 . 3 3 ) ' p = 2 8 . 4 p  EI EI 

Buckl ing c o n d i t i o n  equat ion 
KIT,+ K,a,=O 

Nota t i on :  Same as i n  126, 127 

When I l  = I ? ,  1 1  = ? ? ,  t he  buck- 
l i n g  c o n d i t i o n  equat ion i s  

t,+a,=O 

( 3  573)* 12.77 n'EI 
PI = ' - E I = p E I =  (0.879 l ) i  

REFERENCES ,/325 
NOTES 

Buck 1 . K g  
de f 1 ec t i on 
angJ e 
method 

58 

Buck1 i ng 
d e f l e c t  ion 
ang 1 e 
m e t  hod 
58 

58 

58 

58 

383 
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.~ 
128 Two-span cont i n -  

1 uous member 

LL*2 
'L-+-~--4 

(5 19)' 26 94 x'EI PI =+EI = LEI = ___ 1 P (0.605 I)' 

(3.165): 10 02 x'EI P,=- 1: EI=+EI=- (0.993 I)' 

REFERENCES, /326 
NOTES 

sa 

58 

Graph o f  a x i a l  
forces 

_e 

129 ng cond ion equa ion 
Multiple span continuous member 
(Equal s ans with constant cross- 
sectionsP I a,+a, E' 0 0 .-.* 0 0 O I  

IlP 

Ax ia l  forces 

Three-span con- 
t i nuous member 

e u s  

':<.L% 

i - c . t - L i - L - 4  
Four-span con- 
t i  nuous member 

I-!+l--L+Li 

Five-span con- 
t i nuous member 

=O 

- 
h c k l i n g  deflection Multiple span continuous member 

(Equal spans with constant cross- 
sec tions) Buck1 inq  c o n d i t i o n  equat ion 

r,+u, E' o o.... o 0 
0 

a n a 0 - 6  
0 

32 P L L I , L L P  
A B t . 9 '  
pi+ L + L ~ C F : + Z - ~ ~ L - I  

axial forces 



'{UMBER GRAPH AND BOUNDARY 
COND I T I GNS 

Five-span c o n t i n -  
uous mernbgr s,L*L*% 

l-4- L + Z + L - l  

131 

- 
132 

R I G I D  FEAMES 

EQUATION OR TABLE OF RESULTS REFERENCES, 
NOTES 1327  

Buck1 i ng 
d e f l e c t i o n  
ang le  
method 
58 I 

Same as 
i n  58 

Same as 
i n  58 

56 

a, 
n , . 

L - 4  

When l k  = y l  

except that 0.3i(=;bzgO.,'h 

57 

-- - 
133 57 

where 

reo. 44+0.12(1 +%)+O. 03(1+ %r 
except thht  0 . 3 k s b = ; ; 0 . 5 h  
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- 
134 

EQUATiON OR TABLE OF RESULTS REFERENCES, ,328 
NOTES - 

.. 

!Jhen i t  i s  assumed tha t  l k  = yh 

here 

a= "'*0.2 P A ,  - 

when 
lb=7h 

t = /1+(0.35)(2k- 6~) - (0 .017) (2C+ba)~  
he r e  

k l'! 

when 
lb=Th Pr=nP, 6 2  

~=/1+0.86 I dl +O. 35(2 k + 6 ~ ) - 0 . 0 1 7 ( 2 ~ 6 ~  

I here 

(n when 
16=7h 

7- d w m L + 6  P b +O. 02(k +6 a)' 

here 

P K, !,t 
used Kb Ibh m t - 5 1 ,  k=-=- 

when 41. 
a= 1'A,S@'2 

386 
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IP 

1 

1' 

Y 

EQUATION OR TABLE OF RESULTS 

t =b'4+1.4(2k+6a)+O.O2(2k+6 0)' 

here 

REFERENCES, 
NOTES /329 

57 

E2 Pb = 2 . 5 T ? 7  

E l  
b' P, =2.033- 

56 

56 

56 
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n I -  

-- 
146 

.- 
147 - 

- 
148 

P 

REFERENCES, /330 
NOTES 

56 

56 

58 

58 

~~ ~ 

L I 0 0.4 0.4 0.61 0.8, 1.01 1 . q  2.0, 2.51 3.01 4-01 5-01 6.0ra 

- 
t S i 0.4 0.41 0.6: 0 .q  1.01 1.51 2.01 2.3 3-01 4.0' j ,cl  6.q  00- 

~~~ 

O d  z 
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When it is assumed that 
-- K b  -t, p,,------ y -  y L: Lt:L:$ K. 

I 

F- When i t  is assumed that 

P P 

L 1 o 10.q 0.4 0.1 i . 4  1.01 1.51 2.01 2.51 3.01 4.01 5.0) 6.01 

m 

389 



NUMBER 

155 

- 
156 

- 
l57 

- 
158 

- 
159 
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EQUATION O R  TABLE OF RESULTS REFERENCES, 

/332 - 
I 57 

when l k  = yh - 

C=Th Pa=** ; n g 2  

r = b m , / - $ i G G -  

here 

57 

t =/ I+O. 43 n,/+( 1 +m ). r'l +O. 35( P+6a)-O.O1i(k  +6a)' 

he re 

.&i<* ; br-=--L K, I1 

4 1. a =---<0.2 

P -  Kb I&s10 
used when 

- 

Assuming 
+rh 

here  - 
t .=L+qa 9 : t=---- Id 

Kb - I& 
4 1. 

P I'P, 
Range o f  appl i c a t  io3 1 i m i  ted t o  

I ,  . 9'- p=- p ,  ; +A. 

cases where y 3. 
Assuming 
- 

6 + 1 . 2 t m  . rs 
= 3+0. I E .  

;dotation as i n  :do. 15? 
~ 

Assuming 
l h s t h  

I = =  

Notat ion as i n  lis. 157 
- .~ 

57 

57 

- 
57 

390 
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C H A P T E R  2 

ARCH B R I D G E S  

3 . 2 . 1  . I N T R O D U C T O R Y  S U R V E Y  

/337 

When using arches as b r i d g e s ,  t h e  l i m i t  value o f  i t s  h o r i z o n t a l  r e a c t i o n  
is an important p o i n t  r e q u i r i n g  cons idera t ion  i n  designing arch b r i d g e s .  For 
t h i s  reason,  we w i l l  in t roduce  here  b r i e f l y  some t h e o r e t i c a l  and experimental  
research  on t h e  s u b j e c t .  This  paper  w i l l  focus c h i e f l y  on v e r t i c a l  loads and 
w i l l  exclude cons idera t ion  of  extremely f l a t  arches t h a t  approximate s t r a i g h t  
( l i n e a r )  members. The types  of  arches t h a t  have been d e a l t  with i n  t h i s  a r e a  
uy, t o  t h e  p r e s e n t  time, inc lude  a rch ,  p a r a b o l i c ,  o r  s ine-curve,  three-hinged,  
two-hinged, and h inge less  a rches ,  and buckling wi th in  t h e  arch p lane  when Zn 
equal ly  d i s t r i b u t e d  load acts on them. This  has been t h t  p r i n c i p l e  o b j e c t  of  
i n v e s t i g a t i o n .  

F .  Engesser (1903) determined t h e  buckl ing va lues  of  f l a t ,  p a r a b o l i c  and 
c i r c u l a r  three-hinged arches ,  R .  Mayer (1321) d i d  t h e  same f o r  f l a t ,  two-hinged 
and h inge less  arches,  while  i n  1925, J .  F r i t s c h e  determined t h e  buckl ing va lues  
f o r  f l a t ,  p a r a b o l i c  three-hinged,  two-hinged and h inge less  a rches .  In 1930, 
t h e  Germans enacted D I N  1075 which includes d e f i n i t i o n s  f o r  t h e  buckl ing of 
a rches .  

E.  Gaber (1933), who was d i s s a t i s f i e d  with e x i s t i n g  t h e o r e t i c a l  formulae, 
conducted experiments on a model with an e f f e c t i v e  span of 180 cm and attempted 
t o  compare h i s  resul ts  with t h e  above t h e o r e t i c a l  equat ions .  A s  a r e s u l t ,  he 
found t h a t  F r i t s c h e ' s  formulas,  appl ied  t o  f l a t  arches,  Mayer's equat ions f o r  
two-hinged arches ,  gave low va lues ,  while h i s  own equat ions f o r  h i n g e l e s s  arches 
were s u i t a b l e  f o r  f l a t  a rches .  He a l s o  concluded t h a t  t h e  equat ions i n  D I N  
1075 were s u i t a b l e  f o r  h i n g e l e s s  arches with a r e l a t i v e l y  high r i s e .  Gaber 
s t u d i e d  t h e  case i n  which t h e  moment of  i n e r t i a  o f  t h e  arch c r o s s - s e c t i o n  is 
n o t  cons tan t ,  rep lac ing  it by a s t r a i g h t - p r e s s u r e  r e s i s t a n t  member, having a 
cons tan t  moment of  i n e r t i a ,  showing a d e f l e c t i o n  equal t o  such a case ,  and pro- 
duced numerical t a b l e s  i n d i c a t i n g  t h e  converted buckl ing lengths .  

W .  Fuchssteiner  (19::) s t u d i e d  t h e  t h e o r e t i c a l  equat ions fcr  three-hinged 
arches ,  compared them with t h e  r e s u l t s  of  experiments,  and demonstrated by exper- 
i m e n t  t h a t  t h e  buckling f o r c e  of  a three-hinged arch ,  having a r i se  r a t i o  ( r a t i o  
of  i-ise f t o  e f f e c t i v e  span 1: f / l )  g r e a t e r  than 1:3 was t h e  same a s  t h a t  f o r  a 
two-hinged arch of  t h e  same dimensions 

F .  ,ssi (1935) appl ied  t h e  Vianello-Engesser method to arches ,  proposed 
c o e f f i c i m t s  g iv ing  converted buckl ing lengths  and found t h e  r e l a t i o n s h i p  be- 
tween t h e  proper  v i b r a t i o n  numbers of  a rches  from S t o d o l a ' s  se thod  and t h e  c r i t -  
ical  h o r i z o n t a l  r e a c t i o n s .  

Later  C.  F.  Kollbrunner (1936) not iced  t h a t  t h e r e  wer? d i f f e r e n c e s  'Jetweel 
D I N  1075 and t h e  t h e o r e t i c a l  equat ions o f  Mayer and Fritsche and t h a t  Gaber 
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experimental  methods were SOIT.P~.' t h igher  than S t t l s s i ' s  t h e o r e t i c a l  value.  In  
o r d e r  t o  c l a r i f y  t h e s e  p o i n t s ,  I 

t i v e  span and showed t h a t  S t t l s s i ' s  equat ions have a r a t h e r  high r e l i a b i l i t y .  
conducted tes ts  on a madel with a 60 cm ef fec-  

In  1934, A.  Lockschein used t h e  Strbmer-Adams method t o  n u m r i c a l l y  i n t e -  
g r a t e  d i f f e r e n t i a l  equatin?: f o r  a bent  beam and determined t h e  buckl ing va lues .  
H i s  s tudy is  a iinique one i n  terms of  p r a c t i c a l i t y .  

Later ,  when D I N  E 4114 was be ing  formulated,  E .  Chwalla, r e f e r r i n g  t o  t h e  
r e s u l t s  of  experiments by Gaber and Kollbrunner,  made determinat ions f o r  each 
type of arch with s tandards  f o r  t h e  c o e f f i c i e n t s ,  g i v i n g  t h e  converted buckl ing 
lengths  as  func t ions  of t h e  r ise r a t i o  f / l .  

B. Iiusch (1937) conducted experiments Fr imar i ly  on h inge less  a rches ,  de- /335 
termined experimental ly  t h e  effects of  c r o s c - s e c t i o n  moment o f  i n e r t i a  on t h e  
c r i t i c a l  h o r i z o n t a l  r e a c t i o n ,  and obtained c r i t i ca l  va lues .  His r e s u l t s  a r e  
almost i d e n t i c a l  with Gaber's c o e f f i c i e n t s .  

F r .  Dischinger (1937) gives  buckl ing vs ldes  f o r  p a r a b o l i c  a rches ,  e s p e c i a l l y  
concre te  arches.  Comparing h i s  formulas with S t l i s s i ' s  r e s u l t s ,  t h e  c o e f f i c i e n t s  
given by Stt!ssi as func t ions  of t h e  rise r a t i o  are cons tan ts  i n  Dischinger 's  
work. Howeter, i n  h j s  work, t h e  f x t  t h a t  he refers,  f o r  * first  time, t o  
two and zhree-hinged arches having . ; t i f feners ,  i s  noteworthy i n  terms of  a p p l i -  
c a b i l i t y .  In  1940, Dischinger publ ished h i s  t h e o r e t i c a l  work. 

What has  been descr ibed  above p e r t a i n s  t o  cases i n  which t h e r e  i s  a uni-  
formly d i s t r i b u t e d  load over  t h e  e n t i r e  a rch .  E .  Deutsch (1940) conducted exper- 
iments on cases  where t h e  e q u a l l y  d i s t r i b u t e d  load on t h e  l e f t  and r i g h t  o f  t h e  
arch was assymmetrical ,  and found t h a t  t h e  c r i t i ca l  h o r i z o n t a l  r e a c t i o n  i n  such 
a case was SO% lower than f o r  an e q u a l l y  d i s t r i b u t c J  load.  
i n  which t h e  moment o f  i n e r t i a  v a r i e s .  

Ht: a l s o  t reats  cases  

Hiurri Daizo (1Y40) found a method f o r  c a l c u l a t i n g  t h e  5uckl ing  of  an arch 
by t h e  i z f l e c t i o n  angle  d e f l e c t i o n  method and showed through s e v e r a l  examples, 
t h a t  h i s  r e s u l t s  approximated A. Lockschein's  r e s u l t s  rat ' . ier  c l o s e l y .  

The above concerns buckling wi th in  t h e  arch plane,  but  i n  a c t u a l i t y ,  prob- 
l e m  a l s o  a r i s e  i n  buckl ing i n  a v e r t i c a l  d i r e c t i o p ,  and t o r s i o n a l  buckl ing.  
However, research  i n  t h i s  a r e a  apparent ly  has not  progressed very far .  
shenko has provided one o r  two examples of s o l u t i o n s  f o r  elementary problems i n  
t h e  t o r s i o n a l  buckl ing o f  c i r c u l a r  a rches ,  bu t  they are not  very p r a c t i c a l  s'or 
t h e  design of br idges .  
s i o n a l  buckling with r e i n f o r c e d  concre te  arches as h i s  p r i n c i p a l  o b j e c t  of i n -  
v e s t i g a t i o n  (unpublished nanuscr ip t  1 9 4 9 ~ .  
g iv ing  a t h e o r e t i c a l  explanat ion of  t h e  fact tba t  t h e  e f f e c t i v e  span cf r e i n -  
forced concrete  arches is  l i m i t e d  t o ,  i n  p r a c t i c e ,  30 t o  10 times t h e  a c t u a l  
width.  

Timo- 

Okamoto Shunzo r e c e n t l y  has  taken up problems i n  t o r -  

He has provided i n t e r c s t i n g  research  

Next, we s h a l l  add f u r t h e r  explhnat ion on t h e  research  oli b r idges ,  bu t  
s i n c e  i t  is  u s e l e s s  t o  r e l y  s o l e l y  on t h e o r e t i c a l  equat ions a t  thc present  time, 
as f a r  as br idgc  engineer ing is  concerned with respect t o  t h e  buckl ing of s o l i d  
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web arches,  experimental research has extremely important meaning. 

3.2.2. BUCKLING OF SOLID WEB ARCHES DUE TO EOUALLY DISTRIBUTED LOADS 

E. Gaber' conducted experiments on four  types of arches having an e f f e c t i v e  
span of 180 cm and a parabol ic  c o n f i g i a t i o n :  
arches,  single-hinged arches and hingeless  arches,  ilsing steel p l a t e  f r o m  S t .  80 
(30 Using t h e  
l i n e  connecting the  support po in ts  on the  r i g h t  and lef t  o f  the  arches as a 
bas i s ,  he se lec ted  the  values 1/3,  1/5, 1/7, 1/9, 1/12 for t he  r a t i o  f / l  between 
the  height f of t he  center  point  of t he  arck and t h e  e f f e c t i v e  span 1, i . e . ,  t he  
rise r a t i o ,  snd f o r  arches having binges a t  t h e i r  crown3, he divided the  arches 
i n t o  9 equal coffers, and f o r  those having no hinge a t  the  crown, he divided 
them i n t o  8 equal coffers and applied a load t o  each co f fe r  point .  The def lec-  
t i o n  s t i f f n e s s  E 1  of t h e  members t e s t e d  w a s  26,000-35,600 kg.cm2. 

three-!iinged arches,  two-hinged 

4 = 120 mm2), and a Young's nodulus of  E = 2,072,500 kg/cm2. 

According t o  h i s  tests, t h e  configurat ion of the  buckling of  t h e  arches 
w a s  as shown i n  the figure f o r  three-hinged arches,  and he found t h a t  t he re  were 
th ree  types of  configuration. That is, i n  flat arches with a rise r a t i o  f / l  < 
1/5, l e f t - r i g h t  symmetrical buckling such as t h a t  shown i n  f igu re  3 . 2 . 1  occurred 
but  when f / l  > 1/5, assymmetrical buckling such as t h a t  shown i n  f igu re  3 . 2 . 2  
occurred, on one s i d e  t h e  bending was upwards, and on t h e  o the r  s i d e  downwards. 
In t h e  case of f / l  = 1/5, t he re  was a tendency f o r  these  th ree  types of  h c k l i n g  
t o  be manifested. 

shape 

i 

/ T = i 9 i n a 1  shape /339 

Figure 3.2.1 
l e f  t-r  i ght symmetrical buck1 i ng. 

Figure 3.2.2.  
Left-r ight  assymmetrical buckling. 

Assymmetrical buckling occurs i n  two-hinged arches i r r e spec t ive  of  the  f / l  
and t h i s  is l ikewise t r u e  w i t h  hingeless  arches.  

. In deriving t h e  c r i t i c a l  hor izonta l  reac t ion  Hk from the  tes t  values,  Gaber 
used the  following formula, f o r  example, f o r  the  hor izonta l  reac t ion  H of a two- 
hinged arch 

p r e  H i s  the  horizontal  reac t ion  i n  the  case where t h e  
a t  a d is tance  a from the  support po in t ,  and the  above formula i s  none o the r  than 
an approximatian formula t h a t  i s  normally used i n  the  designing of two-hinged 

concentrated load P i s  
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bridges of the  arch type. 
comes the  following formula 

In the  case of  seven concentrated loads,  t h i s  be- 

1 
f I?= 0.9669- P. 

The r e s u l t s  of ca lcu la t ing  t h e  cr i t ical  
horizontal  reac t ion  Hk o f  the  four  types of 
arches,  using t h i s  method, are shown i n  
Figure 3.2.3.  As can be seen f r o m  the  f i g -  
ure ,  t h e  c r i t i c a l  hor izonta l  reac t ion  Hk 
decreases as t h e  rise r a t i o  f / l  increases  
f o r  a l l  four  types of  arches.  
care is required for t h e  test on f la t  arches * 

such t h a t  f / l  = 1/12 and Gaber provides t h e  
t a b l e  (3.2.1) below f o r  t h e  numerical values 
o r  t h e  critical hor izonta l  reac t ion  i n  such 
a case 

Exceptional 

Figure 3.2.3 

TABLE 3.2.1 (GASER'S EXPERIMENTAL VALUES) 

I ! O I  ' I  * i 3 
Number of  

H i  nges 

The numerical values shown i n  Table 3.2.2 are obtained i f  one attempts t o  /340 - ca lcu la t e  t he  so-cal led converted buckling length L when a cri t ical  load is 
applied which is equivalent t o  the  above maximum horizontal  reac t ion ,  t o  a 
s t r a i g h t  pressure r e s i s t i n g  member having a def lec t ion  s t i . f fness  with the  same 
constant EI. 

TABLE 3.2.2 

Number of h i n g e s  I 0 I I 2 3 I axz I a43z I amz 1 ani z 

Comparhg Gaber's tes t  values with t h e  formulas of Engesser, Fr i t sche ,  and 
DIN 1075, as was mentioned i n  the  previous sec t ion ,  there  is a marked d i f f e r -  
ence between them and the  theo re t i ca l  equations,  ind ica t ing  t h a t  t he  ex i s t ing  
theo re t i ca l  equations are va l id  only within a spec ia l  range of rise r a t i o s .  

F r i t z  S tus s i  provides t h e  following equation f o r  the  c r i t i ca l  horizontal  
reac t ion  Hk of a parabol ic  arch [ 2 ] .  
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(3.2.1) 
EI 
P &=a-. 

Here, 1 is  the  arch e f f e c t i v e  span, I i s  the  moment o f  i n e r t i a  cf the - r ib  I 
(constant) ,  3 is  a constant with respect  t o  the  arch, and is  ca lcu la ted  theo- 
r e t i c a l l y  by S tus s i  (See f igure  3.2.11). 

By comparing the  previous equations and 
Euler ' s  equation f o r  a column with hinges a t  
both ends having the  same moment of i n e r t i a  
I ,  and f inding t h e  so-ca l led  converted buck- 

nl 

10 

& 60 
450 l i n g  length L, 

- &W 

L= ii=- (3.2.2) 

Moreover, S tus s i  gives t h e  following 
1: 10 

f o m i l a  f o r  t h e  proper v ib ra t ion  number ( c i r -  
cclar -:ibration number) p of  t he  arch. The 
cceC'r -:eat as i n  t he  numerical formula is 
as shGn i n  Figure 3.2.4. 

re 
0 

Figure 3.2.4 ,=+/? JZ'. (3.2.3) 
H k  

Stussi's calculated values 
1: effective span 
g: grav i ty  acce lera t ion  

EI :  def lec t ion  s t i f f n e s s  of  r i b s  
w: equal ly  d i s t r i b u t e d  load 
H: hor izonta l  reac t ion  due t o  w 

%: cr i t ical  horizontal  reac t ion  

The cr i t ical  horizontal  reac t ion  ob- 
ta ined  from Gaber's experiments i s  somewhat 
g r e a t e r  than the  theo re t i ca l  values obtained 
by S t U s s i ,  so Kollbrunner [3], [4] repeated 
tests on an arch having an e f f e c t i v e  span of 
60 an using steel  with a cross-sect ion of 
12  x 1 nun (cross-section area 0.12 cm2), 
E = 2,200,300 kg/cm2, and obtained the  re- 
s u l t s  shown i n  Figure 3.2.5. 

- 

Figure 3.2.5 

There are two types of arches here ,  two-hinged arches and hingeless  arches.  /341 - The rise r a t i o  f / l  has the  following four  types: .- 
-=0.10. f 0.20, 0.30, 0.40. 

: I  - -  
I t  a l so  became clear t h a t  t h e  proper v ib ra t ion  numbers agreed with S t t i s s i ' s  
t heo re t i ca l  values.  
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Tables 3.2.3 and 4 present in tabular form t5e coefficient in equation 
(3.2.1). 
tables. 

Lockschein's numerical values are also included for comparison in the 

TABLE 3.2.3. NUMERICAL VALUES OF u AND 3 (PARABOLIC TWO-HINGED 
ARCH W I T H  CONSTANT CROSS-SECTION - .  

f l 1  I 0.05 0.1 0.2 0.3 0.4 0.5 
~ 

(StiiSZ) I X.0 26.C 20.0 13.5 

( b u n )  35.6 28.4 19.4 13.7 9.6 

See Figure 3.2.6 
for s 

€It=a- &=,3.8. 
19 

The converted buckling length L indi- 
cated in equation 13.2.2) can be rewritten 

L=B.r (3.2.4) 

finding this coefficient data as a function 
of f/l, the numerical values shown in Table 
3.2.3 and 3.2.4 i n  two-stages are obtained. 

Figure 3.2.6 

Moreover, l/s for a parabolic arch is 

rf It 
F-( P l + S i ? ? h 2 l } ,  sidlt=-- =f 1 '  

Consequently, for 
f J l =  0.1, 0.2, 0.3, 0.4, 

8/1= 0.513, 0.549. 0.602, O.fj67. 

TABLE 3 .2 .4 .  NUMERICAL VALUES OF a AND 0 (PARABOLIC HINGELESS 
ARCH W I T H  CONSTANT CROSS-SECTION 

f i  l 1 0.05 0.1 0.2 0.3 0.4 

0 ( S t m i )  I - 76.0 63.0 48.0 35.0 

(Stii-4) ' - 0.70 0.72 0.75 0.80 ' DIS E 4114 j 0.70 - 0.75 0.83 0.85 

L=S 8 .  
ET_ HA=z- 11 , 
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a sect ion member such t h a t  one end i s  roo+cd, the  o ther  end i s  hinged, and the  
columrr length is  1 / 2  of the  t o t a l  a r c  length of t he  arch length s. That i s ,  as 
shown i n  Figure 3.2.8, one can clearly see ehat t he  condition of t he  buckling 
of the hingeless arch is qu i t e  similar t o  the  buckling condition of the  subs t i -  
tu ted  member. 

! 
P =ItlI, I 1.00 1.73 ' 2.74 j 4. IO 

Figure 3.2.8 

5.83 

where 

According t o  what has been shown i n  ex- 
periments, the  c r i t i c a l  value Pk of t he  sub- 
s t i t u t e d  member with the  length s shown i n  
the  f igure ,  with one end rooted and the  
o ther  end hinged, agrees well with the  com- 
pressive force a t  point  1 /4  of the  arch 
[ l i t e r a l  t r ans l a t ion ] .  Consequently, i n  
p rac t i ce ,  t he  c r i t i ca l  horizontal  reac t ion  
Hk i s  given by the  following equation i f  it 
is  assumed t h a t  JIu is  the  diagonal angle 
at  the  point 1/4 of the  arch. 

( 3 . 2 . 6 )  

I, is  the  moment of i n e r t i a  of the cross-section of t he  crown. p is  a coef- 
f i c i e n t  r e l a t ed  t o  change i n  t h e  moment of i n e r t i a .  
p = 1. 
equation ( 3 . 2 . 5 ) .  

When I is a constant value, 
Consequently, Busch gives the  following equation f o r  Hk corresponding t o  

( 3 . 2 . 7 )  

Busch obtains  the  values of u experimentally. As one example, taking the  
case i n  which the  thickness h of the  r ib  va r i e s  as a second order  parabcla,  
shown i n  Figure 3 . 2 . 9 .  

where 

),=A, ( l + < m - l > ~ ) .  d I ( 3 . 2 . 8 )  

The value of u i n  t h i s  case i s  as shown i n  Table 3 . 2 . 6 .  

TABLE 3 .2 .6 .  I N  T;iE CASE WHEN THE R I B  THICKNESS V A R I E S  I N  THE FORM 
OF A SECOND-ORDER PARABOLA. (BUSCH) 



Taking the case in which the i of the 
rib cross-section varies in :he form o f  a 
third-order parabola 

T 
n k  

I. YP 1. a? l ( 3 . 2 . 9 )  
#=I ,  [I+( SX-7-n  I T + (  6 - 8 ~ + 2 n t F ] -  

I.=I* 
It 
I' 

n n=- 1 
i 

xhere 
1+16 ( J / l ) '  n 1 

the state of this variation is close to / 344 

? 
.Tp 1 4 

k Strassner's hypothesis* that the 1/1 cos + s.I 
used in the arch solution method varies 

Figure  3 .2 .9  linearly. 

The values of lJ in this case are indicated in Table 3.2.7. Figure 3.2.10 
illustrates the relationships in Table 3 . 2 . 7  three-dimensionally. 

TABLE 3 .2 .7 .  v IN THE CASE WHEN THE I OF THE CROSS-SECTION OF THE F.IB 
VARIES IN THE FORM OF A THIRD-ORDER PARABOLA (BUSCH) 

TABLE 3 . 2 . 6  CASE WHEN CROSS- 
SECTION V A R I E S  AS SECOND-ORDER 
PARABOLA 

m 

Figure  3.2.10. p in case when I v a r i e s  in the forv o f  a th i rd-order  parabola 

XStrassner, "Necere ?.!.lethoden zur Statik der Rahmentragwerke und der elastichen 
- (Busch) - 

BogentrBger," Bd. 2 (1927), p .  44. 
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3.2 .3 .  BUCKLING OF S O L I D  WEB ARCH DUE TO ASYMMFTPICALLY DISTRIBIITFD 
LGAI). 

The descr ip t ion  given above i s  f o r  t he  c r i t i c a l  horizontal  reactior! i n  the 
case when an equally d i s t r iku ted  load i s  applied throughout t he  span of an arch. 
However, what i s  pa r t i cu la r ly  necessary i n  
case i n  which an asymmetrical load i s  applied,  as shown i n  Figure 3.2.11. 
Deutsch [6] conducted experiments on an arch with a cross-sect ion 30 x 4 mm, 
e f f ec t ive  span 180 cm, r i s e  r a t i o  f / l  = 1/9,  1/7.5,  1/6,  1/4.5. He has made 
a valuable contr ibut ion t o  t h i s  f i e l d  with h i s  experiments. 

designing an arch br idge is  the  

The configurations of  the  cross-  7 
V + P  
f. sec t ions  used i n  the  t e s t ,  as shown i n  

Figure 3.2.12, include 3 hingeless  arches 
and 4 two-hinged arches.  
ca l l ed  t o  the f a c t  t h a t  it i s  reported t h a t  
i n  specimens no. 7 and 13, having a maximum 
cross-sect ion i n  t h e  v i c i n i t y  of 1 / 4 ,  the  
deformation a t  point  1 / 4  i s  la rge .  

Attention i s  

t igu re  3.2.11 

Specimen N o s .  

f/l v9, b'6 

Specimen No. 7 
r ,  1 

b- t -4 
pecimen Nos. 8,9 e'-- 0 -  - 

.i 1 
-~ 

i /L a 1/9. r/, 
Specimen Nos. 10, 1 1  

f 
f& v9, b'6 

Specimen No. 12 

Figure 3.2.12. Types  o f  arch model specimens (Deutsch). 

As mentioned i n  the  previous sec t ion ,  using Hk as the  c r i t i c a l  horizontal  
react ion due t o  the  equally d i s t r ibu ted  load w ,  and denoting the  c r i t i c a l  
horizontal  reac t ion  due t o  anasymmetrical Load as shown i n  Figure 3.2.13 as 
Hkr we express t h i s  r a t i o  by 0 i n  the  following equation 

E&,=@ * Kr. (3.2.10) #=-- Hk- Of 
at 
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Figure 3 . 2 . 1 3  Figure 3.2.14. q, o f  hingeless arch w h e n  
I = constant.  

Generally, as ide from hingeless  arches and two-hinged arches,  there  i s  
p r a c t i c a l l y  no e f f e c t  on 41 by the r a t e  of  va r i a t ion  of I o r  t he  d i f fe rences  i n  
f / l ,  and as shown i n  Figure 3.2.15, when throughout t he  experiment p/w + 0 3 ,  it 
i s  seen t h a t  Q = 0.5. 

Figure 3 . 2 . 1 5 .  Average values o f  4 .  

Consequently, i f  one ignores the  f i n e  poin ts ,  it i s  poss ib le ,  by means of 
equation (3.2.10) conveniently t o  handle the  .rciblem of  the  buck-ing of an arch * 

with respect t o  an asymmetrical, load i n  terms of  the  problem o f  the  buckling of 
an arch due t o  an equal ly  d i s t r ibu ted  load. 

Deutsch processed h i s  experimental values and gave the  values of 4 as func- 
t ions  of f / l  and p/w. These a re  shown i n  Figures 3.2.16 and 3.2.17. 
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ha 

F i g u r e  3 . 2 . 1 6 .  $I i n  t h e  case o f  a h i n g e l e s s  a r c h  ( I  = a r b i t r a r y )  
(Deutsch) 

F i g u r e  3 . 2 , 1 7 .  4 for a two-hinged arch  ( I  = a r b i t r a r y )  

In essence, the critical horizontal reaction Hkr or an arch due to an 
load is given by the following equation in practice. asymmetrical 

40 7 



(3.2.11) /34? 

3: rate of attenuation due to asymmetrical load, 
B: total arc length of arch, 

I,: moment of inertia of crown cross-section, 
u: coefficient related to the change in configuration of 

the cross-section, 
’lu- diagonal angle at point 1/4 of arch. 

When the load is equally distributed throughout the arch span, if I$ = 1.0 
p has already been discussed in and I is constant throughout the span, u = 1. 

the previous section (Tables 3.2.6 and 7). Deutsch gives the following in 
Figures 3.2.19, 20, 21 and 22. 

1. e =-- 
I ,  

Fiyure 3.2.19. p for 
hingeless arch. 

Figure 3.2.18 

n-4 - 
4 

Figure 3.2.20. p for hingeless arch. 
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Figure  3.2.21 F igure  3.2.22 



NOTAT I ON 

1: 

f: 
9 :  

S :  

I :  

H: 
W: 

Arch effective span 
Half Qf arch arc length 
rise 
Angle o f  inclination of arch 
axis 
Angle o f  inclination at point 
1/4 of arch 
Geometric moment of inertia of 
rib cross-sect ion 
I at crown 
I at rising point 
I at point 1/4 of arch 
Cross-section area at r i b  
cross-section 
Hor i zon ta 1 react i on 
Equally distributed load over 
enti re span (normally correspond- 
ing to dead load)+ertical 
d i recti on 

p: Equally distributed load applied 
to half of span (normally indi- 
cates live load)+ertical 
direction 

L: Free buckling length 
q: Equally distributed load in 

center direction of circular 
arch 

rg: Radius of circular arch 
K: Rise point 
V: Point 1/4 
S: Crown 
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PARABOL I C ARCHES 
Equally Distributed Load in Vertical Direction 

No. Dia. & Bound. Cond I Ref. -Rema;ks 
Iarabolic 3-hinged 
,rch - 

i 1 . I  

Constant 
cross-section 

Parabolic 2-hinged ....- C - 
,dl 

a- 
.-H. K -. 

I.---# S+ 

bu.ckl-i ng 1 eng th 
Constant cross-sec 
Parabolic hingeles 

- L: converted 

-. - -. - 
rch 
I = constani I 

+'4  

c L-0.O-i 
-0 0- 

ons tan t 
zross-sect ion 
'arabol ic 3-hinged 
lrch 

I = I .  
eoscp 

Variable 
cross -sect i on 

Formu!a_s or Tables of Results 

L-B-8. 
where L is Converted buck1 ing 

1 eng t h' 

I f  
1 I I  t i l  '0.05 0.1 0.167 0.2 0.25:0.30~9.33;0.~ 

Gber - 11.05 1 - 1 1  - 11.171 - il.ISi - 

(NOTE) Symmetrical load when 
f/lc0.295, anti-symmetrical 
load when f/1>0.295 

S t k i  I 
Ioelishein( 

136.01 28.0 I 20.0 1 13.5 f 
135.6 128.4 j 19.4 1 13.7 1 9.6 

I Stiissi I - I 1.021 I.& 1.171 1% - 

3n 

f/Z 1 0.05 1 0.1 0.2 I 0.3 f 0.4 

I - 1 76:) ; 63.0 I 48.0 i 35.0 

S t e  1 - ', 0.iO 1 0.72 1 0.75 1 0.89 

",::I 0.70 1 - I 0.75 I 0.80 0.85 

-I- 

a 1 ---.__ 

----- 

I I 

I I 

l ~ ~ ~ j l ~ ~ l  I 29.403 1 27.728 (25.332)(22.596) 
' - - q  

I I . I  Anti-symmet- 
rical buc~ing(37 . :  ?0)(3!.582) 25.112 1 19.432. 

- 
I 
4 

2 
4 

2 
4 

- 
7 

Based on 
Dischinger 

/350 
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L- 

No 

5 

- 

9 

- 
10 

Formulas o r  Tables o f  Results Ref,-Remarks /351 - lis. & Sound. Cond. 
'arabolic 2-hinged arch - 

I# I = -  
- COJV 

fariable cross-section 
~ ~~~~~ 

'arabolic hingeless arch 

Variable cross- section 
'arablic 2-hinged arch 

I8 I - - - -  
CoJ'V 

, * I  I . .  

+'+ 
rariable cross-section 

'arabolic hingeless arch 

- F-b 
- 1 -  

'ariable cross-section 
Parabolic arch, End- 
conditions arbitrary . 

n - 
(P 1 

-. - -- %-- -J c-- f T.( 

Jariable cross-section 

Iarabol i c 3-hi nged 
, t i  ffened arch 

r - 3  

EI.  
F &-a- -. 

f / l  I 0.1 1 0.2 I 0.3 1 0.4 1 0.5 

a I 37.2 I 31.6 1 25.1 I 19.4 I 15.0 
I 

l 8  

fll 1 0.1 ' I 0.2 1 0.3 1 0.4 j 0.5 

a I 78.2 1 71.0 1 61.3 - 1  51.1 I 41.9 

l 8  
I 

I 0.1 I 0.2 1 0.3 I 0.4 j 0.5 

I 38.4 1 37.4 1 33.8 1 31.6 I 29.4 

112 1 0.1 1 0.2 1 0.3 1 0.4 1 0.5 

a I 82.2 I 85.6 1 89.4 I 92.7 1 95.5 
I I I 

1 determination is made of the moment of inertia' 
i of the constant cross-section giving, under the 

same support conditions for thesameload a de- 
flec ' n wh ich is eqactl the Sam as t e e ectim 
right halfofthe archis converted to a straidit 
axis and both ends are supported. Next, t Re crit- 
ical horizontal reac o oft  e ori arch havl a constant 1. is rega$J as tke criR%orizontaPg 
reaction of the onginal arch for convenience sake. 

o?&e center point oJcunngw R en t k P f l  e e t c)r 

E.rr+Ef 
3 & 7.437 

L- 1.152 xu. 

where L i s  f ree  buckl ing length 

8 

8 

4 

DLYE4114 

7 



lis. 5 Bound. Cond. Formulas or Tables o f  Resul ts 
arabol i c  2-hinged 
t i f f e n e d  arch 
langor t r u s s )  

4 d E I  Et=9.87 . 
L= I .ooxu. 

'Jhere L i s  f r e e  buck l i ng  l eng th  

I -. 
arabol  i c  h ingeless 
r c h  

Cons tan  t 
cross-sect ion 

Parabolic hingeless arch, 
gariable TOSS- ection ,varymg EneaSy). 

Hk= Pi COS p, 

'k: ax i  a1 pressure 
a t  p o i n t  1/4 

V a r i a t i o n  i n  c ross -sec t i on  

I: n=- 
I' * 

A x i a l  pressure Pk a t  p o i n t  1 / 4  

COSVe. 

and 

7 

5 

J 
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no. 

I4 

2 

4 

5 

8 

- 
15 

1.32 1.31 

1.64 I 1.64 

1.84, I 1.84 

1.99 I 1.99 

I 

Graph d Boundary Cond. Formula or Table o f  Results Ref. '/353 

Parabolic hingeless arch 1 Variable cross-section 

vt+ 
It is,given that the rib hejghi 
varies parabolically as 
Shawn below. 

Parabolic hingeless arch, 
variabl, cross-section - ! b - T  

i d  

It 
I .  

n =  -- 
In the above equation an 
a proxiniationis madeon 
tfe basis of the assumption 
that I s h .  eos 9 will vary 
linearly. 

1.0 1.2 1 1.4 ' 1.6 i 1.8 n s  ' m ~ 

ht I 

It . 1 I- 
I .  , I I 

18= - - 1-00 1.73 I 2.74 4.10 j 5.83 

P I 1-00 1 1.19 1 1.39 1 1.60 ' 1.83 
! I 

'he M in the case when the I of the rib cross-section 
a r i a  parabolically (illeg.) is shown i n  the table below 

.I 
I 

I 
, 1/i2 1/10 

n=It/I.  
/ I l  

1/8 1 1/6 

0.98 I 0.93 

'1.31 ! 1.31 
I 

I 

1.64 ; 1.64 

2.00 ; 2.00 

1.84 j 1.84 

0.96 

1.31 

1.66 

1.87 

2.03 

1 I3 

0.95 

1.31 

1.68 

1.m 
2.07 

- 

- 

414 



No. D;a. & Bound. Cond 
~~ ~- 

16 

- 
17 

- 

arabolic 2-hinged arch, 
s rn etr' eq all 
JtnEtedEoaX Y 

Var i ab 1 e 
cross-sect i on  

t 1, t, 
1 

f I 

Formulas o r  Tables o f  Resul ts 

Et.=6 - H b .  
Z E I I  He --JI - C O ~  v.. 

1--0 
#=a+- &- - 

where ~ = o . ~ o - I . + + c ~ / z ) .  
O S m g t  b=3.0-1.6mI 
l ~ r n ~ 5  b=1.5-0.1m, 
5 S m g 0 ?  9 bS1.0.  
m=(Plw)r .  

Ref .-Remarks 1354 - -- 
6 

The c o e f f i c i e n t  u 
.efers t o  change 30 

i n  cross-sect ion 
and i n  the  case 26 

)f a constant 
:ross-sect ion,  
1 = 1. 
I becomes a maxi -- P 

num a t  p o i n t  1/4 
)f the span, and co 
:he p i n  the case ' 
If l i n e a r  v a r i a -  45 

t i o n  i s  as shown . 

i n  the graph on 
the r i g h t .  

~ becomes max- 
imum a t  the 
:rown, and the  
I i n  t he  case fa' 
)f l i n e a r  var-  pa/  
i a t i o n  i s  as 
ihown i n  the 12 
j raph on the 

t 2o 

8 t Z J 4  

F-$ - 
Lo 

- i g h t .  0 
n-2L - 

I. 



Ref. -Remarks /355 - 
6 

m=&lu)t  -- 1.0 1 2.0 I 3.0 i 4.0 I 5.0 
0 57% ‘ I  0.568; 0.566 

Case i n  which I var ies  as a 
second-order parabola 

‘25 

010 u t4  rc 18 

Where 11 i s  a c o e f f i c i e n t  
.he - 

Case i n  which I var ies  as a 
th i rd-order parabola 

4-4 -c 
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/ 3 5 6  - SINE CURVE, FLAT ARCHES (NOT OF MUCH PRACTICAL VALUE) 

44.46 I 
H,, when .r/t=o. 16 1' 1 + o . o m . r )  

when f p o .  21 

1+fl.O264.r) 81. Y2 

67.80 

whichtbeu D e  c ordmem r In a posi t iotm5 ctrection a% 
is free with respect to torsion. 

when f p o .  16 

I EZ 67.92 
f s tab l  i shed when f / t=o .24  H c v = - f (  1+0.033.r ) 

:1 a t  2-h i nged The critical values in  the case when the 
l r ch ,  concent ra ted  archbecomesunstableand bucklesma downward direction are obtained by the 

d e f  o rma t i on 

i oad 

& -... -...- I - .  

+'+ 
4: Cross-sec t ion  

a rea  

1, Geometric momcut of inertia around vertical axis 

' l a t  2-hinged a r c h  

folhwing equation. 

u- 1 + JW. 
Here 

SI P P I  
Af'  < I .  u=-- 48EI j '  mm- 

7 - The critj cal values in  the case when the arch 
becomes unstableand buckles in  a downward 
direction are obtained by the following equatic ~ 

-[- 

A: c r o s s - s e c t i o n  
a rea  

Here 
5 wl. 1 

384 E I  3 '  (1. up--- 4 1  
m m- 

Af' 

22 I F l a t  2-hinged a rch  

#EI n'P #j" E, p [ I + T + T J -  

where ': r a d i u s  c f  g y r a t i o n  
&. 

t 4  - 

TORS I ONAL BUCKLING OF LANGER TRUSS (SUPPLEMENT) .. 

23 

Ref. -Remarks 

9 

1. 0 

10 

I I 
Case in which the upperchord member 1 I. has only a fixed position. I 17 
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No. Dia. E, Bound. Cond. 
- 2 4  1 C i r c u l a r  2-hinged 

0' 4.67 5.41 
30' 4.54 5.20 
60' 4.16 4.82 
90' 3.53 4.08 

I arch 

6.68 7.80 
6.48 7.58 
5.94 6.94 
5.02 5.86 

- 
25 

26 

27 

Cons tan  t 
cross - sec t i on 

; i r c u l  a r  h i ngel ess 
B rch v 
;onstant cross-section 

~ 

i r c u l a r  2-hinged 
rch 

u a  

Variable cross-section 

C i r c u l a r  3-hinge( 

I arch . /- 

,Constant cross-section 

Formulas o r  Tables o f  Results 

lhere k i s  g iven by the f o l l o w i n g  
quation 

L tanr .cot krr= 1 .  

t i  Tp 1 93. , 120' 1 150' I 183' 
I 

m ETo 
q k ' 7  7 

Values o f  m 

NOTE) ;he iigmerica$valuT'of a 0 ertain to straie t mem erwit variable cgss-section 
and the bucklin configuration has a point 
of inflection in  &e center. - 

The f r e e  buck l i ng  l eng th  L i s  g iven 
by thr. Fol lowing formula i r r e s p e c t -  
i v e  o f  f / l .  

3ef. -Remarks 1357 - 
I 

I 

b 

I2 
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8 :  t o r s i o n  s t i f f nes ;  o f  a rch  
e- EI,*sina E'A r' / ( l + % O S  2 2 .--lsin2.). 4 

/-q- Val ues o f  0 ,  0cos2 c1 u n i  t Ef-irl 

I a* 1 1 5 1  161 1 8 1  2 0 1  2 2 1  25 

BcosC 1 149251 1141.4 698.071 447.36: 297.60; 170.70 
-. -- -- 

a* 1301 3 5 1  401 4 5 1  5 0 1  63 

8 I 100.41/ 54.3161 31.9151 19.9761 13.144 6.3735 

Bcos" I 75.304 36.4471 18.728; 9.9874j 5.4299; 1.5931 

I 

Buck1 i n g  i n s i d e  p lane  
o f  c i r c l e  c1) Case inwhich thedirectionof extern 

not. change even after deformation. 

I4 

- 
M. Le\-y 
equa t ion  

I =  
pressure does 

Y 

EI  
rea 

4a -4-. 

c23 Case in which the external ressure is toward the 
center of the circle even a i e r  deformation. 

EI 
r.' 

qt=4.5---.  

I 
c3] Case in which the external ressure after defor- 

mation acts a t  right angLestb the center axisof 
the circle. 

I 
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brsional buck1 ing 
If  c i r c u l a r  arch 

Simple support 

19 
CI] Case in which the direction of load qdoes not change 

d u r x p k p g  aod para tot e tigmaY8iiectlon. laterally in a direction 

B (#-a')' 
oue-r , .  

I f  a i s  small and oro = 1 
r.B o l r . - ~ .  [Euler's equat ion1 

where 
B : Bendingstiffness towardoutsideof the plane 

C :  Torsional stiffness 

(2) Case towar 9 t l h i ch  e centeroKieongma9 the d' ctiop of 1 ad curvature. 4 is always 
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No. 

33 

- 

- 

8 I O . W ) r l  o-mR1 I 1.063r 

60.1 I 12.6 11.851 1.54 

)ia.- E. Bound. Cond 

'ors ional  buckl i ng 
If c i r c u l a r  arch 

1 . 1 0 ~ 1 . 2 4 ~ 1 . ~ ~  2 X  

1 . 4 0 ~ 1 . 0 0 ~ 0 . 6 9 ~ 0 . 5 0  
Both ends f i x e d  

U n i t I r n I  m I m l m l m  m a /  m a l  1 i t / m  

Formulas or Tables of Resul ts Ref.-Remarks /360 - 

ross-sect on 3-46 Game asabove, tor- 

strength at crown 
8m~a0 CS : sioii stiffness 

we : Wlckliiig limit load 

I 1  
I I  
I I  

23.09 46.19 3.5 1.6 5.71 3.41 3.350.265 30.7 80 
100 28.87 57.74 3.5 2.C 7.15 6.CO 2.383.312 23.2 
I 2 0  34.641 69.28\ 3.5 2.4 8.57 9.28 1.853.315 18.3 

_c 

D I sTR I BUTED LOADS 

No.'Bound. & Dia.  Cond Formulas or Tables o f  Resul ts Ref .-Remarks 

. _---- 

Tors ional  buckl ing  
o f  c i r c u l a r  arch 

(Not hinged) 

34 

mmrrrrrD 

Variation in 
cross- sectlo 

I =  f. 

Variagonp dlstri ute load . 

I -0.3-- einb-' 

.i.+ 
E 

a=--se90. 
t 

21.28 3.5'0.8' 2. 0.511 ll.180.0336 19.9 
31.91 3.1 1 1  4 . 1  1.57 1 5.46/.057j 15.0 

8r1400 35.01 53.21 3.5 2.0 7.15 6.11 2.383.092 8-8 
42.01 63.85 3.5, 2.4 8.5; 9.28 1.8 4 6.8 I lj 80 28.01 42.57 3.5 I. 5.71 3.41 3.35 . o m  11.5 

L 
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P A W  4 PLATES /363 - 
CHAPTER 1 

H I STORY OF DEVELOPMENTS 

I t  is  a well .<F.OWII fact t h a t  \:hen a t h i n  f l a t  p l a t e  sus t a ins  a compressive 
force,  shear  forc:, o r  stresses which are a combination of these,  ac t ing  within 
i t s  plane,  t he  phenor tnon o f  buckling occurs, l a t e r a l  def lec t ion  arises and the  
p l a t e  i s  danaged. In s t ruc tu res  cons is t ing  o f  f l a t  p l a t e s  and o t h e r  p a r t s ,  such 
as a i rp lanes ,  s ' i iys  arid bridges,  i n  those which were constructed of a l i g h t  
s t r u c t u r e  i n  order  t o  *educe weight, t h e  problem of  the  buckling of  f l a t  p l a t e s  
i s  one of  t he  major f ac to r s  i n  the  design of  these  s t ruc tu res ,  and has been 
inves t iga ted  extensively.  

G.  H. aryan (1892)[10] was t h e  first t o  t h e o r e t i c a l l y  def ine  t h e  occurrence 
of buckling when a x c t a n g u l a r  f la t  p l a t e  receivos a compressive load. He cal- 
culated buckling l i m i t  values f o r  t he  case of Terrpheral ly  r o t a t i n g  ends, and 
discussed t h e  p o s s i b i l i t y  of t h e  occurrence of such buckling i n  the  ou te r  p l a t -  
ing of ships .  Howevdr, a t  t h a t  time, i n  the  shipbui lding world, t h e  concept of 
e f f ec t ive  width was being discussed vaguely due t o  t h e  fact t h a t  i n  t h i n  p l a t e  
s t ruc tu res  the  compressivz s t i f f n e s s  decreases,  as was found i n  r e s u l t s  of t he  
tests of the  Destroyer Wolr' bgt t h i s  was not  t r ea t ed  as a problem re l a t ed  t o  
buckling. Later, cs lcu la t ions  were made of t h e  buckling l i r r , i t  values by S .  
Timoshenko [ll], Nizawa [12], G. I .  Taylor [23] and o thers  on the  bas i s  of 
various boundary conditions such as f ixed  boundaries. 
rence of  buckling on the  decks o f  destroyers ,  tankers  and o the r  sh ips  became 
not iced,  t he  problem of  buckling due t o  compressive forces  received wider a t t en -  
t ion .  

Moreover, as the  occur- 

G. Schnadel [lo81 was t h e  first t o  theo re t i ca l ly  discuss  t h e  phenomenon i n  
which the  compressive s t i f f n e s s  decreases af ter  the  f l a t  p l a t e  receives  a com- 
press ive  force  and buckles. He found t h a t  when the  buckling l i m i t  i s  exceeded, 
and a compressive load i s  applied,  the  compressive forces  increase only on t h e  
end p a r t s ,  the  compressive force  does not increase very much i n  t h e  center  p a r t  
of the  plate ,  and as a r e s u l t ,  t h e  e f f ec t ive  s t i f f n e s s  decreases.  As f o r  t h i s  
problem, research became g rea t ly  accelerated a f te r  s t r e s sed  ou te r  sk in  struc- 
tu re s  became applied t o  a i rcraf t ,  and compressive force  was applied a l s o  t o  
ou ter  sk ins ,  and through the  t e s t s  of L. Schwnan and G .  Back [32], t h e  theore t -  
i c a l  s tud ies  of Th. v. Kgmh and h i s  colleagues [109J, H .  L. Cox [15] and 
K. blarguerre [112],  ?he amount of theoze t ica l  research was increased g rea t ly  on 
problems of the  e f f ec t ive  width which expresses the  decrease i n  e f f e c t i v e  
s t i f f n e s s  a f t e r  buckling and on the  n a i m u m  loads t h a t  a p l a t e  can withstand 
when it sus ta ins  comprwsion. 

The problem of  bucklir,g due t o  t h e  shear  of a rectangular  f l a t  p l a t e  is 
extremely important i n  a i r c r a f t  construction. H .  Wagner indicated t h a t  buckling 
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occiirs i n  the  s t r e s sed  sk in  of t he  aircraft  due t o  t h e  shear  stresses which i t  
sus t a ins ,  and the ca lcu la t ions  of t h e  c r i t i c a l  buckling point  was ca r r i ed  out 
by S. Timoshenko [36;, R. V. Southwell and S. W. Skan [37]. In a i r c r a f t  s t ruc -  
t u re s ,  there  are cases i n  which t h e  outer  skin must be very t h i n  due t o  the  need 
t o  reduce weight, and the  buckling c r i t i c a l  stress is  lower than the  stress 
used. The conditions under which t h e  outer  sk in  t h a t  i s  surrounded by longerons 
and frames assumes stresses when a load is  applied exceeding such a buckling 
l i m i t  stress, have been discussed by H. Wagner [130] i n  terms of the  theory of 
a tension f i e l d ,  and A. Kromm and K.  Marguerre [133] and o thers  have extended 
the  research even fu r the r .  

E. C la rk  showed t h a t  even i n  bridge g i rde r s  sus ta in ing  pr imari ly  a bending 
load, when the thickness of t he  web near the  neut ra l  ax i s  i s  reduced i n  order  
to rZJ'ire weight, t he  p l a t e  t h a t  i s  performed by the  webs buckles due t o  the  
bending stresses and fails .  This was f u r t h e r  confirmed by M. Houboutte, F. E .  /364 
Tu-eau. Turneau, W. E. L i l l y  and o thers  calculated t h e  c r i t i ca l  buckling 
poin t  by considering t h a t  t h i s  type of buckling was due t o  the  ac t ion  of a 
p r inc ipa l  compressive force  a r i s i n g  i n  a d i r ec t ion  inc l ined  45O t o  t he  beam 
axis  due t o  the  shear  stresses t h a t  are present  i n  t h e  beam. 
shenko [57] found t h e  cr i t ical  buckling values f o r  rectangular  p l a t e s  t h a t  
simultaneously undergo bending and shearing, and L i l l y ' s  method showed t h a t  
such buckling was excessive with respect  t o  sa fe ty .  
S. Timoshenko [57] and o thers  determined the  c r i t i c a l  values f o r  t he  case i n  
which shear and compression are simultaneously sustained,  and f o r  t he  case i n  
which bending and shear  are sustained.  
E. Chwalla 1671 and o thers  have inves t iga ted  problems of t h e  forms of strzlctures 
having def lec t ion  r e s i s t a n t  members a t tached a t  r i g h t  angles t o  beam axes. 
beams sus ta in ing  bending, lateral buckling a l s o  occurs,  bu t  t h i s  problem is  not 
t r ea t ed  here. 
times used i n  sh ips  and a i rp lanes .  In  these  s t ruc tu res ,  molded members are ar- 
ranged with respect  t o  the  rectangular  p l a t e s  sus ta in ing  compression, e i t h e r  i n  
the  d i rec t ion  of compression (ca l led  longerons, longi tudinal  an t i -def lec t ion  
members, or longi tudinal  re inforcers )  i n  a d i r ec t ion  at r i g h t  angles t o  it. 
Lateral an t i -def lec t ion  member), o r  n t  f ixed  i n t e r v a l s  i n  both d i r ec t ions .  
longi tudinal  an t i -def lec t ion  members sus t a in  the  compressive forces  and a t  the  
same time r e s t r i c t  t h e  buckling wave form t h a t  occurs. 
t i on  members, by r e s t r i c t i n g  t h e  buckling wals form, a r e  a l s o  used t o  increase 
the  c r i t i ca l  buckling values. 
which such an t i -def lec t ion  s t ruc tu res  sus t a in  compressive loads,  and S.' Timoshen- 
ko [36], A. J. Miles [146], and R. Barb& [147] a d  others  have inves t iga ted  the  
forms i n  which def lec t ion  buckling occurs i n  the  an t i -def lec t ion  members and 
f l a t  p l a t e s  simultaneously. Yamana [16] and o thers ,  i n  inves t iga t ing  t h i s  type 
of buckling, attempted t o  t rea t  such an t i -def lec t ion  s t ruc tu res  as or thot ropic  
p l a t e s .  
than the  p l a t e ,  as t h e  compressive load increases ,  buckling first occurs only 
i n  the  f l a t  p l a t e s  between the  an t i -def lec t ion  members, then the  l a t t e r  are 
also buckled and a maximum load f o r  t he  an t i -def lec t ion  s t r u c t u r e  i s  reached. 
In  t h i s  case, a f t e r  the buckling of t he  f l a t  p l a t e s ,  t he  phenomenon of  e f f e c t i v e  
width i s  manifested i n  the  f l a t  p l a t e s ,  and only t h e  por t ions  adjacent t o  the  
an t i -def lec t ion  members sus t a in  a load, working together  with the  an t i -def lec t ion  

- 

Later S. Timo- 

Moreover, H. Wagner [65], 

H. Wagner [65], S. Timoshenko [57], 

In  

Types of s t ruc tu res  with t h i n  an t i -def lec t ion  p l a t e s  are some- 

Such 

The la te ra l  ant i -def lec-  

Various forms of buckling e x i s t  i n  t he  case i n  

When the s t i f f n e s s  of the  lateral  a n t i  J e f l ec t ion  member i s  g rea t e r  

424 



members. Various forms of buckling of an t i -def lec t ion  members occur depending 
upon the  cross-section configurat ion,  length,  and o the r  f ac to r s .  These include 
the Euler buckling of an t i -def lec t ion  members, bending and to r s jona l  buckling, 
loca l  buckling of f langes and o thers .  The f a c t  t h a t  as ide  from the  occurrence 
of these types of buckling, cases i n  which a maximum load is  reached otherwise, 
a r e  determined by the  buckling of p l a t e s  between r i v e t s  t o  which an t i -def lec t ion  
members are f ixed  (buckling between r i v e t s )  and by the reaching of a m a x i m u m  
load i n  the  p l a t e s  alone, has been discussed by many inves t iga tors  with respect  
t o  aircraft, including E. E .  Sechler [119], E. E.  Lundquist [166], H. L. Cox 
[172] and others .  
longi tudinal  r i b  s t ruc tu res  can withstand. S .  Timoshenko [143], R. Barbre [147] 
and others  have s tudied  the  required s t i f f n e s s  i n  problems of la teral  a n t i -  
def lec t ion  members. 

Yoshiki [34] has s tudied the  maximum loads which ships, with 

S. Timoshenko [l],  H. Wagner [130] and o thers  have discussed the  fact t h a t  
problems of an t i -def lec t ion  t h i n  p l a t e  s t ruc tu res  sus ta in ing  shear ing loads are 
of major importance t o  a i r c r a f t  s t ruc tu res .  
first buckles,conditions af ter  the  buckling of t h e p l a t e  are t r e a t e d  as t h e  prob- 
l e m  of the t e n s i m  f i e l d  mentioned above, and when the  i n t e r v a l  between the  
an t i -def lec t ion  members i s  r e l a t i v e l y  narrow, t h i s  may be t r ea t ed  as t h e  buck- 
l i n g  of or thot ropic  p l a t e s .  With regard t o  wooden aircraft s t x c t u r e s ,  meat- 
ment as  i so t rop ic  p l a t e s  becomes an important problem with regard t o  the  prop- 
erties of t he  wood itself and i n  connection with t h e  use of plywood. Problems 
of i so t rop ic  p l a t e s  are s imi l a r ly  appl icable  t o  corrugated s t ruc tu res .  

In s t ruc tu res  such t h a t  the  p l a t e  

In problems of t he  buckling of hollow four-angled columns, angle members, 
o the r  open-type cross-sect ion columns, i .e.,  so-cal led f l a t  p l a t e  s t ruc tu res ,  
cons is t ing  of t h in  p l a t e s ,  it is poss ib le  t o  treat  the  loca l  buckling on the  
basis of the  buckling of  f l a t  p l a t e s .  
others  discussed the52 problems. 

S.  Timoshenko [20], Kuranishi [184] ana 
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CHAPTER 2 / 365 - 
THE BUCKLING OF FLAT PLATES 

4.2.1. CALCULATION OF THE CRITICAL BUCKLING POINT OF FLAT PLATES 

G.  H. Bryan [ lo ]  was t h e  first t o  determine the  c r i t i ca l  buckling point  of 
a f l a t  p l a t e ,  f o r  the  case of 3 rectangular  p l a t e  with circumferent ia l ly  r o t a t -  
ing ends sus ta in ing  compressive loads. 
equations f o r  i n f in i t e s ima l  displacement, and is a method of d i r e c t  so lu t ion  
(ca l led  the s ta t ic  method) f o r  determining t h e  c r i t i c a l  values from the  condi- 
t i ons  giving a deformation which i s  not 0, and i n  which the  required boundary 
conditions are f u l f i l l e d .  In addi t ion,  t he re  i s  Kizawa's [123 v ibra t ion  method 
f o r  determining t h e  c r i t i ca l  values  from t h e  condition i n  which t h e  v ibra t ion  
number is  0, considering in f in i t e s ima l  de f l ec t ion  v ibra t ion ,  and Timoshenko's 
method (111, ca l l ed  the  energy method, which u t i l i z e s  t h e  fact t h a t  i n  t h e  s ta te  
of equilibrium, the  po ten t i a l  energy does not change with respect t o  a hypothet- 
ical  displacement. 
method can be used, which are sometimes used as a method of the  approximate 
so lu t ion  of eigen values. Attempts have a l s o  been made t o  achieve an approx- 
imate so lu t ion  by using d i f fe rence  equations.  
phenoniena t o  be present ,  i t  is necessary f o r  t he re  t o  be at  least  more than two 
states o f  equilibrium under an i d e n t i c a l  external  force  state, and iden t i ca l  
boundary conditions.  
theory cannot be used t o  descr ibe t h i s  adequately, it nevertheless  may be used, 
as long as one is determining c r i t i c a l  buckling poin ts ,  and furthermore, as 
long as one i s  confining one's self t o  f la t  p l a t e s .* l  

Bryan's method proceeds from equilibrium 

In addi t ion  t o  t h e  above, Galerkinls method, and Grammells 

Moreover, i n  order  f o r  buckling 

For t h i s  reason, even though t h e  in f in i t e s ima l  deformation 

The equilibrium equation of in f in i tes imal  def lec t ion  deformation i n  a f l a t  
p l a t e  is 

(4.2.1) 

Here, D = bending s t i f f n e s s  of p l a t e  E P  (=mm) 

*'When an e l a s t i c  body sus ta ins  a load and is i n  a state of equilibrium, given 
an in f in i t e s ima l  deformation, one determines whether t he  equilibrium is  s t a b l e ,  
unstable,  o r  neut ra l ,  t h e  neut ra l  state gives t h e  c r i t i c a l  po in t  of buckling, 
(R. V. Southwell*). 
reached by inf in i tes imal  deformation from a s ta te  of  non-equilibrium ( in  
s h e l l s  t h i s  i s  not necessar i ly  in f in i t e s ima l ) ,  and even i f  t he  e f f ec t s  of the  
i n i t i a l  deformations a re  added, i t s  e f f e c t  may be disregarded. 

Roy. SOC. Ser. A. 213 (1914), 187, 

In a f l a t  p l a t e ,  the  i n i t i a l  s ta te  of  equilibrium is  

* R. V.  Southwell, "On t h e  General Theory of E l a s t i c  S tab i l i t y , "  Phi l .  Trans. 
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Nx, N = compressive force p e r  u n i t  width ac t ing  on the  p l a t e  midplane i n  
constant cross-sect ions x and y respec t ive ly .  

N = shear  forces  ac t ing  on the  u n i t  widths of the above. 
XY 

Bryan makes the following hypothesis f o r  def lec t ion  which s a t i s f i e s  t he  condi- 
t i ons  

s=o, 311=0 (where x = 0 and x = a) 

w=o, U,=O (where y = 0 and y = b) 

f o r  t he  case where NXy = 0 f o r  four-sided rotating-ends.  

1.e. 

W=A,,,,,S~~- m r x  (m, n both in tegers )  
a b 

(4.2.2) 

This def lec t ion  i s  assumed t o  give the  c r i t i c a l  buckling value i n  which the  
condition [ 

satisfies equation (4.2.1). 

In the  v ibra t ion  method, t he  condition of v ibra t ion  where the  term f o r  the  
force of i n e r t i a  a t  t he  time of v ib ra t ion  is added t o  equation (4.2.1) i s  

(4.2.4) 

where 

p = mass of  p l a t e  p e r  u n i t  surface a rea  

5 = time 

and, by determining the  v ib ra t ion  number which s a t i s f i e s  t he  boundary conditions,  
t he  c r i t i c a l  value i s  obtained from the  condition t h a t  t he  v ibra t ion  number is 
0. For exampie, f o r  a rectangular  p l a t e  with per iphera l ly  r o t a t i n g  ends, sub- 
sti tu t ing  
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i n  eql:dtion ( 4 . 2 . 4 )  and making the  condition p = 0 the  same r e s u l t s  a r e  obtained 
as eqdation ( 4 . 2 . 3 ) .  

When it is  d i f f i c u l t  t o  obtain a so lu t ion  by the  d i r e c t  method, using the  
energy method, sometimes an approximate so lu t ion  is  found. That i s ,  assuming 
a def lec t ion  w which s a t i s f i e s  t h e  boundary condi t ions,  the  c r i t i c a l  value i s  
determined by subs t i t u t ion  i n  the  following equation: 

( 4 . 2 . 5 )  

Even b e t t e r  r e s u l t s  are obtained i f  one expresses t h e  def lec t ion  as the  sum of 
severa l  terms, and uses R i t z ' s  method, adding unknown coe f f i c i en t s .  Moreover, 
Timoshenko [20] a l so  adds the  va r i a t i cn  of po ten t i a l  due t o  the  moment and shear  
forces  on t h e  periphery,  but under normal boundary conditions,  s ince  such va r i -  
a t i o n  i s  0,  it has been omitted here ,  bu t  it must be added when necessary.  

With regard t o  p l a t e s  with a configuration o ther  than rectangular ,  one may 
replace an operator  V 1 4  f o r  t he  curve coordinates f o r  such a configuration. 
example, f o r  a c i r c u l a r  p l a t e  sus ta in ing  a compressive force ,  Nr (per u n i t  
length) i n  the  d i r ec t ion  of t he  radius  

For 

becomes the  condition of equilibrium. 

4.2.2.  THE B U C K L I N G  OF RECTANGULAR FLAT PLATES 

( 4 . 2 . 6 )  

( 1 )  Case i n  w h i c h  Compression i s  Sustained. The c r i t i c a l  value f o r  a 
f l a t  p l a t e  with per iphera l ly  r o t a t i n g  ends, sus ta in ing  a uniform compression 
from one d i r ec t ion  (x) ,  is found by assuming X I ,  = 0, i n  Bryan's equation ( 4 . 2  
3) given above. Expressing the c r i t i c a l -  stress a? q ,  

( 4 . 2 . 7  

Here, m and n ind ica te  the  number of half-waves of t h e  buckling wave form i n  
d i rec t ions  x and y. The case i n  which the  nL/ jer  of  waves i n  d i r ec t ion  y 

/367 - 
n = 1, constantly gives a minimum value f o r  c7k but  with regard t o  the  value of 
fi i n  d i r ec t ion  x, the  value of m which gives the  minimum value of Ok due t o  the  
aspect r a t i o  of the p l a t e  a/b var ies .  
given by m = 1 where 

That i s ,  the  minimum values of ak a re  

a1b.S %'T and by ~ / ~ = S o / b ~ ~  

Moreover, i n  the  case where the aspect r a t i o  a/b 2 1.0, O k  takes  a minimum value 
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becoming 

(4.2.8) 

(See f igu re  4.2.2.) Moreover, where a/b > 3,  t h i s  may be regarded as almost 
equal t o  the  minimum value. 

The so lu t ion  which satisfies the  condition t h a t  
t he  edges are f ixed,  i . e .  

(where x = 0 and x = a)  
w=o, * = 0  

a W  -- a y  -O 

-4 
L a d  

w=o, (where y = 0 and y = b) m, .- 

and satisfies the  equilibrium cor.dition equation, i s  
not  e a s i l y  found, s o  various methods of so lu t ion  have 
been pubiished. S. Timoshenko [ll] has ca r r i ed  out 
aFproximatim ca lcu la t ions  by t h e  energy method, 
while Nizawa [12] ,  Yamana [;6], employ the  v ibra t ion  

2- 

F i g u r e  4.2.1 

method, Nizawa [13], 0. H. Faveii [17], G .  I .  Taylor [23], Iguchi [26] obts in  
so lu t ions  by expanding t o  i n f i n i t e  s e r i e s .  
sense t h a t  t he  coe f f i c i en t  which i s  included i n  the  de f l ec t ion  equation va r i e s  
according t o  the  boundary conditions.  i . e . ,  i n  

Iguchi 's  so lu t ion  is elegant  i n  the  

(m, n = in tegers )  

f o r  four-side ro t a t ing  ends, cn = cml = d, = dnl = 0. 
four  s ides ,  

&re f ixed,  and when the  o ther  th ree  s ides  are ro t a t ing  ends, 

Subs t i tu t ing  w i n  the  equ i l ib r iun  equation ana expanding t o  t h e  s e r i e s  
s i n  (mlrx)/a s i n  (nlryJ/b, the  c r i t i ca l  value i s  determined from Lie condition 
t h a t  the  coe f f i c i en t s  a r e  0. 

If the  end is  f ixed  on 

C.I = - 1-2(- 1) *, %'=2+ (- 1>", d,= -1-2( - 1;m, &'=a+ (- ly, z=o 

3 h = O ,  c n , ' = ~ ,  d,,=d,,'=O 

ti 

K. 
P l  

S .  Timoshenko [20], Nizawa and Nishimura [21] ,  H. L. Cox [ l S ] ,  have solu- 
ons f o r  the  case i n  which tf.3 load edge t o  which a compressive force  i s  ap- 
i e d  has a r o t a t i n g  end and the  edge p a r a l l e l  t o  t he  load i s  f ixed.  Conversely, 

Schleicher [22] and others  have so lu t ions  f o r  t he  case i n  which the  load edge 
is  f ixed and t h e  other  edge has a ro t a t ing  end, 
t i o n  f o r  t he  case i n  which one s i d e  p a r a l l e l  t o  the  load is free and the  o the r  
th ree  s ides  have ro t a t ing  ends. A. J. ?.!iles [I461 provides a so lu t ion  f o r  t he  

S. Timoshenko [20] has a solu- 
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case i n  which the load edge has a r o t a t i n g  end, while t he  o ther  edges are 
e l a s t i c a l l y  supported. 
ro t a t ing  end, assuming the  def lec t ion  

Mareover, i n  t he  case i n  which tile load edge has a 

m r z  w= f Q/) sin- 
5 

Inser t ing  i n  the  equilibrium equation and determining f ( y j  /368 

where 

so,  from t1.e condition y = 0,  y = b ,  the  c r i t i c a l  value i s  obtained by elimin- 
a t ing  C 1 ,  C23 C 3 ,  C4. 

In any of  the above cases,  the  c r i t i c a l  buckling s t r e s s  Ok can be expressed 
by the  following equation. That IS 

(4.2.9) 

k i- the  number which is  determined under the  support conditions of t he  edge, 
and the  aspect r a t i o  a /b  of t he  p l a t e .  
of half-waves i n  the  d i r ec t ion  of ccmpression, where a/b i s  small, 1 gives  the 
minimum c r i t i c a l  value,  but as a/b increases ,  t he  number of half-waves giving 
t h e  minimum c r i t i c a l  value increases ,  as i n  the  case uf per iphera l ly  ro t a t ing  
ends. Moreover, t he  c r i t i c a l  buckling stress can be t3x- 
pressed by 

Moreover, with the  regard t o  the  number 

(See f igu re  4.2.2). 

(4.2.10) 

1 -  .t of equation (4.2.9) The k '  i n  t h e  equation i s  the  same as the  cqcf- 
f i c i e n t  k .  

With regard t o  experimental inves t iga t ions  of f l a t  p l a t e s  sus ta in ing  com- 
pression,  there  are the  experiments of  L .  Schumann and G.  Back [32] on s ides  
p a r a l l e l  t o  t he  I ~ l ~ t d ,  supported by V channels, using Duraluminum, Monel metal, 
uncast s t e e l  and uckn! p l a t e s ,  Yamana's expeiiments using copper p l a t e s  [15],  
i n  whichthe s ides  p a r a l l e l  to the load a re  f ixed,  and H. L. Cox's [15] experi-  
ments on Duraluminm p l a t e s .  
iments on rectangular  f l a t  p l a t e s  i n  which the  s ides  p a r a l l e l  t o  t he  load are 
supported by an t i -def lec t ion  members, i n  which super Duraluminum p l a t e s  were 
used. In addi t ion,  there  have been experiments by H. L. Cox [33] and Yoshiki 
[34] using s o f t  s t e e l  p l a t e s .  
load is  held down by kni fe  edges, Yokoo [120] has conducted experiments - s i n g  
Duralumiiium, super Duraluminum and non-cast s t e e l  p l a t c s  and Yoshilci [35] has 
used s o f t  s t e e l  p l a t e s .  Moreover, i n  Yokoo's experiments, he includes p l a t e s  
supported by V channels. 

H. Wagner and R. Lahde [118] have conducted exper- 

/369 - 
For p la t e s  i n  which the  edge p a r a l l e l  t o  t he  

As for the  load edges, except f o r  the s tud ie s  by 
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Yamana and Cox, aining a t  fixed-edge conditions,  most of the s tud ie s  involved 
holding the rectangclar  p l a t e s  on a f l a t  surface.  

2 

Figure 4.2.2 

In experiments i t  i s  d i f f i c u l t  t o  process the  specimen 50 t h a t  it i s  
completely f l a t  and f o r  t h i s  reason, there are many cases i n  which a c l e a r  
c r i t i c a l  point  i s  not obtained. For ttiis reason, t he re  are few repor t s  vhich 
discuss the value of the  c r i t i c a l  po in t ,  and it i s  s a i d  t h a t  Schcmann's values 
a r e  lower than those calculated by Bryan and t h a t  Cox's agree with the  theore t -  
i c a i  values i n  general  f o r  the  case i n  whichthe edges are f ixed.  Ycrshiki sLates 
t h a t  i n  determining the  c r i t i c a l  values by using the  cha rG: t e r i s t i c s  of  the  
load-deflection curve a f t e r  buckling, t he  values ? g e e  general ly  with those cal- 
culated as shown i n  Section 9 of the  "Materials" below. 
"Materials" r e fe r s  t o  the  spec ia l  sec t ion  of char t s  and t ab le s  t h a t  follows the  
bibliogAzphy t o  t h i s  sec t ion  on the buckling p l a t e s . ]  

[trans:ato-'s note:  

Bryan has a so lu t ion  f o r  the per iphera l ly  ro t a t ing  ends i n  the  case when 
compressive forces  N 
so lu t ions  by Nizawa ?13] and Iguchi [26] ibr other  boundary conditions.  

and N a re  received from two d i rec t ions  and there  a r e  Y 

Adjusting Bryan's equation (4.2.3) f o r  s t r e s s  

where 

(4.2.11) 

However, thc re la t ionship  between ox and uy giving the  c r i t i c a l  value i s  l i n e a r  
as i s  c l e a r  from equation(4.2.11). If the half-wave numbers m and n a r e  var ied,  
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various l i nes  a re  obtained, but f o r  the  ux within the  range 

! -4 (=]by} *: =. < a,' 5 + 2(a;b)'} . 

m = 1, n = 1 give the  minimum c r i t i c a l  values and where ux i s  l a r g e r  than t h i s ,  
the 
i s  sniall. (See Figure 4.2.3 and Timoshenko [6j ,  p. 332.) 

(4.2.12) t i 

values are given by m = 2, A = 1, a n i  L,- m = 1, n = 2 where "k 

a = tensile s t  

In the case where cr = uy 

The minimum values are the  case h.lere m = 1, n = 1. 
s t r a igh t  l i n e  a t  45' i n  Figure 4.2.3.) 

, i n t  o 

(4 .2 .13)  

i n t e r sec t ion  wi th /3  0 - 

S. Timoshenko [20] provides a so lu t i cn  f o r  t h e  c r i t i c a l  values i n  the  case 
of the  buckling of a rectangular  p l a t e  with per iphera l ly  r o t a t i n g  ends sus t a ins  
a concentrated compressive load ac t ing  i n  the  center  of  two opposing s ides ,  
using the  energv method. 

( 2 j  The Case of Shear. The fact t h a t  when a rectangular  p l a t e  sus t a ins  
a shear force,  i t  buckles, i s  knowr, from E.  C la rk  and M. Houbotte's experiments, 
according t o  which wrinkling occurs i n  the  web of a beam sus ta in ing  bending and 
shearing. 
t o  determine approximately by the  energy method t h e  buckling due purely t o  
shearing force.  

(See S. Timoshenko [6],  p. 411.) S .  Timoshenko [36] was the  first 

The equilibrium equation i n  the  case where a shear  i s  sustained i s  

(4.2.14) 

In the case of shear,  s ince  the  d i r ec t ion  of the  buckles (wrinkles) has a slope 
with respect t o  the  d i rec t ion  of the  edges of t he  rectangle ,  a simple form of 
def lect ion cannot be obtained which s a t i s f i e s  the  edge conditions,  and even i n  
the case oT ro ta t ing  edges, it is  d i f f i c u l t  t o  obtain a s t r i c t  so lu t ion .  R. V. 
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Southwell and S. W. Skan [37] give a close so lu t ion  f o r  an i n f i n i t e  t i e  p l a t e ,  
but the so lu t ion  when t h e  aspect r a t i o  of t he  p l a t e  i s  f i n i t e  i s  inevi tab ly  
approximate. 

In the  case of ro t a t ing  edges, E .  Seydel [40] has a so lu t ion  o ther  than 
t h a t  of S. Timoshenko mentioned above, and i n  addi t ion,  f o r  f ixed  edges, solu- 
t i ons  have been given by Iguchi [42], H .  L. Cox [44], Tomochika and Imai [45], 
Hidaka and Okubo [46]. 

The shear  buckling l i m i t  stress Tk is expressed by t h e  following equation: 

(4.2.15) 

The b ind ica tes  t he  length of t he  sho r t  s ide ,  k i s  t h e  cze f f i c i en t  determined 
by the  boundary conditions and the  aspect r a t i o  r /b .  
number of half-waves giving the  lowest c r i t i ca l  buckling value a l so  increases ,  
as i n  t h e  case of compression. 

As a/b increases ,  t he  

F. Bollenrath [52], H. J. Gough and H. L. Cox [53], and E. Seydel [54] have 
conducted tests on buckling due t o  a shear  load, but  even i n  t h i s  case, s ince  
the  i n i t i a l  def lec t ion  of t he  p l a t e  has a la rge  inf luence on t h e  r e s u l t s ,  no 
clear conclusions can be made concerniqg the  r e l a t ionsh ip  between the  theore t -  
i c a l  values and the  experiment values.  Bollenrath gives r a t h e r  low experiment 
values,  Gough and Cox claim t h a t  t h e i r s  agree,  i f  one considers i n i t i a l  def lec-  
t i o n ,  and when a/b i s  approximately equal t o  1, they c la i r  t h a t  t h e i r  r e s u l t s  
agree well (H. L. Cox [2] ) .  

(3)  T h e  Case i n  Which  Plate Midplane Sui ta ins  Bending and Bending and 
Compressive Loading. S. Timoshenko [ S I ,  0. S te in  [56] have provided solu- 
t i ons  f o r  t he  cr i t ical  loading values when the  rectangular  p l a t e  sus ta ins  a 
bending load within the  plane of the  p l a t e ,  under conditions of r o t a t i n g  edges. 
In t h i s  case, s ince  the  force N, a c t ing  on the  edges i s  a function ,f y ,  t he  
equilibrium condition equation no longer i s  l i n e a r ,  s o  it i s  extremely d i f f i -  
c u l t  t o  obtain a close so lu t ion  and one must r e l y  on an apprnximate so lu t ion ,  
ind ica t ing  i n  place of N,, t he  edge stress ax = N J t  as follows 

u+=u~ (1--y ,Vlb> 
(4.2.16) 

01 indica tes  t h e  compressive stress where y = 0, 
a t  the  edge x = a o r  x = 0 and depending on the  
value of Q, equation (4.2.16) can express a uni-  
form bending, o r  a combination of bending and 
compression. This means t h a t  when Q = 2,  t h i s  i s  
uniform bending and where Q < 2 a uniform compres- 

f r ac t ion  1 /12  +b2ta l  where the  maximum value of 
the  bending s t r e s s  i s  1/2Qal a re  sustained.  
over,  it is  c l e a r  t h a t  I) = 0 indica tes  a simple 
compressive load. Timoshenko, using the  energy 

/371 - 

1~ fl, s i v e  s t r e s s  a1 (1 - 1/2$) and a bending moment + a  ----I 

More- 
Figure 4.2.4 

433 



method, gives the  c r i t i c a l  value of  t he  maximum compressive stress u l  with re- 
spect t o  various values,  by t h e  following equation 

Qu=kO.  (4.2.17) 

In addi t ion,  K.  Nb'lke [58] has found so lu t ions  f o r  t he  case i n  which s i d e  a i s  
f ixed and s ide  b i s  ro t a t ing ,  s i d e  y = b sus ta in ing  t h e  t e n s i l e  stress is f ixed 
and the  o ther  t h ree  s ides  are ro t a t ing ,  i n  addi t ion t o  the  cases of r o t a t i n g  
edges above. Saka's [59] so lu t ion  is  f o r  t h e  case i n  which t h e  edge p a r a l l e l  
t o  the  load i s  f r e e .  
case i n  which compression and bending is sustained,  and claims t h a t  t he  accuracy 
of  h i s  so lu t ion  is not i n f e r i o r  t o  Timoshenko's values ,  and t h e  values from the  
energy method. 

Moreover, Saka 1611 appl ies  a d i f fe rence  equation t o  the  

(4) The  Case i n  Which a Combined Stress is 
Sustained. The combinations of  stresses sus- 
ta ined  by rectangular  p l a t e s  t h a t  are of p r a c t i c a l  
value include bending and shear ,  bending and t h e  
compressioil , compression and shear .  H. Wagner 
[65], E. Chwalla [67], and Iguchi [68] provide 
so lu t ions  f o r  combinations of compression and 
shear ,  and cases of a combination of  bending and 
shear  are hacdled by S. Timoshenko [66], 0. S te in  

25 [69], S. Way [70], T a k e h j i  and Takeda [71] (See 
previous a r t i c l e  on bending and compression.) 

45 
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zou 05 IO IS 30 35 P i b  When combined stresses are sustained i n  such 
a manner, general ly  buckling occurs a t  lower 
stresses than t h e  c r i t i ca l  values i n  t h e  case 

where the  stresses operate  s ing ly .  Denoting the  c r i t i ca l  stresses where the 
load acts s ingly ,  as ak* (Or a l k * ) ,  and Tk* and denoting the  c r i t i ca l  stress 
i n  the  case of combined stresses by Uk (UTk), 'k, t h e  following funct ions are 
obtained. 

F i g u r e  4.2.5 

In t h e  case of bending and shear 

(4.2.18) 

/372 - In the  case of compression and shear  

(4.2.19) 

The form of the  function i s  determined by the  edge condi t ions,  the aspect r a t i o  
of the  p l a t e  a/b, e t c .  and proceeding from t h e  c r i t i c a l  values i n  which the  
stresses operate s ing ly ,  there  is a gradual reduction as the  o the r  stress com- 
ponents increase,  and f i n a l l y  the  o ther  s t r e s s  components reach the  c r i t i c a l  
value i n  the  case where they act s ing ly .  (See Figures 4.2.6 and 4.2.7). 

Takefuji and Takeda discuss  t h e  re la t ionship  of  the  coe f f i c i en t s  f o r  the  
cha rac t e r i s t i c s  of buckling equations i n  t he  case where bending and shear  a re  
sustained.  
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Figure 4 . 2 . b  F i g u r e  h . 2 . 7  

(5) Other Problems Related to  Rectangular P la tes .  There are cases i n  
which buckling occurs o the r  than i n  the  load conditions described above. 
example, A. E. Green [72] and On0 [73] discuss  t h e  buckling of a rectangular  
p l a t e  due t o  tors ion  load. 

For 

When t h e  thickness  of t he  rectangular  p l a t e  i s  not  constant ,  s ince  the  
s t i f f n e s s  of  t he  p l a t e  D becomes a funct ion of t h e  coordinates,  t he  equilibrium 
equation becomes 

and is no longer l i nea r .  D is a quadrat ic  equation and f o r  t h e  form 

D = cy2 

R. G .  Olsson [74] has a so lu t ion .  
one should determine so lu t ions  of (4.2.1) f o r  each p a r t  of the  p l a t e  thickness 
and then combine the  conditions so t h a t  they a r e  connected i n  connecting p a r t s .  
I i d a  [75] has a so lu t ion  for such a problem. 

When the  p l a t e  thickness  gradually va r i e s ,  

When the  p l a t e  thickness i s  t h i n  with respect  t c  t he  dimensions of the 
p l a t e  (length or width) (i.e.,  when t / b  is  small), t he  buckling c r i t i ca l  s t r e s s  
i s  lower than the  proportional l i m i t  stress up of t he  material and complete 
p l a s t i c  buckling (buckling within t h e  p l a s t i c  region)occurs.  However, as t / b  
becomes l a rge r ,  t he  buckling c r i t i ca l  stress becomes l a rge r ,  and f i n a l l y  ex- 
ceeds up. When such a s ta te  is reached, s ince  t h e  values of E become small, 
t h i s  means t h a t  the  c r i t i c a l  values discussed up t o  t h i s  po in t  i n  t h i s  a r t i c l e  
are too high. Timoshenko [76] detsrmined a so lu t ion  f o r  four  ro t a t ing  edges, 
where he denotes the  e l a s t i c i t y  modulus under buckling s t r e s s  by E t ,  uses Et 
for the  d i r t c t i o n  i n  which t h e  compression i s  sustained,  and uses E without; 
any addi t ional  notat ion.  Since i n  a d i rec t ion  a t  r i g h t  angles t o  t h i s ,  not 2 
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very high s t r e s s  i s  formed. The equilibrium equation i s  

where 

i . e . ,  
a=E.IE 

(4.2.21) 

(4.2.22) 

The m i n i m u m  value of ak occurs a t  
be 

d b = v a  and i ts  minimum value i s  found t o  

(4.2.23) 

Moreover, E .  Chwalla [77] gives,  as a minimum value of a k  /373 

(4.2.24) 

"alculat ing f o r  t h e  case i n  which both d i r ec t ions  x and y have E,. 
approaches can be considered as expressing the  t w o  extremes, but  t he  ac tua l  
numerical values give values t h a t  are not  g rea t ly  d i f f e ren t .  In the  case where 
a shearing s t r e s s  i s  received, one may consider t h a t  both d i r ec t ions  change and 
t h a t  t h i s  i s  i so t rop ic .  

These two 

When t / b  increases  fu r the r ,  and ak reaches t h e  y i e l d  point  stress as, later,  
i r r e spec t ive  of the  value of t / b ,  buckling is  considered t o  occur a t  os .  Re- 
cent ly ,  problems of e l a s t i c  buckling, i n  which t h e  cr i t ical  stress en te r s  the  
p l a s t i c  region, have been t r e a t e d  i n  discussion from the  point  of view of p las -  
t i c  deformation theory and p l a s t i c  flow theory by E. Z .  Stowell ,  G .  H .  Handelman, 
and W. Prager and C. E. Pearson [79]. 

Shibuya [80] and Inoue [81] handle the  buckling i n  the  case where a :om- 
press ive  load is appl ied,  i n  the  form of an impact t o  a rectangular  p l a t e ,  and 
it i s  shown t h a t  it is  r e l a t ed  t o  the  cha rac t e r i s t i c s  of de f l ec t ion  v ib ra t ion  of 
a p l a t e  under the  condition t h a t  a compressive load i s  sustained.  Inoue u t i l -  
izes the  fact t h a t  during v ibra t ion ,  t he  compressive forces  vary i n  d i f f e r e n t  
places and performs h i s  calculat ions from t h a t  which is expressed approximately 
by Mathieu's d i f f e r e n t i a l  equations,  but  it is considered t h a t  much more research 
is  s t i l l  needed i n  order  t o  determine i t s  cha rac t e r i s t i c s .  
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4.2.3. BUCKLING OF CIRCULAR AND OTHER NON-RECTANGULAR FLAT PLATES 

In determining t h e  c r i t i c a l  buckling points  of f l a t  p l a t e s  with configura- 
t i ons  of o ther  than rectangular  s.iapes, one may convert the  equilibrium equation 
(4.2.1) i n t o  curve coordinates which express the  configurat ion of t h e  p a r t i c u l a r  
f l a t  p l a t e ,  and der ive the  cr i t ical  buckling values from the  equation and from 
the given boundary conditions.  When it is d i f f i c u l t  t o  obtain a so lu t ion  of t he  
equi l ibr iun  equation f o r  the  curved coordinetes,  one may, as with rectangular  
p l a t e s ,  obtain 2 so lu t ion  by the  energy method. 

When a uniform compressive force  i s  appl ied t o  the  circumference of a f l a t  
c i r c u l a r  p l a t e ,  converting equztion (4.2.1) t o  po la r  coordinates,  

(4.2.25) 

whe?.e h’, = compressive force ac t ing  p e r  u n i t  length of circumference 

is obtained. 
ence, and when an a x i a l l y  symmetrical deformat-ion does occur with respec t  t o  the  
center ,  a minimum cr i t ica l  buckling value is  obtained and i n  t h i s  case t h e  above 
equati-n becomes s impl i f ied ,  being expressed by 

When a uniform compressive force is  received from the  circumfer- 

a d  i ts  general  

where 

so lu t ion  i s  given by 

#=C,J,(a r)+C,Y,(a r> - 

+d’D Iy, 
dr ’ 

(4.2.26) 

(4.2.27) 

A. hadai [84] gives  a cr i t ical  buckling valc? Nk by including conditions of 
ro t a t ing  and f ixed ends a t  the circumference of t h e  circle, and f inding a. E. 
k i s s n e r  [87] provides a so lu t ion  f o r  t he  case i n  which the re  is a concentr ic  
hole i n  the  c i r c u l a r  p l a t e ,  and the  boundary of t he  hole  is free from forces .  
Wakafuji [89] provides a so lu t ion  f o r  t h e  case i n  which the  p l a t e  i s  f ixed  at 
the  hole  boundary, the outs ide boixndary’ i s  ‘ f r ee ,  and when the  boundaries of t he  
inner  and outer  c i r c l e s  a re  ro t a t ing  ends. Kawamoto [88] provides a so lu t ion  
for the  case i n  which a uniform pressure Nr i s  appl ied t o  the  circumference of 
the  hole.  

- /374 

Takahashi [92] provides a so lu t ion  f o r  t h e  case i n  which when the  thickness  
i n  the  d i rec t ion  of t h e  radius  gradually va r i e s ,  assuming t h a t  t he  deformation 
i s  s imi l a r ly  ax ia l ly  symmetrical, equation (4.2.26) can be de;.ived from Sturm- 
Liouvi l le’s  d i f f e r e n t i a l  equation. Moreover, Nadai [84], Hayashi [91] discuss  
the  occurrence of buckling due t o  non-uniformity of temperature d i s t r i b u t i o n  i n  
a c i r c u l a r  p l a t e ,  and Hayashi f i nds  the  c r i t i c a l  values f o r  t he  case i n  which the  
c i r c u l a r  p l a t e  i s  ro t a t ing .  
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When the  deformation is not a x i a l l y  symmetrical, the  so lu t ion  of equation 
(4.2.25) becomes 

where a)=S,lD, P = pos i t i ve  in t ege r  

In the  case where the  p l a t e  i s  f ixed a t  t he  edges, t h e  c r i t i ca l  value is  given 
by 

In the  above equation, p ind ica tes  t he  number of  node diameters and the  number 
of v ind ica te  the  number of node c i r c l e s  (including outs ide edge). 
assumes a bas i c  c r i t i ca l  value p = 0, v = 1 and ca lcu la tes  the  c r i t i ca l  value 
with respect t o  the  values of each p, v as mult iples  of it. 

Yamana [86] 

Aside from circles, Voinovsky-Krieger [93] obtain a so lu t ion  by the  cnergy 
method f o r  t he  case i n  which, f o r  an e l l i p t i c a l  p l a t e ,  with edges f ixed ,  a uni- 
form pressure is applied from the  edges. 

Yamamoto [99] use;  t he  energy method t o  ca l cu la t e  f o r  a p l a t e  having a 
form which is  s l i g h t l y  deformed from a regular  polygon expressed i n  the  form 

g(Rncosn 6-1)+1-R2=0 (4.2.29) 

In addi t ion,  Shibuya [98] uses t h e  d i f fe rence  method t o  handle problems i n  
which a regular  hexagonal p l a t e  sus t a ins  a shear  load, and Sawada [97] f inds  a 
so lu t ion  by t h e  energy method f o r  t h e  case of  a rectangular  p l a t e  with four  par- 
a l le l  s ides .  W. Burchard [96] found t h e  cri t ical  values f o r  t he  case i n  which 
a r i g h t  t r i angu la r  p l a t e  undergoes compression. 

4.2.4.  O R T H O T R O P I C  P L A T E S  

Problems i n  or thot ropic  p l a t e s  i n  which the re  is a difference i n  the  elas 
t i c  proper t ies  i n  two orthogonal d i r ec t ions  have wide appl ica t ion  t o  wrinkled 
p l a t e s  and wooden t h i n  p l a t e s  (see Part 5 f o r  a discussion on the  d e t a i l s  of 
Wrinkled Plates). In t h i s  case,  equation (4.2.21) becomes 

(4.2.30) 

where Dx, Dy = bending s t i f f n e s s  i n  sec t ions  x ,  y 

4(GJ)xy = t o r s ion  s t i f f n e s s  i n  xy cross-sect ion 
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/375 - Yamana [lo31 i n  obtaining a so lu t ion  f o r  the  case i n  which Ny = 0,  
NXy = 0,  with ro t a t ing  edges, obtains  

(4.2.31) Nc7= b' D~(*\'+ 2 D,,+D,(+). 
l a /  

The minimum l i m i t  value t s  

The half-wave length a t  t h i s  time i s  given by 

a /n=b t /DJDI  
- 

(4.2.32) 

(4.2.33) 

The c r i t i c a l  s t r e s s  r k  of a rectangular  p l a t e  with r o t a t i n g  edges, sus ta in ing  a 
shear  load NXy, according t o  E. Seydel [lo43 is 

1 
rr=Co (EzD,'j7(b/2)' (4.2.34) 

6, i s  a coef f ic ien t  which is  determined bv the  parameter tp and aa. 

~ = C D ,  D$/ D = ~  

a,=(bl.>/ (D&)'. 

Seydel [ lo21 a l so  gives value; of Ca f o r  t he  condition where edge a is f ixed,  
i n  the case where a = 0 0 .  

Hayashi [lo71 makes t h e  following assumption f o r  t he  de f l ec t ion  w f o r  t he  
case i n  which t h e  d i r ec t ion  of t h e  p r inc ip l e  ax i s  of e l a s t i c i t y  and the  d i rec-  
t i o n  of load do not  agree. 
t i ons ,  he f inds  the  stress funct ion o as a funct ion of w and obtains  a method 
f o r  determining the  unknowns i n  the  de f l ec t ion  equation f ron  an energy equation. 
Moreover, the  c r i t i c a l  buckling value is  given by f = 0. 

By subs t i t u t ing  the  appropriate  condition equa- 

I . e . ,  

k w=/c& b cos ,(z-my> 

The appropriate  condition equation i s  

(4.2.35) 

Moreover, when the d i r ec t ion  of x and the di rec t ion  of t h e  p r inc ip l e  ax i s  of 
e l a s t i c i t y  a r e  45' 
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'> -=-(--- 1 1 1  
H 2 E ,  E ,  ' 

E l ,  E 2 >  G ,  V I ,  v 2  = Young's modulus, shear elasticity modulus and Poisson's 
ratio in the direction of the -rinciple axis of elas- 
ticity. 
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CHAPTER 3 /376 - 
PROBLEMS OF FLAT PLATE AFTER B U C K L I N G  

4.3.1. EFFECTIVE W I D T H  I N  THE CASE OF A C O M P R E S S I V E  LOAD 

L .  Schumann and G .  Back [116] found, through experiments, t h a t  when a 
rectangular  f l a t  p l a t e  buckles a f t e r  sus ta in ing  compression, the  buckling load 
does not immediately become the  maximum load whichthe f l a t  p l a t e  cand ths t and .  
Moreover, G .  Schnadel j1081 ca r r i ed  out t heo re t i ca l  ca lcu la t ions  and showed 
t h a t  a f l a t  p l a t e  a f t e r  buckling s t i l l  bears the  load and t b G t  a t  t h i s  time 
the  d i s t r ibu t ion  of the  compressive stress i s  not uniform t h a t  stresses may 
a l so  occur i n  a d i rec t ion  a t  r i g h t  angles t o  the  compression. Later,  Th. v. 
K&dn, E .  E .  Sechler and L. H. Donne11 [ log] ,  judging from the  f a c t  t h a t  a f t e r  
t h e  buckling of  a p l a t e ,  t he  compressive force  is  increased only i n  the  por t ion  
t h a t  was immediately adjacent t o  the  support end of t h e  p l a t e  width, and t h a t  
t h e  compressive force hardly increased at  a l l  i n  the center  of the  p l a t e  width, 
considered as an approximation, t h a t  only the  por t ion  of a c e r t a i n  width close 
t o  the  edge of t h e  p l a t e  sustained a load under a uniforn. compressive stress, 
and t h a t  i n  the  cent ra lpor t ion ,  t he  compressive s t r e s s  was 0. 
4.3.1.) They termed t h e  width of t he  por t ion  sus ta in ing  t h a t  stress as be as 
the  e f f ec t ive  width and invest igated its proper t ies .  
mined t h a t  the  e f f ec t ive  width gradual ly  decreases as the  compressive stress a t  
t he  edges increases .  Moreover, the  compressive s t i f f n e s s  of the  p l a t e  decreases 
as the  s t r e s s  increases  (See f igu re  4.3.2.) 

(See Figure 

As a r e s u l t ,  they de ter -  

Figure 4.3.1 Figure 4 .3 .2  

Later, a theo re t i ca l  inves t iga t ion  was made of problems of e f f e c t i v e  width 

Experiments on t h e  e f f e c t i v e  width 
by H. L. Cox [110], Yamamoto and Kondo [lll],  K.  Marguerre [112] ,  K .  Marguerre 
and E .  T re f f t z  [113], and by Tsuruya [114]. 
were a l so  conducted by H. L. Cox [110], R .  Lahde and H. Wagner [118], E. E. 
Sechler [119] and by Yokoo [120]. 

In order  t o  inves t iga te  the  e f f ec t ive  width and o ther  pi-operties of the  
f l a t  p l a t e  a f t e r  buckling, the in f in i t e s ima l  deformation theory cannot be used, 
and it  is  necessary t o  depend on the  theory of f i n i t e  deformation i n  which the  
deformation i s  qu i t e  la rge .  When the  def lec t ion  i s  la rge ,  i-t i s  necessary t o  
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determine t h e  s t r a i n  component by tak ing  i n t o  cons idera t ion  t h e  e longat ion  of 
t h e  c e n t e r  plane of t h e  p l a t e  ( t h e  p lane  t h a t  passes  through t h e  c e n t e r  of t h e  
p l a t e  t h i c k n e s s ) .  I . e . ,  expressing t h e  s t r a i n  component of  t h e  c e n t e r  p lane  by 

and determjning t h e  equi l ibr ium equat ion 

and t h e  appropr ia te  condi t ion  equat ion 

(4 3.1) 

(4.3.3) 

where t h e  non- l inear  simultaneous equat ion 

i s  obtained.  

I t  is  d i f f i c u l t  t o  s o l v e  t h i .  d i r e c t l y  and var ious  approximation methods 
have been proposed. 
t u t e s  t h e  s t r a i n  energy equat ion 

Marguerre [113] first assumes a d e f l e c t i o n  w ,  and s u b s t i -  

where 

(4.3.4) 

and determines t h e  r e l a t i o n s h i p  between t h e  load, t h e  d e f l e c t i o n  and compressive 
s t r e n g t h ,  from t h e  f a c t  t h a t  t h e  v a r i a t i o n  i n  s t r a i n  energy is  0 a t  t h e  p o s i t i o n  
of equi l ibr ium and from t h e  condi t ion  t h a r  t h e  unknown f included inw, t h e  aver- 
age e longat ion  i n  t h e  d i r e c t i o n  a t  r i g h t  angles  €2, and t h e  d i f f e r e n t i a l  z r e  0. 
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Moreover, f o r  the  displacement u,  v i n  d i rec t ions  x ,  y ,  from the  condition t h s t  
the  va r i a t ion  f o r  the  varying components 3, 9 does no,t chan e ,  the  following 
equation i s  derived as condition f o r  determining 4, v ,  and 2, c a r e  determined 
as functions of w .  T . e . ,  

(4.3.5) 

1 3 p:;+ l+v a (&+ ;.") +-=- --(wz*+w1') + w p z a  -wrWuu=O. 1-u by 1 Y a ;  

The method of Tsuruys [114] i s  t o  assume w i n  the  form of a s e r i e s ,  sub- 
s t i t u t e  t h i s  i n  equation [4.3.2), cons ider - the  boundr-y condi t ions,  and f ind  
U was a funct ion of w .  
solves  the  problem from the  hypothet ical  work p r inc ip l e .  Cox [110] i l l  de te r -  
mining the  s t r a i n  energy equations,  performs h i s  calcu1aP;ons taking the  aver- 
age value i n  the  d i r ec t ion  of length,  without calculat in ,  p rec i se ly  the  term 
with respect t o  the  elongation in  the  center  plane,  expressir-g t h i s  i n  the 
form 

Then subs t i t u t ing  these i n  the  energy equations,  he 

(4.3.6) 

and obtains  h i s  so lu t ion  from t h z  hypothet ical  work p r inc ip l e .  
ered t o  be convenient f o r  simple ana lys i s .  

This i s  consid- /37g 

As a r e s u l t  of these ca lcu la t ions ,  t he  e f f ec t ive  width decreases with an 
increase i n  the  Compressive load of the  f l a t  p l a t s  iLftei buckling (see Figure 
4.3.3) and the e f f ec t ive  compressive s t i f f n e s s  a l so  gradually decreases i n  a 
s imi l a r  manner. Of course, these e f f ec t ive  widths, St-qpressive s t i f f i i e s ses  and 
o ther  values d i f f e r  depending on the  edge condition, 
ent  t h a t  th.3 r e s u l t s  c lose t o  those of Marguerre and Tsunya  agree ve l1  with 
experiments and Cox's r e s u l t s  a r e  qu i t e  good. 
width aprear t o  be even c loser .  
immediately a f t e r  buckling i s  1 / 2  according t o  Marguerre and Tscrtlya while Cox 
says t h a t  t h i s  i s  I f 3  but i t  i s  d i f f i c u l t  t o  determine the  appropriateness of 
these two from experiments owing t o  the  presence of i n i t i a l  def lec t ion  i n  the  
p l a t e  uC2d f o r  the  t e s t s .  Moreover, N .  J. i!off [168] states t h a t  i n  the  case 
of a f ixed edge p a r a l l e l  t o  t he  load, there  is an agreement be'veen the  exper- 
iments of Lahde and Wagner and Cox's ca lcu la t ions  and t h a t  chP values of L.  
Schumann and G .  Back [116] f o r  t he  case of simple support come out somewhat 
smaller.  E .  E .  Sechler has conducted experiments on the d i s t r ibu t ion  of com- 
pressive s t r e s s e s  a f t e r  buckling, nd he shows t h a t  t he re  i s  a d i f fe rence  be- 
tween the case i n  which t h e  edge i:, supported by a V channel and i n  which it is  
supported by an an t i -def lcc t ion  mer,iber (see Figure 4.3.4) 

the  p l a t e .  I t  is  appar- 

The values f w  K&:!&'s e f f e c t i v e  
Moreover, the  e f f ec t ive  compressive s t r e s s  
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h -3 

Figure 4 . 3 . 4  

Hayashi [124] obtains a so lu t ion  by the  Galerkine method from the  equi l ib-  
rium equations f o r  problems occurring after the  buckling of or thot ropic  p l a t e s .  

4 .3 .2 .  MAXIMUM LOAD OF RECTANGULAR FLAT PLATE S U S T A I N I N G  COMPRESSION 
A ’ D  GTHER MATTERS 

Research has been conducted by Th. v. Karma and h i s  colleagues [ log] ,  H. 
L. Cox [110], Yardmoto and Kondo [lll] and S. Timoshenko [115] on the  maximum 
load tha t  can be withstcod by a f l a t  p l a t e  with respect  t o  compressive load. 

K h n &  assumes t h a t  when t h e  edge stress UL reaches the  y i e ld  point  stress 
us of the mater ia l ,  t he  ul t imate  stress Pult i s  reached, and determines t h i s  
from h i s  e f fec t ive  width themy i n  the form 

( 4 . 3 . 7 )  

and compares this with the  t e s t  r e s u l t s  of L. Schumann and G .  Bzck [116]. As a 
r e s u l t ,  the values of equation (4.3.7) t u x  out t o  be 10 t o  35% higher  than the  
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experimental values.  Cox gives the following /379 

(4.3.8) 

where 
L = 1.52 M = 0.09 ( f o r  r o t a t i n g  edges),  
L = 2.18 M = 0.14 (for f ixed edges),  

assuming t h a t  t h i s  i s  t h e  case i n  which the  edge stress reaches a constant 
value e,,, determined by t h e  materiai. Yamamoto and Kondo determine t h i s  assum- 
ing t h a t  it is the  case i n  which t h e  m a x i m u m  p r inc ip l e  stress reaches a con- 
s t a n t  value and Timoshenko determines the  ul t imate  load f r o m  t he  maximum value 
of the  shear  stress. 

P.,,=bt i 0.434 a,+2.01 E (tlb)')  (4.3.9) 

Yokoo [120] gives an equation i n  which Pu l t  i s  proport ional  t o  t 2  froill the  
Yoshiki [122] s imi l a r ly  proposes an equa- t es t  r e s u l t s  on a r o t a t i n g  edge end. 

t i o n  in se r t ing  the  e f f e c t  of b i n  Kgrmsn's equation f r o m  t he  r e s u l t s  of tests 
on s o f t  steel p l a t e s  

- 
Pm,g=l.77(alb)-'*" d os f (4.3.10) 

and states t h a t  t he re  i s  an agreement with the  t es t  r e s u l t s  within an e r r o r  of 
10%. 

The r a t i o  between t h e  u l t imate  load and t h e  buckling load i s  g rea t e r ,  the  
smaller t / b  and i n  the  thickness of p l a t e s  t h a t  are used f o r  aircraft s t ruc tu res ,  
a value of 10-20 i s  taken f o r  t h i s  r a t i o ,  but  as t / b  increases ,  t he  r a t i o  de- 
creases ,  and a t  t / b  =, 1/100, Pult/Pk = 2-3 (case of s o f t - s t e e l . )  Furthermore, 
when t / b  becomes l a rge r  and ak approaches up o r  us,  t he  buckling load reaches 
the point  where i t  is  almost t he  same as the maximum load. 
the  bending load, t he  same phenomena are observed. 

Even i n  the  case of 
(See Yoshiki [63]). 

One problem i n  the  behavior of  a f lat  p l a t e  after buckling i s  the  degree t o  
which t h e  i n i t i z l  process of buckling can be allowed t o  continue i n  order  f o r  
permanent deformation not t o  remain when a load has been removed after t h e  f lat  
p l a t e  has buckled i n  t h e  elastic region. Shibuya [127] has made an ana lys i s  of 
the  case of a column, assuming eccen t r i c i ty ,  W. L. Howland and P. E. Sandorff 
11261 conducted tests on a f l a t  p l a t e  and compared the  r e s u l t s .  
assumed t h a t  t h e  maximum stress due t o  bending and compression arises i n  the  
center  of t h e  p l a t e ,  t h a t  permanent buckling deformation occurs at  t h e  point  
where the  m a x i m u m  s t r a i n  reaches t h e  y i e l d  point  s t r a i n ,  and perform t h e i r  cal- 
culat ions taking i n t o  account the  e f f e c t s  of i n i t i a l  def lec t ion .  They are ab le  
t o  determine as well t he  degree of harmful deformation i n  accordance with the  
r a t i o  between s t rengtheners  and f l a t  p l a t e s .  

That is, they 
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4 . 3 . 3 .  TENSION FIELD PROBLEMS 

H. Wagner was t h e  f i r s t  t o  study the  stress conditions af ter  the  buckling 
of a p l a t e  when a shearing load is  applied t o  a f l a t  p l a t e  a t tached between 
hinged frame s t ruc tu res  c130, 1311, and discusses  t h i s  i n  terms of a theory of 
a tension f i e l d .  H e  assumes t h a t  when buckling occurs i n  t h e  f la t  p l a t e ,  both 
the  bending s t i f f n e s s  and compressive s t i f f n e s s  are 0,  and t h a t  only the  ten-  
s i le  stress a i s  present  i n  t h e  d i rec t ion  of t h e  buckling wrinkles.  Assuming 
the  d i r ec t ion  of t he  wrinkles t o  be a ,  from the  condi t ion of equilibrium of the  
cross-sect ion mn, (see Figure 4.3.5). 

Assuming t h a t  t he  frame around t h e  p l a t e  i s  a r i g i d  body, a becomes 45" and 

meaning t h a t  a t e n s i l e  s t r e s s  which i s  twice t h a t  of t he  shear ing stress is 
operating when there  i s  no buckling. When the  frame is not  a r i g i d  body, it is  

necessary t o  determine t h e  value of a taking i n t o  
consideration displacement, bu t  i n  ordinary air- 
craft s t ruc tu res ,  it i s  s t a t e d  t h a t  t h i s  i s  a b m t  
40". This means t h a t  a tension and bending load 
is applied v e r t i c a l l y  t o  t h e  hor izonta l  member 
due t o  t h i s  u and t h a t  a compressive force of 

Y 
7 

i L 

Figure 4.3.5 
S=o t b sm* a (4.3.12) 

i s  applied t o  the  v e r t i c a l  re inforc ing  members. 
t he  horizontal  re inforc ing  members i s  

The force  t h a t  is appl ied t o  

Horizontal component q==4 rs inacosa (per  u n i t  length) (4.3.13) 

Vertical component l' 1 ' 1  ( l' 
q,=u tsin*a 

The tension f i e l d  approach is  t o  determine the  stresses of each member ir t h i s  
manner. 

Later A. Kromm and K. Marguerre [133] proceeding from t h e  equilibrium equa- 
t i o n  and compatibi l i ty  condition equation [see equations (4.3.1) and (4.3.2)] and 
the  s t r a i n  energy equation analyze the  stress condition af ter  buckling i n  the  
case when a l i g h t  compression and shear  are applied,  employing the  hypothet ical  
work p r inc ip l e  and Galerkine's  method. Assuming t h e  de f l ec t ion  w t o  have the  
form 

they determine the  stress function F frm, the  term w from the  compatibi l i ty  
condition equation and from the  hypothet icd work p r inc ip l e  f ,  1, m are de ter -  
mined from t h e  s t r a i n  energy equation. 
i nc l ina t ion  of the wrinkles, there  i s  a r e l a t ionsh ip  m = cot  a ,  1 s i n  a ind ica t e s  

Moreover, assuming a t o  be the  angle of 
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t he  p i t c h  of t h e  waves, and t h e  ca l cu la t ions  proceed with 
parameter i n  place of  1. 

B = b / ( l  s ina )  as  a 
As a r e s u l t ,  

(4.3.14) 

where 
p1, p2 T = , . . pe s s ive  stress and shear  stress i n  d i r ec t ions  x and y of 

t he  f la t  p l a t e  

*E 
.*= 12(1-u*) (3 

Denoting t h e  cross-sect ion a rea  of  t h e  hor izonta l  re inforc ing  area by AI,  and 
of the  v e r t i c a l  re inforc ing  member by A t h e  magnitude of  ex terna l  force  is 9' 

(4.3.15) 
pz=pc (t.b+ Ai)=Pd b+PtAt 

P P P ~  ( t *a + Ao)=Pd a + P t A I 

Moreover, p1, pq, are respec t ive ly  t h e  compressive stress of  t h e  hor izonta l  
re inforc ing  member and v e r t i c a l  re inforc ing  member. 
t he  s t i f f n e s s  of t h e  v e r t i c a l  re inforc ing  member to be 0, 

/381 
Now, assuming Py = 0,  and 

p, = 0 

i s  obtained and conversely, assuming t h e  s t i f f n e s s  of  t h e  v e r t i c a l  member t o  be 
m 

€ 2  = 0 

is  obtained and t h e  ca lcu la t ions  are ca r r i ed  out  f o r  t he  two above extreme con- 
d i t i ons .  When p = 0, with B as a parameter 

2 

(4.3.16) 

where 
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E te=ae. 1 
sina a : = 1 +m9=- 

B = 1 ,  f = 0 gives the  c r i t i ca l  buckling values.  This is expressed i n  the  
form of a graph by finding p1, p i ,  e t c .  with respect  t o  the  ex terna l  force Px 
from the  above equation and equation (4.3.15). (See Materials 94 [ t rans .  note  
"Materials" refers t o  the  sec t ion  immediately following t h e  biblicgraphy t o  t h i s  
sect ion.])  The r e s u l t s  f o r  ca lcu la t ions  i n  the  case i n  which ~2 = 0 are a l s o  
given graphical ly .  
t he  e f f ec t ive  shear  s t i f f n e s s  (&/dy), and t h e  angle of  t h e  wrinkles a are a l so  
determined but  it must be noted t h a t  as the  load increases  t h e  wave length of  
t he  wrinkles decrease. 

In  addi t ion  t o  t h e  above, t h e  e f f e c t i v e  width (bm = b .p l /p l ) ,  

R. Lahde and H. Wagner [139] conducted extensive experiments, and as a re- 
s u l t ,  it was found t h a t  with regard t o  t h e  values based on Wagner's ca lcu la t ions ,  
t h a t  i n  t h e  u l t imate  condition reached after buckling, t h e  values  found were 
considerably d i f f e r e n t  from those immediately a f t e r  buckling, and t h a t  t h e  com- 
pressive stress sustained by t h e  v e r t i c a l  member showed q u i t e  low values owing 
t o  the  effect iveness  of t he  p l a t e .  
of t he  f l a t  p l a t e ,  Wagner's tension force  theory no longer w a s  completely va l id ,  
and such a state i s  termed t h e  imperfect tension f i e l d .  
Lahde and Wagner demonstrate t he  problems of  t h i s  imperfect tension f i e l d .  

I t  was found t h a t  soon after the buckling 

The experiments of 

In addi t ion  t o  t h e  above, o the r  research on problems of  t h z  behavior G j  a 
f la t  p l a t e  a f te r  shear  and buckling include ana lys i s  f o r  cases o the r  than when 
the boundary configurat ions are rectangular ,  by E. Reissner (1343 and by Kondo 
11351, and Takeuchi's ana lys i s  [140] using correct ions f o r  t h e  case i n  which a 
bending load is  applied.  
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CHAPTER 4 /382 - 

RE I NFORC I NG PL4TES 

4.4.1. BUCKLING OF REINFORCING PLATES S U S T A I N I N G  COMPRESSION 

Problems i n  the  buckling of rectangular  p l a t e s  having re inforc ing  members, 
receiving compressive loads can be handled i n  t e n =  of or thot ropic  p l a t e s  i n  the  
case when the  space between re inforc ing  members i s  i.arrow. (See 4.2 .4  concern- 
ing  or thot ropic  p l a t e s ) .  When the  d is tance  between re inforc ing  members is wide, 
t he  cr i t ical  buckling load is determined from t h e  condition t h a t  the  e q u i l i b r i -  
um equation 

(4.4.1) 

For t he  case i n  which the  f l a t  p l a t e  between t h e  re inforc ing  members receives  
compression, and the  following boundary condi t ions are s a t i s f i e d .  
critical values are determined f r o m  t he  condi t ion t h a t  t he re  i s  cont inui ty  be- 
tween che def lec t ion  and the  de f l ec t ion  angle of t h e  f la t  p l a t e  on both s ides  
a t  t h e  pos i t ion  of t h e  re inforc ing  members, and t h a t  t h e  edge shear  force  and 
bending moment of '.:he p l a t e  respec t ive ly  form t h e  d i s t r i b u t e d  load and t o r s ion  
moment of t h e  reinforcinE members. That i s ,  

That is ,  the  

I M'=LIi+*=IOI:, 

a'sol. 
a t  -ALA,--, 

(4.4.2) 

where E I i ,  G J i ,  A i  and wi 
cross-section area. and d e h e c t i o n  of  t h e  i t h  an t i -def lec t ion  member. 

i nd ica t e  t h e  bending s t i f f n e s s ,  t o r s iona l  s t i f f n e s s ,  

Actually it is  very d i f f i c u l t  t o  obtain 2 
so lu t ion  completely sa t i s fy ing  the  conditions of 
equation (4 .4 .2 ) .  
quently a so lu t ion  is  obtained i n  which i n  the  
4th p a r t  of equation (4.4.2) t he  tors ion  s t i f f n e s s  
GJi  of t h e  an t i -def lec t ion  member i s  ignored. 
R.  Barbr6 [147] and H. Frahl ich [151] provide 
so lu t ions  f o r  t h e  case i n  which the re  is a re in-  
forcing member between p l a t e s ,  L. Rendulic [144] ,  
and J. Miles E1461 provide so lu t ions  i n  t h e  case 
when there  is a re inforc ing  member on the edge, 

For t h i s  reason, very f r e -  

Figure 4.4.1 
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i n  which cases G J i  are ignored. 

S. Timosiienko [143] presents  a so lu t ion  by the  energy 
method. 
r o t a t i n g  edges has a s i n g l e  reinforci1,g member i n  the  cen- 

cr i t ical  buckling values and the  cross-sect ion area and 
bending s t i f f n e s s  of  t he  rei,.forcing member d i f f e r  accord- 

As an example, t he  case i n  which a p l a t e  with 

shown i n  Figure 4.4.2. A coe f f i c i en t  ind ica t ing  the  

/383 6 = A l ( f * b ) l  - r=EI)@.n> -- 
S=D. r-a 

And when these  values are small, when the  s t i f f n e s s  i s  ade- 
quately la rge  and c lose  t o  the  c r i t i ca l  value i n  t h e  case 
i n  which the re  i s  no re inforc ing  member, they reach the  
poin t  where they agree w i t 1 1  t h e  c r i t i ca l  buckling values 

of a p l a t e  of h a l f  t h e  width. R. Barbre/ [147] determines the  minimum s t i f f n e s s  
value y m i n  necessary s o  t h a t  the  pos i t i on  of e ;  2 re inforc ing  member becomes a 
hinged s t r a i g h t  l i n e  and t h e  values are equal LO t he  c r i t i c a l  values of  a p l a t e  
of h a l f  the  width, as shown i n  Figure 4.4.3. 

90 I ,  ' 

I 9  ! - 
a/b 

Figure 4.4.2 . 

S. Timoshenko [143] and K. Barbre [149] and 
o thers  have analyzed and determined the  c r i t i c a l  va l -  
ues i n  a similar fashion f o r  t he  case i n  whicL the re  
is a re inforc ing  member i n  a d i r ec t ion  a t  r i g h t  angles 
t o  t h e  load. In t h i s  case, s ince  no compressive force  
is applied t o  t h e  re inforc ing  member,t%e term A. i n  
t h e  t h i r d  p a r t  o f  equation (4.4.1) becomes unnecessary 
and only t h e  bending s t i f f n e s s  of  t h e  re inforc ing  mem- 
b e r  has any inf luence on the  cr i t ical  values.  
t he  pos i t ion  of t he  reinforcing member matches the  
pos i t ion  of t he  segment i n  mind, f o r  the  f l a t  p l a t e ,  
except f o r  t h a t  of the  re inforc ing  member, t h e  cri t-  
ical value is  constant regardless  of the  s t i f f n e s s  of 
the  re inforc ing  member, and when it does not agree, 
the  cr i t ical  value is  g rea t e r ,  t h e  g rea t e r  t he  st iff-  
ness. Consequently, i f  re inforc ing  members are in-  

s t a l l e d  i n  order t o  raise the  buckling l i m i t  of  f l a t  p l a t e s  sus ta in ing  compres- 
s ion,  t h i s  object ive i s  not  achieved i f  i t  is  i n s t a l l e d  a t  the  point  where it 
matches the  segmented s t r a i g h t  l i n e  of t he  f l a t  p l a t e .  A t  least  it i s  neces- 
sary t o  res t r ic t  the  wave forms of  t h e  wrinklings by i n s t a l l i n g  more re inforc-  
ing members than the number of  segmented l i n e s .  However, ins tead  of i n s t a l l i n g  
l a t e r a l  re inforc ing  members i n  t h i s  way, t he  i n s t a l l a t i o n  of  longi tudinal  re in-  
forcing members i s  more e f f ec t ive  s ince  it i s  possible  t o  reduce the  width of 
buckling of the  p l a t e .  In addi t ion,  it i s  f u r t h e r  advantageous s ince  the  re in-  
forcing members themselves sus t a in  the  compressive load. 
s t i f f n e s s  of the  reinforcing member is l e s s  than ymin, the  increase i n  c r i t i c a l  
value is not marked. 

I 
8 

330 1. 

to 
When 

o u t 2 3 4  V b  

Figure 4 . 4 . 3 .  

O f  course, i f  t he  
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H. Frohlich [ l S l ]  and t h e  analyses by the  energy method of Arima, Okuda 
[153] concern the  case of re inforcing members i n s t a l l e d  l a t e r a l l y  and longitud- 
l n a l l y  while W .  Burchard [152] uses the  d i f fe rence  method t o  ca l cu la t e  f o r  the  
case i n  which there  a r e  re inforc ing  members on the  diagonals of a square p l a t e .  

4 . 4 . 2 .  R E I N F O R C I N G  P L A T E S  S U S T A I N I N G  S H E A R I N G  LOAD AND B E N D I N G  LOAD 

S. Timoshenko [155] uses the  energy method t o  determine the  c r i t i c a l  stress 
f o r  the case of buckling where a re inforc ing  p l a t e  sus ta ins  a shearing force,  
when there  a re  lateral re inforc ing  members on the  webs. 
minimum value of the bending s t i f f n e s s  of  t h e  re inforc ing  member necessary f o r  
t he  pos i t ion  of  the  reinforcing member t o  be on the  segmented l i ne .  
E1561 performs similar calculat ions.  

He a l so  determines the  

S. Way 

E .  Chwalla [159] and M. Hampl [I611 have determined the  buckling values 
f o r  the  case i n  which longi tudinal  re inforc ing  members a r e  a t tached t o  a rec- 
tangular  p l a t e  sus ta in ing  a bending load. When t h e  bending s t i f f n e s s  of t he  
l a t e r a l  E in fo rc ing  member is s u f f i c i e n t l y  g rea t ,  and i t s  pos i t ion  is  a segmented 
l i n e ,  t he  c r i t i c a l  value becomes higher,  and the  number of  half-waves a l s o  in-  
creases .  

E. Chwalla [159] analyzes the  c r i t i ca l  values i n  the  case i n  which longitud- 
i n a l  re inforcing members are i n s t a l l e d  on a rectangular  p l a t e  sus ta in ing  com- 
pression and shear.  I t  i s  d i f f i c u l t  t o  so lve  t h e  above problems by proceeding 
from equilibrium equations,  so  the  energy method i s  pr imari ly  employed. 

H. Schleicher [3] states t h a t  for t h e  s t i f f n e s s  required t o  increase  the  
c r i t i c a l  values by i n s t a l l i n g  many re inforc ing  members a t  set  i n t e r v a l s  on the  
web of a p l a t e  beam sus ta in ing  shear ,  it is  appropriate  t o  have a s t i f f n e s s  
which is twice the  values calculated by S. Timoshenko f o r  a s i n g l e  re inforc ing  
member. Chwalla states t h a t  f o r  webs undergoing bending, s ince  the  lengih- 
width r a t i o  giving the  minimum buckling value is  the  small value of 0.667, it 
is e f f ec t ive  t o  i n s t a l l  lateral  re inforc ing  members on t h e  compression s ide .  

4 . 4 . 3 .  MAX I MUM LOAD O F  RE I NFORC I NG P L A T E S  UNDERGO I NG COMPRESS I ON /384 

When a re inforc ing  p l a t e  sus ta ins  a compressive load, and the  bending 
s t i f f n e s s  of the  longi tudinal  re inforcing member i s  g rea t e r  than a c e r t a i n  
degree (> ymin), buckling first occurs i n  the  f l a t  p l a t e  panels between the  
reinforcing members, and the re inforc ing  members do not undergo de f l ec t ion .  
The f l a t  p l a t e  manifests the  phenomenon of e f f e c t i v e  width after buckling, 
at  the  compressive s t r e s s  i s  increased and a load acts upon only the  re inforc-  
ing members a t  the  areas  immediately next t o  them. Under such a s t a t e ,  t he re  
are various approaches t o  the question concerning under what conditions the  
maximum load of the  reinforcing p l a t e  i n  i t s  e n t i r e t y  arises, when a load i s  
applied.  That i s ,  the  following are considered responsible f o r  the maximum 
load being reached: 
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Deflection buckling of column formed i n  t h e  e f f ec t ive  width p a r t  of 
the  re inforc ing  member and panel (Euler buckliqg),  

Flexural t o r s iona l  buckling of re inforc ing  member (Lundquist's p r i -  
mary buckling),  

Local buckling of re inforcing member (Wrinkled buckling due t o  com- 
pression on free edge), 

Buckling of f l a t  p l a t e s  between r i v e t s  a t tach ing  re inforc ing  members 
t o  f l a t  p l a t e s  (buckling between r i v e t s ) ,  

Attainment of u l t imate  s t rength  of material by re inforc ing  member o r  
f l a t  p l a t  e .  

F. Wallace [163], E .  E .  Sechler [165] and H.  L. Cox [172] discuss  the  
col lapse of a re inforc ing  member due t o  Euler buckling. 
of the  p l a t e  i s  a function of the  stress ust of the  re inforc ing  member. 
ever, the value f o r  t h i s  d i f f e r s  according to t h e  inves t iga tor ,  such as KSrmbi, 
Cox and Marguerre and there  a r e  considerable d i f fe rences  i n  how t o  determine 
the  e f f ec t ive  width using which values .  The method f o r  doing t h i s  i s  first of 
a l l  t o  assume a ast during maximum load, determine the  e f f e c t i v e  width corres-  
ponding t o  t h i s ,  denoting it by bm. 
column which cons is t s  of t he  rz inforc ing  member and i t s  e f f e c t i v e  width (or  
estimates the  breaking stress from the  Column curves),  (H. B.  Dickinson and 
J. R. Fischel [170] claim t h a t  it is  necessary t o  determine t h i s  by experiment! 
and then repeat  the estimation of values several times u n t i l  they agree with 
the  ust which was first assumed. When ust i s  thus found, t he  m a x i m u m  load Pu l t  
i s  determined by 

The e f f e c t i v e  width 
How- 

One estimates the  buckling stress of the  

(4.4.3) 

If the  longi tudinal  re inforc ing  members are i n s t a l l e d  i n  a row and there  are 
a la rge  number of panels ,  one may employ addi t ion by f inding the  load f o r  each 
panel,  by the  above method. Yosiiiki [176] discusses  the  cases i n  which when 
there  is a d i f fe rence  i n  t h e  dimensions of t he  reinforcing members, addi t ion  
may be used and cases i n  which it i s  necessary t o  ca l cu la t e  taking the  smaller 
values of ast. by assuming t h a t  it i s  poss ib le  t o  approxi- 
mate the  load-deflection curve a%er buckling by a s t r a i g h t  l i n e  

Cox deternines  u 

( 4 . 4 . 4 )  

6 0  
where 

mean (= e f fec t ive  width) 1 increment of  average s t r e s s  - 
n increment of Q 
- =  - 

O s t  

In addi t ion,  Wallace, Sechler,  and N. J .  Hoff [168] determine PUlt ignor- 
ing the  load uk(b - bm)t sustained by the  non-effective p a r t  of the  panels,  and 
Hoff states t h a t  s ince  
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(4.4.5) 
P=Ee ( A l t + b . 4  

The increase i n  load of the  p l a t e  with respect  t o  the increase i n  e is 

(4.4.6) -- !385 

SO consequently i n  re inforcing s t ruc tu res ,  it is  necessary t o  use as an e f f e c t -  
ive  width 

Y 
(4.4.7) 

J. R.  Fishel  [171] gives the  e f f ec t ive  width i n  the  case when the  proper t ies  of 
the  mater ia ls  used i n  the  reinforcing members and t h e  f l a t  p l a t e s  d i f f e r ,  and 
Wallace, E .  E. Lundquist and C. M. Fligg [166] give the  e f f ec t ive  width of 
p l a t e s  on the  outs ide of the  reinforcing members. Yoshiki mentions t h a t  one 
call obtain good r e s u l t s  which agree with experimer.ta1 r e s u l t s  by determining 
the  maximum load from the  y i e ld  due t o  the  combination of bending stress and 
compressive s t r e s s  af ter  the  buckling of a column consis t ing of  the  re inforc-  
ing member and t h e  e f f ec t ive  width. 
er than the buckling of  the re inforc ing  member, and a t t r i b u t e s  t h i s  t o  i n i t i a l  
bending i n  a d i rec t ion  a t  r i g h t  angles t o  t h e  load. E.  R .  Reff [169] proposes 
experimental formulas f o r  Z-shaped re inforc ing  members. 

Cox has noted t h a t  the  load becomes grea t -  

H. Wagner [187] was the first to discuss  the occurrence of f l exura l  and 
tors iona l  buckling occurring under a compressive load, and l a t e r  E .  E .  Lund- 
q u i s t  and C. M. F l igg [166] descr ibe a method of applying t h i s  t o  re inforc ing  
p l a t e s .  This occurs pr imari ly  i n  sho r t  re inforcing members with a s p e t r i c a l  
thin-walled open cross-sect ions.  I t  is considered t h a t  t he  load which causes 
such f l exura l  and tors iona l  buckling i n  re inforc ing  members including e f f e c t i v e  
width gives the  maximum load of t h e  re inforc ing  p l a t e  ove ra l l .  

Local buckling a l so  occurs pr imari ly  i n  re inforc ing  members of  open cross- 
sec t ion  and i n  sho r t  re inforcing members. 
i c a l  stress i n  cases i n  which buckling occurs on the  f r ee  edge of a re inforc ing  
member i n  terms of  a rectangular  p l a t e  with one edge f r e e  and the o ther  edge 
supported, t he  load corresponding t o  t h i s  stress is  obtained as the  maximumum 
load due t o  t h i s  loca l  buckling. 
termined fo r  the  e f f ec t ive  cross-sect ion adding t h e  e f f ec t ive  width of the  
re inforc ing  member and the  p l a t e .  N .  J .  Hoff [168], H. L. Cox [172] and o thers  
discuss t h i s  type of damage. 

If one determines the  minimum c r i t -  

In t h i s  case,  t he  maximum load should be de- 

As f o r  buckling between r i v e t s ,  when p la t e s  which a re  fas tened t o  re inforc-  
ing members buckle due t o  compression, i n  the  in t e rva l s  between the  centers  of 
the r i v e t s ,  t h i s  buckling reaches a mavimum overa l l  load, according t o  W. L .  
Howland [177]. H.  B. Dickinson and J .  R.  Fischel [170] claim t h a t  the  maximum 
load i s  not reached even i f  buckling occurs between r ivecs ,  while E.  E .  Sechler 
[165] s t a t e s  t h a t  when buckling between r i v e t s  occurs,  the e f f ec t ive  width 
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rapidly decreases. A. Kromm [178] conducted experiments on the  case i n  which 
Z-shaped ,n .  shaped and Lr- shaped re inforc ing  members a re  a t tached t o  p a r t i a l l y  
c i r c u l a r  s h e l l s ,  and determined the  e f f e c t  o f  the dis tance between r i v e t  centers  
on the s t r e s s  a t  t h e  time o f  rupture ,  and on the  e f f ec t ive  width. 
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CHAPTER 5 

F L A T  P L A T E  STRUCTURES 

4 . 5 . 1  . BUCKL I NG OF F L A T  P L A T E  STRUCTURES UNDER COMPRESS I ON 

As f o r  problems of buckling due t o  the compression of f l a t  p l a t e  s t ruc-  
tu res  (Faltwerk) b u i l t  from combinations of f l a t  plates,  S.  Timoshenko [181] 
was the f irst  t o  s t a t e  t h a t  the  s t rength  of a column i s  determined from the  
buckling s t r e s s  of the flange p a r t  of the channel i n  thc case of a column b u i l t  
of f l a t  p l a t e s  i n  channel form, which undergoes compression, and l a t e r ,  r - ~ b -  
lems of buckling of columns with various types of cress-sect ions;  i . e . ,  
Z ,  Hut, holiow rectangle  and hollow t r i ang ld ,  were t r ea t ed  by S. Timoshenko 
[182], E .  E .  Lundquist [183] and Kuranishi [184], [185]. In such problems, 
t he  s ides  of which t h e  column is composed, are considzred as f l a t  p l a t e s  and 
the  c r i t i c a l  buckling values a r e  determined i n  such a way as t o  s a t i s f y  the  
cont inui ty  conditions of t he  def lec t ion ,  def lec t ion  angle,  e t c . ,  between 3d- 
joining p l a t e s .  Moreover, according t o  Kuranishi, i n  rhannel cross-sect ions,  
C-forms w i t n  very small end-wall surface widths and Hut Lross-sections,  i n  which 
the  compressive s t r e s s e s  cannot mair,. Ain equilibrium around the  centroids  of 
the  cross-sect ions,  the  buckling of t h e  wall su l face  gives the  maximum load 
f o r  the column, and i n  columns with o ther  types of crrbs-sect ions,  when the  
average compressive s t r e s s  am reaches the value gj-,en by the  I'ollowjng equation, 
t h i s  i s  the maximum load. 

r'gle, 

1386 

(4.5.1) 

In the above equation, km is  the  coef f ic ien t  determined by the  cross- 
sec t ion  configuration and i f  t he  back surface wicith i n  rectangular ,  C and Hut 
forms is  constant,  km is la rge  when the  s i d e  wall  sur face  width is  small. When 
the  back and side-wall  surfaces  a re  constant ,  km is l a rge r  f o r  a rectangle ,  
than f o r  C-forms o r  Hut forms. 

When a colwm made of f l a t  p l a t e s  undergots compression, t he  f l a t  p l a t e s  
comprising the column walls described above, buckle, and the  column col lapses .  
In addi t ion,  Euler buckling i s  a l so  present ,  according t o  which f l exura l  buck- 
l i ng  occurs throughout the  c o l * m ,  causing col lapse.  
s ince  it i s  determined by following what i s  s t a t e d  i n  p a r t  2 .  In c o l m s  made 
of f l a t  p l z t e s ,  a compound buckling takes place i n  each cross-sect ion of the  
column, causing twis t ing  and bending with respect  t o  the  ax is .  This problem 
is t r ea t ed  by H. Wagner and W .  Pretscher [187], and l i t e r  by E .  E .  Lundquist 
and C. M. Fligg [188] and by R.  Kappus [190]. 

This i s  not t r ea t ed  here ,  

According t o  Wagner, when columns having cross-sections o ther  than c i rcu-  
l a r  undergo tors ion ,  the  l i n e  element in t he  d i r ec t ion  of column length under- 
goes displacement i n  the  d i rec t ion  of column length; consequently, a d i s t r i t v -  
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t i on  o f  axial forces  is  formed i n  the  la teral  cross-sect ion of t h e  column. In  
Figure 4.5.1, + 

between poiEi. 
. f ference A( i n  displacement i n  the  d i r ec t ion  of the  ax is  

2 i 2  crass-sect ion x is  

A.+%.r4jS=-kA I; 9 
s 4 

Consequently, t he  axial s t r e s s  a i s  

(4 .5.2)  

(4 -5.3) 

Therefore, for the tors ion  moment, i f  one adds the  component due t o  t h i s  ax ia l  
force,  i n  addi t ion t o  the tens corresponding t o  t h e  shear  stress, 

is  obtained. Where 

( in tegra t ion  is  ca r r i ed  out over e n t i r e  C.mr=su'dF. i ross-sect  ion) 

u i., the  degree of  longi tudinal  movement when 8 = 1 

,n a stress P is  applied t o  t h e  c3lVnnn, a horizontr.1 
corcpocent is  €0-med due t o  the  s lope of t h e  cross-sect ion 
and t h i s  gexza:es a torsior. moment M'with respect  t o  the  

/387 - 2 shear  center  

p=pisp*=p(i,s+c m i l )  (4.5.5) 

I 

e = eccen t r i c i ty  

rl = distance from neu t r a l  ax i s .  

Since the value of MI i n  equation (4 .5.5)  balances with M 
i n  equation (4.5.4),  t he  following equation is  obtained as 
an equilibrium condition. F i g u r e  4 . 5 . 1  

~c,~%; + (pip'- GI J r )  - d v  =O (4 .5 .7 )  d s  

Solvinq, m d e r  the  coxlii t ions $ = 0, $ I 1 =  0 a t  t h e  ends 



i s  obtained as the  c r i t i ca l  value of to rs iona l  
compression. When there  i s  no eccen t r i c i ty  

(4.5.8) 

and f l exura l  buckling due t o  

(4.5.9) 

is  obtained as the  cr i t ical  stress. 

Lundquist discusses Wagner's theory i n  greater d e t a i l  and claims t h a t  
Euler buckling is one spec ia l  so lu t ion  of t h i s  t o r s iona i  -qd f l exura l  buck- 
l ing .  
i t  f r o m  the  wrinkling-type buckling of t h e  f langes.  There has been new re- 
search i n  the  f l exura l  and to r s iona l  buckling of  f l a t  p l a t e  s t ruc tu res  by F. 
Bleich and J. N. Goodier (see Par t  2, Chapter 3). 

H e  also c a l l s  t h i s  type of damage "primary column uamage" and separa tes  

4 . 5 . 1 .  CONSIDERATIONS I N  D E S I G N I N G  FLAT PLATE STRUCTURES 

In designing s t ruc tu res  whose p r inc ip l e  members are f l a t  p l a t e s ,  it is 
ne 'ssary both t o  inves t iga te  what should be t h e  appropriate  s a f e t y  f a c t o r  with 
respect  t o  buckling, by ca lcu la t ing  t h e  cr i t ical  buckling stresses ak f o r  a l l  
poss ib le  types of buckling t h a t  may occur i n  a s t ruc tu re ,  and a t  t h e  same t i m e ,  
t o  determine the  s a f e t y  c h a r a c t e r i s t i c s  with respect  t o  u l t imate  s t rength ,  
y i e ld  point  and l i m i t  of fa t igue .  
ment concelning w h t  t he  s a f e t y  f a c t o r s  should be with respect  t o  buckling i n  
t h i s  case s ince  the  effects of various f ac to r s  are involved, such as the  purpose 
of the s t ruc tu re ,  load conditions and estimation o f  them, form of  s t r u c t u r e ,  
p rec is ion  of workmanship, presence or absence of o r i g i n a l  def lec t ion ,  accuracy 
of calculat ion> o f  c r i t i ca l  buckling stress. A s a f e t y  f a c t o r  of  1.5 and 2.0 
i s  taken f o r  such s t r u c t u r e s  as bridge g i rders ,  where r e l a t i v e l y  grea t  s t i f f n e s s  
i s  required,  while t he re  are extreme cases where a f a c t o r  of  less than 1.0 is 
required fcr shear  buckling i n  the  ou te r  sk in  of aircraft. 

I t  i s  not poss ib le  t o  make a geneial  state- 

The Archi tectural  Society [191] makes a d i s t i n c t i o n  between short-term and 
long-term loads,  reconn.ieriding a s a f e t y  f a c t o r  of 1.0 i n  the  case of short-term 
loads f m  simple bending and shear ,  of 1.5 f o r  uniform compression, and a fac- 
t o r  of 1.5 times g rea t e r  than t h a t  of short-term loads f o r  a l l  long-term loads. 
Generally, when a k  i s  above the  proport ional  l i m i t ,  s ince  the  r a t i o  of t h e  
buckiing load t o  the  maxinun load is close t o  1, it i s  necessary t o  use a l a rge  
sa fe ty  fac tor .  
t h a t  at  loads lower than the  c r i t i c a l  load, lateral  def lec t ion  occurs and no 
buckling phenomenon i s  c l ea r ly  manifested, the  s t i f f n e s s  also decreases. I t  i s  
advisable t o  make a large sa fe ty  f a c t o r  estimate.  Moreover, i n  t h e  case of com- 
pressive loading, where the re  i s  i n i t i a l  def lec t ion  i n  a d i r ec t ion  a t  r i g h t  
angles t o  the  d i r ec t ion  of load, o r  i n  t h e  case of shear  loads, there  i s  a ten-  
dency i n  calculat ions f o r  the  cr i t ical  values t o  increase due t o  the  inf luence 
only of the i n i t i a l  dcf lec t ion ,  5ut  s ince  there  is a marked decrease i n  s t i f f -  
nes;, and it i s  possible  f o r  buckling t o  occur rap id ly  at  loads lower than those 

When there  is i n i t i a l  defLEtc,ien, s ince  it is general ly  t h e  case 
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observed i n  s h e l l s ,  it i s  not des i rab le  t o  reduce the  sa fe ty  f ac to r ,  taking 
i n t o  account t h e  presence of the  i n i t i a l  buckling. /388 

In t h e  event t h a t  t h e  r a t i o  of the  length t o  the  width of the  f l a t  p l a t e  
sect ion (e .g . )  when a/b13 a t  t he  end ro t a t ing  on four  s ides  i n  the  case of a 

compressive load, as, -.,'b&2 with a xorsional load, it is  appropriate  t o  con- 
s i d e r  t h a t  buckling w i l l  always develop under these  load condi t ions a t  t h e  
minimum buckling load l i m i t .  

- 

TABLE 4.5.1 

Minimum Actual -H&f-wave Len w- 
Load 1 Edge Conditions j Bucklin (plate width %) (d J 

s i mp 1 elEnds rotating on 4sides I 4 0  , 1.0 

COm- d cndswithsides freeand rotating6.98 I 0.66 res - b ends with rotating sides 

s ion bendswi%n&srotaung a ends wi j es frecand rotating 0.982b.i&+0.425 rn i n i mum ok when a/b=m 

.g GJEF free.and fi ed-  1.28 I 1.635 si ero ta t ing ids  - 
I. 

End with4 sides rotating 1 5-335 ; 1.25 

s i mp 1 e \Ends with 4sides rotating 1 23.9 1 0.667 

S h e a r i 4  s i d e s  f ixed i 9.0 1 0.8 

bending: 4 s ides  f ixed 1 33.6 I 0.475 

There are cases i n  which, when it i s  necessary t o  increase  the  cri t ical  
buckling value when the  length t o  width r a t i o  of t he  p l a t e  is l a rge  in s t ead  of  
increasing the  p l a t e  thickness,  t he  object ive is achieved by r e s t r i c t i n g  the  
buckling wave forms produced, by using re inforc ing  members. For such a pur- 
pose, it is more e f f ec t ive  t o  use longi tudinal  re inforcers  ( re inforcers  para l -  
lel  t o  the  d i rec t ion  of load) f o r  t h e  compressive load, r a t h e r  than use later-  
a l  re inforcers .  Even w2 en a bending load is sxstained,  longi tudinal  re inforc-  
ers should be used on the  s i d e  of compressive stress (see E.  Chwalla [SI). 
Also, f o r  such purposes, it is  e f f ec t ive  t o  increase the  required s t i f f n e s s  of  
the  i n s t a l l e d  re inforcers  t o  g r e a t e r  than y,in and it is meaningless t o  put  
them i n  t he  pos i t ions  of t h e  segmented l i n e  i n  t h e  case i n  which r e in fo rce r s  
are not used. For the  f l a t  p l a t e  panels t h a t  are thus separated by re inforc ing  
members, if the  method of attachment of t h e  re inforcers  is by a s i n g l e  row of 
bo l t s ,  o r  by welding, when the  def lec t ion  of both s ides  of t he  r e in fo rce r  
causes buckling i n  the  fonnof asymmetrical wave forms, t he  c r i t i ca l  value 
used should he t h a t  of t h e  panels.  
A symmetrical form i s  used fo r  the re inforc ing  member i f  s a i d  msmber has a 
large degree of  s t i f f n e s s  with respect  t o  to rs ion ,  i f  moxe than two rows of 
b o l t s  are used (buckling form I11 i n  above reference) .  

(See buckling form I i n  "Materials 1001l). 

Siiliply s t a t e d ,  t he re  
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i s  no object ion t o  considering t h i s  as a s i n g l e  rec tangular  p l a t e  with t h e  con- 
d i t i o n  of ro t a t ing  cnds f o r  t h e  former, and f ixed  ends for t h e  l a t te r .  

I? a f l a t  p l a t e  sus ta in ing  a combination of stresses including compres- 
s iov ,  bending and shear ,  t h e  equations f o r  determining the  sa fe ty  f a c t o r  f o r  
t he  auk i n  t h e  following equztion or t h e  y i e l d  point  stress us are given i n  
D I N  E 4114 [9]. 
U l k  and t h e  shear  l i m i t  buckling stress by Tk, 

Denoting t h e  compressive o r  f l exura l  buckling l i m i t  stress by 

(4.5.10) 

where a1  and T i nd ica t e  respec t ive ly  t h e  compressive, and bending and shear  
s t r e s s e s  used. 

(4.5.11) 

The sa fe ty  f ac to r s  determined by t h e  above equations.  However, when 
uk < uvk)  
t o  1.6 are given f o r  t h e  sa fe ty  f a c t o r  with respec t  t o  t h e  var ious condi t ions 
f o r  br idge g i rders .  

f 389 
i s  calculated,  or us is ca lcu la ted  i f  U,k 2 us. Values of 1.4 

In the  following Standards f o r  Calculat ions o f  S t e e l  S t ruc tu res  of t h e  
Architectural Society [191], t h e  following b a s i c  formulae are given for design- 
ing  the  same type of  web p la t e s ;  t h a t  is, i n  t h e  webs o f  p l a t e  beams, denoting 
p l a t e  thickness by t ,  web width by b, i f  t / b  < 1/80 i n  p laces  sus ta in ing  com- 
pression when t / b  < 1/30, it is  necessary t o  s a t i s f y  t h e  following equation 
(-1.5.12) f o r  t h e  m a x i m u m  compressive stress u ,  and shear  stress T occurr ing i n  
the  rectangular  p l a t e s .  

(4.5.12) 

soof. 
fx= (allowable buckling stress of p l a t e  sus t a in ing  

fl(+T k1 compression) 
Here 

fc  = allowable compressive stress 

&=I. 5 -a/& 

Umta (simple bending a = 2) 
4- (simple compression CL = 0) 
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and when jt>T- 2 f e  the  following f l ’  i s  used i n  place of  f l .  
cc 

so0 fc 

(+) shear) 
f a = F k a  (allowable buckling s t r a i n  of p l a t e  undergoing 

k,=5. 4+ - (where dZ11 a= 
+4 c ” 8 < 0 .  5.4 - -8’ 

L. S. Moisseiff [193] ca l cu la t e s  t h e  cr i t ical  stress as follows, includ- 
ing  cases when t h e  proport ional  l i m i t  is exceeded. H e  gives  a system f o r  de- 
termining p l a t e  thickness s o  t h a t  a s u i t a b l e  s a f e t y  coe f f i c i en t  i s  obtained 
f o r  t he  c r i t i c a l  stress. 

(4.5.13) 

E t  is the  value of E corresponding t o  the  buckling stress af ter  t h e  proportion- 
a l  l i m i t  is exceeded. The stress used u and t h e  p l a t e  thickness  are de ter -  
mined such t h a t  t he  s a f e t y  f a c t o r  becomes 2 with respect  t o  the  compression 
s i d e  flanges of p l a t e  beams and p l a t e s  sus ta in ing  compression. 
and u = u i / 2  determining p l a t e  thickness  f o r  carbon s t e e l ,  t h i s  i s  

- /390 
Assuming 0- 

(4.5.14) 

And the  required p l a t e  thickness is determined with respect  t o  Finding 
b / t  f o r  k : 4, which gives the  rninimum c r i t i c a l  buckliqg value of ends with 
r o t a t i n g  edges, f o r  compressive loads from the  above equation, with a y i e l d  
point  stress us = 36,000 lbs/ in*,  t h i s  i s  5C and when b / t  i s  above t h i s  value,  
(p l a t e  thickness decreases with respect  t o  width) s ince  i t  becomes necessary 
t o  consider buckling, he says t h a t  the design should be ca r r i ed  out  f o r  a value 
below 50. 
the  same manner f o r  compession members with free s ides .  
value of  k i s  0.43 and the  s ides  are r o t a t i n g  ends and 1.28 when they are f ixed 
ends. 
welded members. For r o l l e d  s t e e l  members and r ive ted  f langes,  he gives 

u. 

He a l so  gives the  width/thickness r a t i o  reaching the  y i e l d  point  i n  
In t h i s  case, the  

He a l s o  gives values of b / t  f o r  r o l l e d  members, r i ve t ed  members and 

C b=mJ 
t 
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For flanges c f  welded menbers 

(4.5.16) 

For a: minum a l loys ,  the coe f f i c i en t s  of  equations (4.5.14) and (4.5.15) are 
respect ively 2,180 and 3,500. 

Moisseiff a l so  Zil-es d e t a i l s  on columns made of re inforced p l a t e s  having 
reinforcing members i n  longi tudinal  and lateral  d i r e c t j  ons , and on methods f o r  
designing webs of p l a t e  beams. 
panels,  and consequently the  number and d is tance  between t h e  centers  of the  
re inforcers ,  so  t h a t  the  maximum allowable width/thickness r a t i o  is obtained 
f o r  the  p l a t e  panels (50 in  steel members) and t o  determine tLe dimensions of 
the re inforcers  so  t h a t  the buckling str3ss of  the beams on columns, including 
a l l  of the  re inforcers  thus determined, i s  equal t o  t h a t  of the  panels.  In 
t h i s  manner, he gives design formulas f o r  columns and p l a t e  beams. I f ,  i n  such 
a case, a sa fe ty  f a c t o r  of 1.5 is  taken f o r  the bending o r  shear  buckling of 
webs of  p l a t e  beams, o r  a f a c t o r  c ; l  1.4 f o r  t h e  combination of  the  two, t h i s  
coincides with a s a f e t y  f ac to r  of 2.0 f o r  the  buckling of f la t  p l a t e  panels 
and is  s u f f i c i e n t .  

H i s  approach i s  t o  determine the  number of 



CHAPTER 6 ,(SUPPLEMENT) 
BUCKLING OF SANDWICH PLATES 
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The increase i n  speed of aircraft  has been accompanied by a necessi ty  f o r  , 

reducing t h e i r  weight. 
s t rength  has become necessary, 2nd sandwich p l a t e s  hzve come t o  \e used f o r  
t h i s  purpose. 
a core,  covered on both s ides  with a th in  meta; sheet ing ca l led  facing.  By 
increasing the  i n t e r v a l  between the  facings from the  neut ra l  ax i s ,  they aim a t  
reducing weight and increasing bending s t i f f n e s s .  In addi t ion,  sandhci i  p l a t e s  
have the advantage of improving v ib ra t ion  cha rac t e r i s t i c s  due t o  th r , i r  a t tenu-  
a t ion  and a r e  e f f ec t ive  i n  in su la t ion  aga ins t  sound and heat .  
moisture res i s tance  are required as core materials, f o r  which purpos? l i g h t  
wood (balsa ,  cryptomeri), e x t r a  materials (made from p lan t  f i b e r s ) ,  +LW 
materials (foam rubber, sponge, e t c . ) ,  honeycomb s t r u c t u r e s  (gl: ;s Zibers,  
paper),  and aluminum corrugated mater ia l s ,  and aluminum f o i l  are used. Thin 
metal p l a t e s  are general ly  used as facings,  mid. are at tached by means of a 
spec ia l  resonance glue ( a r a l d i t e ,  radax, e t c . )  t o  the  core.  Together with the  
rapid progress i n  the development of such adhesives, the  uses of  sandwich 
p l a t e s  are r a p i d l y  expanding. 

For t h i s  reason, an increase i n  the s t i f f n e s s  'and 

Sandwich p l a t e s  cons i s t  of a l i g h t ,  non-metallic p l a t e  ca l l ed  

Light weight and 

In terms of elastic s t a b i l i t y ,  t h e  buckling of  sandwich p l a t e s  are divided 
One is  ca l led  ove ra l l  buckling o r  quasi-Euler,  when the  fac;ng i n t o  two types. 

and core buckle together ,  and wrirkl ing 
wrinkles occur on the facing,  when the  core  breaks up. 

o r ,  r i p p l e  type buckling, when 

Overall buckling has been inves t iga ted  over a long per iod o f  time, and 
s ince  it is  easy t o  s implify many of the  problems with t h i s  type of  buckling, 
various bas i c  hypotheses are es tab l i shed  which are cms ide red  t o  be v a l i d  i n  
solving such problem.  For example, (1) t h e  ccre undergoes only shear  defor- 
mations. 
(3) The bending s t i f f n e s s  of t he  facing is  disregarded. 

(2) Some of  t he  noma1 stresses and/or shear  stresses are disregarded. 

E .  Reissner [194] t r e a t s  sandwich p l a t e s  as a combinaticn of a fac ing  
which has no bending s t i f f n e s s  and a core which resists only shear  deformation 
within the  7lme v e r t i c a l  t o  it and expansion and contract ion i n  the d i r ec t ion  
of the p l a t e  thickiiess, and obtains  the  following d i f f e r e n t i a l  equation of 
buckling. 

Herc, t = p la t e  thickness of fac ine ,  h = t o t a l  thickness ,subscr ipt  "f" 
hyphen "c" core.  
p l a t e ,  where Gc + - denoting the  form of def lec t ion  by w = s i n  (m.rrx/a) s i n  

This equation agrees wi th  the equation f o r  an i so t rop ic  

462 



(nny/b), f o r  the buckling values when a rectangular  p l a t e  having supported 
edges undergoes suppression i n  one d i r ec t ion ,  he obtained 

1 ,  

Also P .  Sei&:. and 2 .  Z. Stowell [19b] u$ed the theory of C. Libove and S .  B /392 
Batdorf [l%], see below, f o r  sandwich p l a t e s  with supported edges, ca lcu la te  
seven physical constants on the bas i s  of the  same hypotheses as Reissner, 
obtain the Same r e s u l t s  as Reissner, and show t h a t  they agree well  with the  
experiment values.  
applying p l a t e  theory,  on the  bas i s  of E. Z .  Stowell ' s  p l a s t i c  deformation 
theory [218], make correct ions f o r  t he  Poisson's r a t i o  v ,  g ive analyses f o r  
sandwich p l a t e s  (v = 13) with supported edges, and i n f i n i t e  length,  i n  which 
the  facing material is aluminum and uncast  s t e e l ,  and compare t h e i r  r e s u l t s  
with the experimental values .  
the experimental values.  

In addi t ion,  they analyzed buckling i n  the  p l a s t i c  region 

The theo re t i ca l  values a re  8 t o  25% higher than 

More exact theory is required f o r  cases not f a l l i n g  under the above 
hypotheses, i . e . ,  cases i n  which there  i s  a r e l a t i v e l y  th ick  facing on a core 
with large bending s t i f f n e s s .  A. C. Eringen [197], considering both facing 
and core t o  be i so t rop ic ,  divides  the s t r a i n  energies i n t o  (1) bending elonga- 
t i on  and shear  energy of facing,  (2) l a t e n t  shear  energy i n  cc t e ,  (3 )  work 
performed by external  forces ,  expands the de f l ec t ion  i n t o  a double series of 
a s i n e  function and subs t i t u t e s  i t ,  simuLtaneously t r e a t s  overa l l  buckling and 
wrinkle buckling, and f o r  rectangular  saTidwich p l a t e s  +*i th  supported edges, 
he gives graphs of the minimum buckling stress combining equations f o r  the  
two types of buckling. S.  V .  Nardo [198] a l s o  gives the same type of calcula-  
t ions f o r  the  ove ra l l  buckling of rectangular  sandwich p l a t e s  with the  loaded 
end f ixed (other end supported).  
s t i f f n e s s  of the core, f inds a r e l a t i v e l y  general  form f o r  the equilibrium 
equation, and obtains  the same type of equations from energy ca lcu la t ions .  
an example of i t s  appl icat ion,  the  minimtln buckling value of a rectangular  
p l a t e  supported on four  s ides  i s  given i n  the following form. 

Ideda [199] even considers t he  bending 

AS 

Here D' = bending s t i f f n e s s  of p l a t e s ,  disregarding the  bending s t i f f n e s s e s  
of the facing and the core.  This corresponds t o  the D i n  Reissner 's  equation. 
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IC=-, h = spacing between center  planes of both cores .  I f  i n  t h i s  
(Ph'G) 

equation one assumes D = Df = 6, 'this'matches Reissner 's  equation completely 
C 

( A  = 1). 

4s mentioned above, Eringen and H.  Neuber [200] provide a so lu t ion  f o r  
r ipp le  type buckling. J .  N .  Goodier and C .  S .  Hsu [201] found t h a t  with 
respect t o  sandwich p l a t e s  having a spec ia l  core  (ca l led  an "antiplane core") 
having "antiplane s t r e s s "  (such t h a t  with respect  t o  deformations within the  
plane,  the s t i f f n e s s  i s  0,  and the  core only resists t e n s i l e  stress and shear  
i n  the d i r ec t ion  perpendicular t o  t h e  plane) ,  r i pp le  type buckling could be 
handled i n  terms of problems of columns on an e l a s t i c  base.  
they showed t h a t  they were unable t o  give minimum values f o r  s i n e  funct ion 
type r ipp le  buckling of sandwich p l a t e s  with both ends f r e e  o r  with r o t a t i n g  
ends, and t h a t  asymmetrical buckling occurs with respect  t o  the  center  plane 
of t h e  core, such t h a t  deformation is l imited t o  bothends,  and the  o ther  p a r t s  
remain f l a t .  Syed Yusuff [202], inves t iga ted  t h i s  i n  g rea t e r  d e t a i l ,  divided 
r ipp le  buckling i n t o  two types,  obtaining a square root  equation 

A t  the  same time, 

when the shearing force  i n  the core  is not taken under considerat ion,  and when, 
i n  the same form as Goodier so lu t ion ,  t h a t  shearing force  is  considered, a 

1 
cube root equation u = 0.961(EtEcGc)F is  obtained. This agrees,  except f o r  

the constant coe f f i c i en t s  with the equations of  N .  J.  Hoff and S. E .  Mautner 
[203], D.  Williams [204] and E .  Gough [205]. He showed t h a t  t hese  so lu t ions  
agreed well  with the experimental values both f o r  the wavelength and c r i t i c a l  
load. 

c r  

Libove m d  Batdorf [196] t r e a t  a sandwich p l a t e  as a s ing le  i so t rop ic  
p l a t e  and der ive  a bas i c  equation, taking the  effmct of shear  i n t o  account. 
The seven physical constants i n  the  equation a r e  . ,  Aermined experimentally. 
M .  S te in  and J .  Mayers [206] have s tudied  i n i t i a l  curvature.  

In the Committee Report [207] on Airforce-Navy-Civil Aircraft design 
c r i t e r i a  of the U . S .  Munitions Board Committee, sandwich p l a t e s  a r e  c l a s s i f i e d  /393 
i n t o  the following three  types according t o  t h e i r  s t r u c t u r a l  materials: 

(1) i so t rop ic  p l a t e s :  i n  which the facing and core are i so t rop ic  within 
the  plane 

( 2 )  o r tho t ropic  p l a t e s  

(3 )  corrugated sandwich p l a t e s :  facing at tached t o  both faces  of corrugated 
members. 
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Many papers  [208,  209. 210, 211, 2121 g i v e  design schemata f o r  var ious  
edge and load condi t ions .  
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CHAPTER 7 (SUPPLEMENT) 
P L A S T I C  BUCKLING OF RECTANGULAR PLATES 

When the thickness t of a p l a t e  i s  t h in  i n  comparison w i t h  i t s  width b,  
i . e . ,  when t / b  i s  small ,  the  c r i t i c a l  buckling s t r e s s  i s  lower than the  propor- 
t i ona l  l i m i t  s t r e s s  u and so-cal led e l a s t i c  buckling occurs,  but as t / b  

becomes g rea t e r ,  the c r i t i c a l  stress increases ,  the values found by the methods 
of ca lcu la t ion  i n  Chapter 2 exceed the  proport ional  l i m i t ,  and the yield-point  
stress u is a l so  exceeded. When such a a t a t e  i s  reached, t he  e l a s t i c i t y  
modulus a t  the c r i t i c a l  value d i f f e r s  from Young's modulus, and the c r i t i c a l  
values found as the above e l a s t i c  buckling, s ince  low values were obtained. 
They give vslues t h a t  a r e  excessively high and incons is tan t .  
ena i n  such 3 s t a t e  a re  re fer red  t o  as p l a s t i c  buck1,ng. 

P' 

S 

Buckling phenom- 

A long time ago, E .  Lamarle (18451, .4. Considere (1889) and o thers  found, 
with respect  t o  the p l a s t i c  buckling of columns, t h a t  within t h e  range of 
app l i cab i l i t y  of Euler ' s  formulae, the  c r i t i c a l  value reaches u 

c r i t i c a l  values above t h i s  a r e  given, ca lcu la t ions  should be performed using 
somewhat lower values i n  place of Young's modulus E .  In addi t ion ,  the  f o l -  
lowing theor ies  were proposed: F .  Engesser s tangent modulus theory (1889) 
( in  which he claimed t h a t  i n  place of E ,  a tangent modulus E t  should be used, 

corresponding t o  the  c r i t i c a l  buckling s t r e s s ) ,  the  conversion coe f f i c i en t  
theories  of F. Engesser (1895), T. von K&nnAn (1909), R.  V .  Southweil (1912) 
(according t o  which, when buckling and bending occurs,  s ince  the compressive 
s t r a i n  on the convex s ides  decreases,  the s t r e s s - s t r a i n  r e l a t ionsh ip  i s  given 
by Young's modulus, and s ince  t h e  compressive s t r a i n  on tile concave s i d e  
increases ,  ca lcu la t ions  should be performed using the tangent modulus corre- 
sponding t o  the compressive s t r a i n ) .  Whereas theo re t i ca l ly ,  the  conversion 
coe f f i c i en t  c r i t i c a l  values ( thc c r i t i c a l  values found using conversion coef- 
f i c i e n t s  i n  place of Young's modulus) appear s a t i s f a c t o r y ,  i n  most cases the 
experiment r e s u l t s  showed values c lose t o  the tangent modulus c r i t i c a l  value 
(values found using tangent modulus) . 

and when 
P' 

In 1947, F .  R.  Si.aniey [213] performed ca lcu la t ions  based on a s implif ica-  
t i on  of the p l a s t i c  port ion,  and as a r e s u l t ,  he showed t h a t  even i f  the  tan-  
gent modulus c r i t i c a l  values are exceeded, a s t a b l e  condition can be maintained, 
hut the  increment i n  bending with respect t o  the increment i n  load rap id ly  
increases ,  the  s t r a i n  increases i n i i n i t  : ly  i n  the  conversion coef f ic ien t  c r i t i -  
ca! ' ties, and stahil i ' .?  cannot be maintained, That i s ,  the tangent modulus 
c r i r  11 values a re  considered t o  be the lower l.imit o f  the c r i t i c a l  buckling 
values,  and t h a t  i n  ac tua l  s t ruc tu res ,  the c r i t i c a l  values cannot be much 
higher than these.  

With regard t o  the  p l a s t i c  buckling of rectangular  f l a t  p l a t e s ,  S .  
Timoshenko [214] and F .  Bleich [215] s tud ied  cases i n  which compression is 
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sustained from one d i r e c t ;  Considering the decrease i n  bending s t L  .’ness 
due t o  d e c r e a e  i n  the moc..,ds of e l a s t i c i t y  only i n  the  d i r ec t ion  i n  which 
the  load i s  sustained,  they praposed 4 tnethd of ca lcu la t ion  which assumes no 
decrease ir. d i rec t ions  at r i g h t  angles t o  t h i s  i i r e c t i o n .  That is, dqnoting 
by G (=E /E) the r a t i o  of  t he  tangent modulus E and Youg’s  modulds, 

correspondi ig t o  the c r t t i c a l  s t r e s s ,  t he  equl‘librium equation was assumed t o  
be given by 

t t  t 

(4.7.1);/394 

the  second term re fe r s  t o  the  to r s ion  s t i f f n e s s .  The decrease i n  s t i f f n e s s  
in  t h i s  term i s  assumed t o  be proport ional  t o  

s t r e s s  i n  t h e  case o f  four  s ide  ro t a t ing  ends i s  given by 
q. From t h i s ,  t he  limits 

t h e  m i n i m u m  value begins a t  a/b = 5, ard i t s  value becomes 

(4.7.2) 

(4.7.3) 

Moreover, E .  Chwalla [216], M. RoS.and A. Eichjzger [217] consider t h a t  i n  
the p l a s t i c  s t s t e ,  t he  mater ia l  becomes i s o t r o p i c  and has the  sane modulus of 
e l x t i c i t y  i n  both d i rec t ions .  They obtained t h e  following equilibribm equa- 
t i on .  

(4.7.4) 

In t h i s  case, i f  the e l a s t i c  buckling value i s  increased ar times, the  

c r i t i c a l  value of p l a s t i c  buckling i s  obtained. 
conversion f ac to r  Er as the e l a s t i c i t y  modulus, and CL 

Moreover, Chwalla uses a 
= Er,/E. r 

After  t h e  i n i t i a l  development of the theory of p l a s t i c  buckling, there  
was a gradual increase i n  the  pu5l icat ion of new theor ies  of p l a s t i c  bucltling 
s t a r t i n g  around 1940, which took i n t o  account t he  s t r e s s - s t r a i n  r e l a t ion -  
sliip based on p l a s t i c i t y  theory.  On the  bas i s  of hencky’s theory of p l a s t i c  
deformation, E .  7 .  Stowell [218] D. d i j l a a r d  [219], E. Z. Stowell and R. A. 
Pride 1 2 2 ~ 1 ,  snd A.  A .  I lyushin [221] publisned papers, and the theor i ss  vf 
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G .  H.  Handelman and W. Prager 12221 and C. E. Pearson 12231 were published, 
which were based on Prandtl-Reuss's p l a s t i c  flaw thevry .  

. ,  

Stowell 's theory based on p l a s t i c  deformation theory is 2s follok-s. 
Assuming tha t  f r o m  the  f l a t  ::qte an inf ini tes imal  def lec t ion  w(x,y) occurs, 
the degree of change in s t r a i n  is givehiby 

(4.7.5) 

i n  p l a s t i c  deformation theory, with respect t c  two-dimensional state of stress, 

where 

E = Secant coef f ic ien t  
S 

from the change i n  s t r a i n  energy, 

(4.7.6) 

(4.7.7) 

(4.7.8) /395 

taking v = 0.5 f o r  the  p l a s t i c  deformation, and in s r r t i np  t..e relat ionship 

- = Et ,  from equation (4.7.6) 6ei 

6ai 

(4.7.9) 
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using t h e  relationship of equation (4.7.8.) a (4.?.9) 

(4.7.10) 

including the relationship (4.7.5) and (4.7. lo), and considering relationships 
such as 

# 

sM..=J-;&x.z& 
¶ 

the following relationships a r e  obtained for 6Mx, &My. 6Mxr. 

D'=- EI' 
9 

where 

Substituting equation (4.7.11) in an equilibrium equation, and ass-ming 
in particular ux = -u, u = T = 0, the equilibrium equation kecomes as follows. 

Y 

(4.7.12) 
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When in a slender flat plate the side parallel to the load is a rotating 
end, f o r  the stability limit stress u s . -  

. .- 

(4.7.13) 

is obtained. u is the elastic buckling limit stress. J396 

Handi?lman-Prager, following Prandti-Reuss plastic flow theory, proceeding 
E 

from the relationships 

where 

(4.7.14) 

daa <(2uz-a,)duz+( -ur+2ul)du,+6rdr) 
#4 2 a? -= 

for the state of two-dimensional stress, found 

a.=us +({1-+( g - 1)(E + 3)/( E + 1)Y +11 (4.7.15) 

as the stability limit stress when the long side parallel to the load is a 
rotating end. As a result, even considering the limit where E = 0, t 

is obtaineJ, when aE becomes large, a has a rather large value, giving a value 
which differs considerably from reality. 
improvement by taking Shznley's approach into consideration. 
fying the stress-strain relationship, and substituting the relationship 

C 
Pearson attempted to a further 

That is, simpli- 
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7 -de, & (.4+3)E 2(2 v + l - l ) E  
*- (5-4 b , . l - ( 1 - 2 ~ ) ~  ( 5 - 4 u ) l - ( 1 - 2 ~ ) ~  

IaE 
(5-4 u) l -  ( 1  -2 u)' 

2 2 u + l  l ) E  
(4.7.16) 

i n t o  the  lnoment equation, f inding t h e  balance condition equation, he derived 

where DU=.*D ( l + 3 )  1 9) 
(5- v l -  

(4.7.17) 

* D  
4 A( I-#') 

(5y4v) l - (1-2~)  

Dn=(l--J)[ (5-4~)&(1-2 2(2 u+R--l) v)' - ] O D  1 +u 1 

using v = 0.5, f o r  t he  s t a b i l i t y  l i m i t  stress f o r  a s lender  rectangular  ?late 

(4.7.18) 

was obtained. Pearson's r e s u l t s  a l s o  g ive  values agreeing roughly with the  
experiment r e s u l t s  when Et/E f 1, but when E /e : 0, high values are given, 

t 
as i n  Prager's r e s u l t s .  

/397 

W. Prager [224] o f f e r s  t he  following four  f ac to r s  t o  account f o r  t h e  fact 
t h a t  t h e  r e s u l t s  based on flow theory, which is considered more perfect  than 
p l a s t i c  theory,  show values which 2re mwe divergent from the  experiment 
r e s u l t s  than those given by deformation theory. i )  Effects of creep (Marin), 
ii> ef fec t s  of dynamic phenomena (Marin), i i i )  effects of i n i t i a l  i r r e g u l a r i t y  
such as i n i t i a l  def lec t ion ,  excent r ic  load, e t c . ,  (Lin, Pearson, Cicala, Duberg- 
Wilder), iv )  e f f e c t s  due t o  t h e  fact  t h a t  t he  assumptions of t he  r e l a t ionsh ip  
between stress and s t r a i n  i n  flow theory d i f f e r  from r e a l i t y  (Batdorf, Drucker). 
however, with regard t o  i ) ,  i i )  t he re  are inconsis tencies  even i n  the  range i n  
which these e f f e c t s  are no problem. 
theory f o r  the s t r e s s - s t r a i n  r e l a t ionsh ip  i n  i v )  and obtains  r e s u l t s  c lose  t o  
the  deformation theory. However, i n  s l i p  theory, determining the  e l a s t i c i t y  
range poses problems, and although it is considered t h a t  i n  t h i s  p a r t  t he  
increment of p l a s t i c  s t r a i n  is non-linear with respect  t o  the  increment i n  

S. B. Batdorf [225] proposes a s l i p  
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s t r e s s ,  t h i s  d i f f e r s  markedly from the  r e l a t ionsh ip  between stress and s t r a i n  
i n  flow theory,  where the  r e l a t ionsh ip  is l i n e a r ,  and it is  d i f f i c u l t  t o  say 
t h a t  i t  has then proven experimeritally. ' - .  

Figure 4; 7.1. 

F i g u r e  4.7.2. 

With regard to the  remaining problem, i . 9 .  
i n i t i a l  irregtlarities, E. T. Onat and D. C. Drucker 
[226] and J .  F. Besseling [227] consider a cruciform 
column having a t h i n  outer  sk in  outs ide of the  
nucleus (Figure 4.7.1) where the  in s ide  nucleus 
funct ions t o  maintain shape, and the  outs ide outer  
sk in  is used t o  support  the  load as a column. 
the  cruciform column undergoes compression, t he  
outs ide s k i n  p a r t  undergoes deformation according t o  
the  s t r e s s - s t r a i n  re la t ionship  i n  flow theory,  but 
owing t o  i n i t i a l  twis t ing  i n  the  cruciform column, 
the  buckling load decreases,  and t h e  values of  defor- 
mation theory are approached (Figure 4.7.2) . 
Ammmoto [228] derived a theory cf buckling from t h e  
strain-energy r e l a t ionsh ip  on t he  bas i s  of i n i t i a l  

When 

i r r e g u l a r i t i e s ,  considering 
a square sandwich p l a t e  i n  the  
center  of  a p l a t e ,  a model 
with st iff  p l a t e s  a t tached t o  
the  outs ide of t h i s ,  and t h a t  
i n  the sandwich sec t ion  only 
t h e  outer  skin reacts with 
resp,ect t o  compressive force.  
The increment of  s t ra in-energy 
Wfde'l due t o  t h e  increment i n  . *  

stress is given by equation 
(4.7.19-20) 

(4.7.19) 

wnere W (de) i s  the  increment i n  s t r a i n  energy when complete e l a s t i c  deforma- 

t i on  occurs,  and i s  given by 

/398 
E 
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9(1-1) 4=1+- WE($) 4 Eu~' 

(4.7.21) 

(4.7.22) 

(4.7.23) 

However, s i n c e  W (de) 

volume . 
is an expression of t h e  e l a s t i c  s t r a i n  energy pe r  u n i t  E 

W~(de+&)=W~(d€)+2 ZWs(d€. s)+X'WE(S)&O 

t h e  x where t h i s  equat ien  i s  assumed t o  be zero has no true rou te ,  so 

i s  t h e  case i n  which the re  are equal s igns  i n  t h e  above equation. 
words, t h e  case i n  which t h e  e las t ic  s t r a i n  is small and neg l ig ib l e  can be  
seen from (4.7.14) t h a t  is, when t h e  p l a s t i c  s t r a i n  i s  l a rge ,  and t h e  e las t ic  
s t r ? i n  i s  neg l ig ib l e ,  t h e  equation which ind ica t e s  t h e  s t r a i n  energy i n  (4.7.20) 
can be expressed approximately by 

In  o ther  

(4:7.24 
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When the p l a s t i c  s t r a i n  ?.s small and X C 1, t h e  second term i n  equation 
(4 .7 .20 )  becomes almost zero, and even In  t h i s  case equation (4 .7 .24 )  gives 
a lowe: approximation f o r  (4 .7 .20) . .  If the s t r a i n  energy is  given approxi- 
mately by equation ( 4 . 7 . 2 4 ) ,  it i s  poss ib le  t o  use t h i s  t o  f i n d  t h e  s b a b i l i t y  
l i m i t  s t r e s s  of p l a s t i c  buckling, exact ly  as i n  the  case of e l a s t i c  bqckling. 
In  t h i s  case it  i s  as if one were considering t h a t  t he  value of t ne  modulus of 
e l a s t i c i t y  decreased t o  1 / 6  = Et(pi)/E. 

a function of the  converted stress u wheil buckling occurs,  but when the  i n i -  

t i a l  def lec t ion  i s  zero c r  small, it may L e  considered a funct ion of the  com- 
pression stress component u .  

s c r i p t )  found by the tangent modulus using u is taken, corresponding t o  the  
s t a b i l i t y  l i m i t  stress act is found 3y t he  following equation 

Moreover, t he  tangent mOdUlUSl E is  t 
1 

When t h e  c r i t i c a l  s t r e s s  uEt (?  i l l e g i b l e  sub- 1399 

(4 .7 .25 )  

When A(ui) i n  t h e  v i c i n i t y  of stress a . Tapidly decreases,  as t h e  corn- c t  
c t '  p r s s i v e  s t r e s s  exceeds u 

creases ,  and Pct becomes the 

l i m i t  s t r e s s .  This uct i s  a 

s t r e s s .  When A(ui) does not 

t he  bending s t i f f n e s s  of t he  p l a t e  rap id ly  de- 

m a x i m u m  compressive stress, i . e . ,  t he  s t a b i l i t y  

low approximate value f o r  t h e  s t a b i l i t y  l i m i t  

r ap id ly  change i n  t h i s  v i c i n i t y ,  t he  decrease i n  

bending s t i f f n e s r  i s  nc- appreciable,  due t o  change i n  excess load occurring 
on the convex zide,  u 
In t h i s  case, t h i s  means t h a t  the  value of c r  found by using the  value of A 
corresponding 'to the  c r i t i ca l  buckling value based on the conversion f a c t o r  
gives a low approximate value of the  s t a b i l i t y  limits, i . e .  

i s  exceeded and t h e  p l a t e  can maintain i t s  s t a b i l i t y .  c t  

(4 .7 .26 )  

the  above i; Yamantoto's theory.  Yoshiki and Yamamoto [229] conducted experi-  
ments using alumimm p l a t e s  and s o f t  s t e e l  p l a t e s ,  and found t h a t  t h i s  theory 
agrees well with t h e i r  experiment values (see Figures 4 . 7  3 ,  4 . 7 . 4 ) .  

Tests  of p l a s t i c  buckling of f l a t  plates were conducted by C. F .  Kollbrun- 
ner [230], G .  J .  Heimerl [231], Watanabe [233] and R. A.  Pride [234] in '  addi- 
t i o n ' t o  those by Yoshiki and Yamamoto, but none of them agree with the flow 
theory. 
estimations a r e  made following Yamamoto's theory,  approximately employlng 

E (u.) o r 4 E - & / ( / ~ + ~ ) 1 n  place of Young's modulus, o r  one may use the  
t 1  3 '  

s t a b i l i t y  l i n i t  stress based on deformation theory.  

Consequently, i n  desiRning f l a t  p l a t e s  t h a t  undergo p l a s t i c  buckling, 

Apparently ne i ther  
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0 ' deformation theory nor flow theory 
has been used f o r  cases when the 

1 - e k e  condition is  e l a s t i c  support .  
F. Bleich [237], proceeding from 
equation (4.7.1) gives r e s u l t s  f o r  
ekes i n  which two opposing ,sides 
p a r a l l e l  t o  t he  load have e l a s t i c  
support ,  and i n  which one s i d e  has 
e las t ic  support ,  i n  which one s i d e  
i s  f r e e ,  and f o r  o thers .  Equation 
(4.7.1) is c lose  t o  equation (4.7.12) 

i 

sidered t h a t  these  r e s u l t s  are c lose  1400 
t o  each other  and can be used i n  

Buck1 ing tes ts  by 
0 :  voshki -Yamatnoto 

a2 
1. GK 

F i g u r e  4.7.3.  

0 - 
L.  0.b 

Figure 4.7.4.  
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Rectangu 1 a r  p 1 a tes 
MATERil ALS 

Simp 1 e comp r e s  i on  , 

Diagram and Bound..' Formulas or Tables of Resul ts I Ref.-Remarks. /bo1 
c o n d i t i o n  *i 

nd w i t h  4 s ides rc 

nd d i t h  4 s ides 
or=E e,. . 

a l u e  o f  k ,  F ig .  i n  0 are  h a l f  numt 

x\ I 0.5 1 0.75 1 1.0 1 1.25 ' 1.5 I 

1.75 1 2.0 1 2.75 1 3.0 1 3.5 1 
- .  

is h a l f  wave number 
ar=(Lb1/az+2.66+.Uaa/b') e#. 

10 

15 

1: 
18 
19 

15 

16 

r o t a t i n g  f i x e d  free m h  3oundary cond i t i ons  as fo!-- 
end 

w i d th  t h  i cknes Smodu us 

- end - end -'-*. e l a s t i c  sup- 1 ows 
ts - EZ' -- Young's ~ l P ~ i s ~ ~ n ' ~  p o r t  

12(,-,,a) (6): *= plate"p1ateE' r a t i o  
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iagram and Boundar 
Co d i t i o n  

Side a f'utea, 
ji.de b r o t a t i n q  

a 0 

F i g  

- -  - 
Side a r o t a t i n g  ' 
side b Fixed 

Side a f i x e d  
other  3 sides r o t ,  

r Formulas or  Tables of Results 

a/b I 0.4 0.5 1 0.6 I 0.7 

k I 9.45 I 7.69 1 7.05 1 7.00 

W b  I 0.8 I 0.9 1 1.0 j 1.2 

k I 7.30 1 7.83 I 7.69 1 7.06 

a/b I 0.5 1 0.625 1 0.667 I 0.713 I 1.0 

k I 7.75 1 7.01) 1 6.98 I 7.06 I 8.63 

a/b I 0.4 1 0.6 i 0.8 I 1.0 I 1.2 - 
k I 27.12 i 13.38 1 8.73 I 6.74 I 5.84 

a/b I 1.4 I 1.6 I 1.8 I 2.0 1 3.0 

k I 5.45 I 5.34 1 5.18 i 4.85 I 4.42 

a,@ 1 0.728 0.79 I 0.889 

k 1 5.47 1 5.41 I 5.51 

minimum value of  k = 5 .41 .  
BL aibr0.79. 

I- 

- 
Ref. Remarks :/402 ---- 

20 

15 

D. 

29s 

308 

-- 
22 

- 
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~ ~~ ~ - 

i Ref. Remarks /hO3 No. ]D iag ran  C Boundaryj Formulas o r  Tables of Results - 
Condition I 

la ,  ends w i t h  sides1 0, d0" 

I ! ;  

id. ends w l t h  s ides I f ree and ro ta t i ng  
Ib, ends w i t h  sides 

'.lb 10.5 11.0 11.2 11-4 11.6 1.8 ! 2.0 

& i 4-40 j 1-44 ! 1.14; 0.952 0.835 0.755 0.693 
I S I  

y b  ! 2.5 i 3.0 14.0 15.0 

k I0.61$ 0 . d  0.5d 

b. 
*4-42+ 7 

3Oa 

.I 

I 

I Test specimen 
e w ~ .  b=@'. t - i w  -soft s tee 1 
a jg 2"xrtxriJ' angle s tee1 
b a PxY'xfp' '  D .  

Calculated ra luqs of Pk 26 ton 
Test Val ues 29ton (31to31- 

(Determined by Cox's method) 
.- 
t= t i  $ 

33 

M 
35 
30 

5 25 
20 

15 

I ru 
5 

c. 

c 

-0 

c 

Comp res5 i v e  s t ra  i n 
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No. 10iagram 5 Bound.Coqd . Formulas o r  Tables o f  Results /Ref.R%arks 
Ends w i t h  sides ro a t ino ,  
compress ion te: i - t e s t  specimen 

30 0=55ormn, 

t=2mu1. 2.9mm. 

b==560-l818mm, 

4- tc5mm. 
‘he c r i t i c a l  
i ng Val ues gener-p-oa 

s some disaqree- -a3m*q fi7 
:ed Val ues . There 

11 17 agree w i t h  L%m*l 
ryan’s calcu la-  

-/“d = $PO/ - 0493 

rent due to the  
tqsni tclde o f  i n i -  
: i a l  de f lec t ion  Q f ,  , I b B , O  

Re c r i  t i  8aT vaPues ! d couf l  u a t i  n. t / b  (a t o 3  

35 

- - ComDressicn i n  t w o  d i rec t ions  

No. ! Diaaram & Bound Cond? Formulas or Tables o f  Results (kef .Remarks 

I 10 

I 
I 1 a - I  

I Ends w i t h  4 s ides  
I f ixed 

P E K.ts  

10 

4 79 



No. I Diagram C Boundan 
I Condition: 

11 

- 
a, end w i t h  side 1 

I2 1 b, end w i t h  sides 

Formulas o r  Tables of Results Ref. Ke~iarks -- 

Ked, 

U- 0. 5 fU Q 20 
h e r e  E 1s constant!: the ha l f  wave 
becomes an integer, for k, j2 i s  fo 
F rom the g raph . 
Case i n  which a-b (square) and ~ = l .  

0~=3.8299 a,. 

tnds i n  which side+ 
a,b are each f i x e d  
the other sides a r  

41 ( 7 t ~ ) t S  V d  
111 D 
p ab: .p=- - ' 

b a '  
y + a - j j -  

where a-odos. 

Case i n  which a-b (square) 

450 

1 -6.6 

Idoreover wheq a=l 
ae-3.3 ee 

-3.2316 a,. 

27 

26 

/405 

23 
I7 
26 

21 

imbe r 
id 

a6 



l4 

- 0 - 4  

Y 0' 
41 -+ 16- +'K) # D  a* b* 

3 i s  f ixed,  other 
3 sides ro ta t i ng  

b a 
6 b 

hR-- 

abl *+48- 
. 

where 8P#&=. 

Ends w i th  3 sides 
fixed, one s ide  
ro  

! 

w t  
r P  

Case i n  which a=b (square) 
I ~ ~ 2 4 . 3  - 

S + ~ O  ' 

h e n  m-1 

..r-2.69., 

=2.6627 8.. 

I P,=- * 

(W>' c 2 b  
n i x  8,Ss.+.. 

EP 
12(1-w') - B=a/b, D= where 

em922 

2 I Et'- P& -.- 
3(I - v' )  b e 

Cmpression due to  concentrated load 
No. [D and B Conditions I Formulas o r  Tables of Results 1 

iEnds w i th  4 sides I 
16 1 l r o ta t i ng  

I 

Tp ! 

lef. -Remarks 

/406 

26 

z f  . -Remarks 
~~ 

P 
31 D 

I i 
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1 i a. &Bound. Cond. 
Ends w i t h  4 sides 
r o t a t i n g  

I R e f ,  -Remarks - o n u l a s  or Tables of Results 

Ik' k a*. 

Table o f  k q[ 0.2 1 0.3 1 0.4 1 0-5 I 0.6 I 1 0.8 
I - 

I 36 1 145.5 I 65.7 38.8 26.5 1 19.1 12.2 

41 j 137.5 1 63.3 i 37.4 ; 25.4 1 18.8 I 12.3 

y! 1.0 1 1.2 I 1.4 I 1.5 1 1.6 I 1.8 
36 I 9.4 f 8.0 I 7.3 I 7.1 I 7.0 1 6.8 
41 I 9.3 I 8.1 I 7.4 I 7.1 I 6.9 I 6.6 
42 9.4 I 8.0 I 7.3 I 7.1 I 7.0 I 6.8 

Ler ._ 

1 8  

36 I 6.6 i 6.3 i 6.1 

41 1 6.3 I 6.0 1 5.8 
- 

42 6.6 6.3 I 6.1 

By cor rec ted  values 

1 ' I References 

1 9.35 I 40 

2 1 6.48 I 39 

' 

51 8 

QD 

Approximate equat ion 

k=4.W+- 5.34 

olb > I f-5.34+---. 4.00 

6' ' 

F 
where 

8 =ab. 

36 
41 
42 
40 
39 

37 
51 8 

En. 
t= -- 

l2( I -US) 

50. 

,/407 



Dia. 8 Bound. Coni 

:dge k i t h  4 f i x e d  
;ides 

0;b 

k 

Ends M i t h  side a 
Fixed, s ide b 
r o t a t i a n  - 

1.5 I 2 0  I 2.5 1 3.0 1 
7.78 I 6.70 I 6.40 I 6.17 5.35.. 

QO 

Znd wi th  s ide a 
ro ta t ing ,  s ide  b 
Fixed 

0.5 4 
k 59.04 

)ne side a free, 
3ther 3 sides 
r o t a t  i ng ends 

0.8 1.0 1 1.5 

10.12 3.83 I 2.30 
-- 

Formulas or Tables of Results I Ref . - h a r k s  

rk-kse .  

Table of  L 
1:: 44 

, .. 
0.67, I 1.0 I 1.5 I 20 1 I 2.5 I47 

Re fi\ 1 

Correct  values 
wb=m, b4.98. 

k I 55.53 I 40.00 1 26.80 I 17.50 I 1228 

k I 11.12 I 10.21 I 9.81 I 9-61 1 8.99.. 

re==) a,. 

u/b I 0.33 I 0.4 1 0.5 0.67 I 1.0 

k I 86.49 I 61.31 I 40.84 I 25.02 1 12.28 

~~ 

42 

*' 37 

42 

*' 37 

48 

/408 
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Dia.& Bound.Cond. 
S t r i p  having i n i t i  
de f lec t ion ,  end 
sides r o t a t i n g  

-- 

-- - -9T 

Test- # 1-9 16,003 1.9-1.4 0.05 76,600 
8 10-16 22,500 1.9-1.5 0.05 111,4cXl 
I 17-26 23,300 1.94.8 0.031 119,200 

n'-36 15,800 1.9-1.25 0.051 73,300 

S t r i ;  havinz i n i -  
t i a l  def lect ion,  
end w i t h  sides fi: 

'I: C C C f  

- 
T e s t  on rectanguli 
p la te ,  2 s ides 
f i x e d  

pecimen A 

Formulas or Tables o f  Results 
1 

where 

1 -  Ref. -Remarks 

49 '/409 -=a rtm- 

rn==5-35se (c r i t iGa1 v a l u e  w h y  
there i s  no i n i t l a  c 

=(-GI 0 t n *  
0 j I 1 2 1 3 I I.=(Fr 10.63 10.83 I (1.15) '(1.35) 1 1.6 (1.75) I 1.85 

I 1.4 l.ll6~1.342),(1.574), I I t i  1.785f2.133). I 2.348 
l i  I 

I 
She 0 i n  the tab le  above ind ica te  second 
approximation values, the others are t h i r d  
approximation values. I t  i s  assumed tha t  the 
i n i t i a l  de f lec t ion  forms a c i r c u l a r  plane w i t h  
a radius p i n  the d i r e c t i o n  o f  width. I indicates 

[A) Bollenrath ' s experiment 
i) c e l l u l o i d  p l a t e  

m n g t h  
49 

52 

Pe- 
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No.1Dia.B Bound.Cond. I Formulas or Tables of Results ;Ref .-Remarks 

/410 

%*E P Lip=&--- - 
i2(1--v') b' 

ness 

iii) brass plate  
b= 3 . 5 4 . 8  cm, 1=0,02cm. 
E=943,mkg/~m*. 
k-5.74-4.76. 

OO Iff IO 2 4 
p l a t e  width *md 

ue 
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rL 

NO 

24 
- 

c. 

25 

- 
486 

10 

112 

Dia. 5 Bound.Cond - 

15 

314 

6 b  

20 

I 

8.2 

. 

2 5 p o  
I'/r- 1% 

6.5 5.4 

Formulas or Tables o f  Results 

6.65 6.86 I 

(B) (experiments by Gough and Cox 

5.29 

I", Iy.", 1%". 

,tal .J 16.0 
St(ton1) 

lexp., - 

a (in) 

b (in) 

10.3 

11.4 

Shear experiment Duraluminum p la te  experiment 

txperiment values ar l  
t h  respect t o  $- 

> la te .  load i n  
a1 a=t5cms Men, 45c:n, brt5cm. 

t = O . Z l t a ,  0.428mm. 

Ptt ind icates the computed value 
of the c r i t i c a l  buck1 ing loa 

. Ref. -- -Remarks 
53 ,/411 

bm the 1 ine 

54 



Ref .-Remarks !/412 I 

4/b I 0.7 

& 143.0 - 

lis. & Bound.Cond. 
h d s  u i t h  4 sides 
mot a t  i ng 

0.8 1 1.0 I 1.2 1.5 I 2.0 

39.7 40.7 139.7 140.7 I 39.7 

End with the s ide 
wh i ch sus t a  i ns 
tension f i x e d .  ot l  

End w i t h  s ide a 
f i x e d ,  s ide  b 
r o  t5Ting - 

Formulas or Tables o f  Results 

olb I 0.3 I 0.4 I 0.5 I 0.6 j 0.67 

E 1 37.4 I 29.1 I 25.5 I 24.1 I 23.9 

w b  I 0.8 0.9 1.0 1 1.2 I 1.5 

k I 24.4 1 25.6 1 25.5 I 24.1 I 24.1 
ierman Nat lonal  Rai 1 road 
3rovi s i onal standard 

$5'' 3 k=23.91 ($-By +m( -a>., 

>p -23.9. 

E.Chl~\.allaIs approximation equat ion 
0 2  1.87 3-87 h l 5 . 8 7 + -  +8- 6 Fs 8' 

>f ~ 2 3 . 9 .  

0 where +T. 

o$ i 0.4 / 0.5 [ 0.6 I 0.67 I 0.7 

k 1 29.5 I 26.0 1 24.6 I 24.6 1 24.6 

~~ -~ 

a/b I 0.8 0.9 I 1.0 i 1.2 1.6 1 2.1 

t 125.2 126.5 126.0 124.6 25.2 124.6 

4 b  I 0.3 I 0.35 1 0.4 1 0.47 I 0.5 1 0.6 

147.3 143.0 140.7 139.6 139.7 141.8 it 

55 
56 

62 

58 

58 
60 



I 
- 

I - 
do.' D ia .  & Bound.Cond{ 

29 Simple bending 
expe r i men t 

Formulas o r  Tables of Results I Ref. -Renarks - 
,/413 

I 

Samp 1 e 

Side 0 

Gui e a cornp essi  
sfde i ree ,  Free 
and f i x e d  w i t h  rl 
t o  the ro{ t i o n  
ten 'on i2es 

det lec t fon  d f o  
mation not  al7ow 

ie 

Mk 



Bending and compression 

ooRul ( I  --u.~/a), 
rrr=liae. 

Table of 1: 

30 I 55 
57 

-- 

4/5 113.3 I - 18.3 

2/3 110.8 I - 17.1 

end with side a 
f ixed, side b 

- 17.1 16.9 I -.m 
- 16.1 16.0 1 - 15.8 15.1 

, o/b 0.8 1 0.9 1.0 I 1.2 

1 14.3 I 15.4 I 14.7 I 13.7 

1&5 I 0.4 I 0.5 j 0.6 0.65 1 0.7 

k I 17.7 1 14.7 I 13.7 1 13.6 1 13.7 - 
’ 1.4 

13.7 

‘er! with side a 
” If rscand rotat  i ng 

rotTin]FA 1: ~ _ - _ - _  ____: 

end w i t h  side ( ~ 1 )  

b ; - Q d q  

I 

489 

‘ 59 
0 u . d  0.. 

o/b 1 0.8 1 1.0 1.5 I 2.0 j 3.0 

L: 6.72 i 5.02 3.36 2.83 j 2.40 



Comoressior! ard snear 

35 

d i  rec 
a/ 

16 

- 
37 

- 
490 

StT 
and s 
on, 

stresses i n  the case when they act 

i nd i v idua l l y )  

p ,  compression 
:ress i n  one; 
de a f ixed, 

rt=t*. the nega- I m 
7 ------ 

=I-[= t i v e  s iqn  o f  u - 
i ndi ca tes tens ion ------- stress 

i 

Is. 
j 
I 

omoression and 1 
-2). { 2 J I +  6 -2). ** .e .* 

hear, end w i t h  
sides ro ta t i na  

As sum i ng 
: Tk=k'ue, 

Uk=kUe 

when 
a/b=l .O, 

Q =u =o 
X Y  

65 

0/r I 0 10.5 1 1.0 I 1.5 f 2.0, 2.5 13.0 I 00 

P I 14.58 7.09, 4 . 4  3.241 2.511 2.04' I 74 0 

C , 3 . 9  4.50: 4.86 5.021 5.ld 5.161 5.30 
I 

-. - i: I -- 

65 

69 



- 
No. 

i 123.4 23-05; I 20.35, 15.24 11.4 8 . q  0 

db= 112 

38 

- 

c 

lis. 8 Bound. Cond 

End w i t h  4 sides 

- 

?listel laneous 

& Bound. Cond 
ors lon and ten- 

s ion  o f  s t r i p ,  
edge s ide f tee 

-4- Y 

1/416 Formulas o r  Tables o f  Results (Ref. -Remarks 
1 
66 

R stresses 
i n d i v i d u a l l y )  

70 

Formulas o r  Tables o f  Results lRef . -Remi rks 
~ 

k ' C r i t i c a l  t o rs ion  moment T 

For a given N.-* 1~ i s  selected. and ip gr 
do 
d l  
- 

* 

L i s  found fro- are minimu 

I 73 

.aph be low, 
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.- 
i 

Dia.  E; Bound. Cond. 
Torsion buckl ing 
test  o f  s t r i p ,  

-- No - 
43 

Formulas o r  Tables o f  Results 

Speci men 

41 

- 
42 

- 
492 

Compression above 
proportiona~ limit, 
end w i t h  4 sides 
ro ta t i ng  

i) case i n  which one assumes a modu 
lus o f  elas i c i t y  a r  E pn ly  i n  the 

nb 6 +-;;ii-) comp res 

o = m E .  - :- 

Er= modulus o f  e l a s t i c i t y  which 
reduced w i t h  respect t o  the 

Ref. -Remarks . 
12 

,/417 

g i  th  4 sides r o t a t  
r- 4 . P  1 

4r v i  

* +knes!i 
t 

76 

i r e c t i o n  o f  
i on 

ng w0=deo5--~cos- % Z  Z Y  a 6 '  

i) From the condi t lon tha t  the p r i  
stress i s  constant 

='E( I + v a s )  ( b n'E(1 
P)'+2~ad(l-8')\T) (+)-iZG(F)Y 

From the condi t ion tha t  the p r inc ipa l  
5Yrain i s  constant 

as been 
tress above 
p ropo r t  i'o'na I 
1 i m i  t 

i n  both r 

77 

- 

79 

c ipa l  



No1 D i a .  f Bound.l;onT Formulas o r  Tables o f  Results lRef . -Remarks 

c i p a l  s t r a i * l  i s  c 
Ca lcu la t ing  f o r  

y418 
iii) From the cond i t ion  t h a t  the s t r a i n  energy 
i s  constant 
.r - I )  ( I  -2%) =t1*-t,t.+k,'+ ( I -- =:')(2h+4). ( #&a a 

where 

6 W L  ($) (S), 
b- -( 1 +a')' 
'F'y i e l  d-po i n t s t r e s s  , 

(+ ++)'(cr i t i ca 1 s t ress  

*-'ha1 f-wave number 
#I=' 1 i m i  t c r i t i c a l  s t ress  whe 

From the c o n d i t i o n  t h a t  the p r i n -  
1st - E-2. t x IG'lig&+. ..=0.3, 

Sf=2400 kg[C!l..* 

The c r i t i c a l  value cr i z  a< show 
graph be 1 ow k r  

roo -150 " 6 / t  - - 0  

I 
I 

hen 6=0) 

the  ha 1 f -wave 
umber i s  1 

i n  the  

493 



' , uynamlc compressive 
Istress, end with N . = N a  wd.  

where the solution i s  f o r  the case 

tt i . e .  o<t<%. N=-N 

- - < M y .  t 2 x  N=- - N. 
even w he?e 

accurs (white region i n  graph) 

b o 4  

N/&<1 , there are cases i n  which 

where 

1 bm on' 
p d + , + , )  @ 

p I ' $ ( ( - y Y + (  y)3'. 
d=- I &[yY+(y)?. Et 

p = - .  3 - (Pes $, i s  maximum ampli'ude 

P 

4 Pe' 

t 

494 

l a r  

,Ref. -Remarks 

81 

>f a rectangu 

n s t a b i l i t y  

V419 



No.lDia. & Bound. Condl Formulas or Tables o f  Results 

l n f i n i  te  p l a t e  
sustaining i n te rnz l  

- 
* 

c i r c u l a r  

I , 
--_-* 

hole 

4m*-(l+v)*+ (=*-I) 4m'-(I+v)' 5 / 7 - 7 1  
where ! 

anteser.number o f  segmente 
( f ree  a t  i n f i n i t e  distance) 

P late o f  Var iable Thickness 
Comp res s i on 

No. Dia. & Bound. Cond.' Formulas o r  Tables o f  Results . - 
45 

o f  var i  
w i t h  s i  

- 

:ompress i on o f  
cectangu 1 a r  p la tes 
) l e  thickness, and 

3uckl ing cond i t ion  equation 

- 
Ref. -Remarks ' - j/420 

82 

1 diameters 

Ref .-Remarks 

74 

V L  

ak i s  found f o r  the given yo/yl from the graph 
on the r i g h t  below i n  the case when 

I )  L-, 1 p = 0, f o r  lZb/ah0.7655, and when 

.. 1 1 )  CJ =o, P T  f o r  1.220=b/a=1.0. 
C 

> >  1 
i 

495 



I 

i a .  & Bound. Cond 

End with 4 
s I des r o t a t  i ng 

Side b f ixed, 
other 3 sides 

-a- I 
Side b f ixed ,  
other 3 sides 
rota t i nq 

I 

E ti' ea 
Oi3 1 2 ( 1 - u 9 )  

Formulas or Tables o f  Results Ref. -Remarks 

72 
./421 

75 

.I E ts' 
OS= l 2 ( l - P )  

496 



No. ]Dia.&Bound. Cond. 

5o End w i t h  s ide b 
t l x e d ,  s ide  a 
r o  t a t  i ng 

-a- 

End w i t h  s ide b 
f i x e d ,  s ide  a 
r o t a t i n g  

- 
52 )ne s ide  of b f r e e  

) ther  3 sides 
ro ta t  i ng 

-a-  

One s ide o f  b f re  
53 I other  3 sides 

I f i xed ,  sides a 

-a- 
I 

I 

Ref. -Remarks , - Formulas or Tables of  P.esul t s  

when 
I 
2 o r b ,  %=%=-a, tr=t.5tr 

75 7422 

75 

75 

75 

- 
497 



No. 

54 75 

D i a .  E Bound. Cond. Formulas o r  Tables of Results 
tnd w i t h .  _s ide a 
ro ta t i ng  , sides b ; when 

, Ref. -Remarkc 
7423  

1 C i r cu la r  p.la_te w i t  
" ! external  pressure, 

. .. . 

498 

84 

nor segmented diameter 

1 
! 



- 
No 

58 

- 

ro' 

L 

49 

pressur 
rotdt  i II 

- 

Ref.=Remarks ; 
/ /424 

83 

lis. & Bound. Conc 

I i r c u l a r  p l a t e  w i t  
m i  form ex terna l  
bressure, end w i t h  
:i rcumference 

~--. - ~ -  

84 
85 
w 

nr 

86 

Perforated c i  r c u l ,  
uni form exterpal  
end w i t h  outs ide I 

i n s i d e  edge f r e e  
. ,  

I 
I 

k 0.256 

Formulas o r  Tables o f  Results 
r>case i n  whi  h th i - re i s  no seg- 
meiited c i r c l e  Tpi tch c i r c l e ? )  o r  sevented dlameter - 
rhere d-1 .491~~ .  a i s  the lowest 
:r route ofJa(a)=O for; i i )  case i n  
rhich t h e r e , i s  a p i t c h  c i r c l e  and 
egmented dt a w t e r  

a*=l.4YU,'.  

a*=* x I .49 a,'. 

0.231 0.219 

@ Pet77 
7-11.5 

p l a t e ,  
ah = t a,' 

se 

W% I 0 10.1 1 0 . 2  10.3 I O . .  
1 

& I 0.426 1 0.402 I 0.365 1 0.328 1 0.280 I 
I 

sl% I 0.5 I 0.6 I 0.7 I 0.8 0.9 1 

87 
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i a .  & Bound. Cond 

I o I 0.1 1 0.2 I 0.3 

€ I 1.48 I 1.42 I 1.35 I 1.47 

Per fo ra ted  c i  r c u l  
p l a t e ,  un i form 

0.4 I 0.5 

1.80 I 2-52 

e'nd w i  t h  ou ts ide  
f i xed ,  i ns ide  f r e  

' s  r a t i o ,  
present  

- ._ 

i i 
Formulas o r  Tables of Resul ts /Ref. -Remarks 

j/425 

a i d  

'here &Poisson'$ r a t i o ,  case o f  sy m e t r i c a l  
buck1 i ng I 

I n  o:-to/ 

Case i n  which m=Poisson 
s y m e t r i c a l  buck l i ng  Is 

6 

4 

* 3  
2 

1 

nd o rde r  

89 



.. - I 
Y I i a .  & Bound. Cond 

C i r c u r a r  p l a t c  w i t  
hole,  uni form ex te  rlal 

Formulas or Tables o f  Resul ts - _ _ _  - .  -___ 

'pressure,  ou ts ide  dge ,klo.nsat. ---!- whe re &/&-2.671 

-- a 1 C l r c u l a r  p l a t e  w i t  
ho le ,  un i form exte na l  

- 
63 

and 
out5 
i n s i  
f re 

- 
64 

edg 

- 
65 

88 
hofe, unieorm ex te  E t *  

..-.T(,) - 
a given by f o l l o w i n n  qraph. s aive: the number' 
o f  segmented diam I 

C i  c u l a r  l a t e  w i t  
n terna 1 pressure, 

4 
! I 3  

I 2 I 
--I - 

I 
0 02 94 Cf kd GO 02 04 U3' 08 16 

w a a  Qt/ Q, 

( 1 )  ou ts ide  edge 
(2) * lowest orderorder 
(3) ou ts ide  edge r c t a t i n s ,  
(4) " * lowest 2nd 

' i \  I - -  c rde r  , - 
s l i p t i c a l  p l a t e ,  ' 

.-\. -- , , " I 
mi form ex te rna l  dk=katr whe re  e, 

pressure, ou ts ide  edge 1 -  

d e  r 
93 

f i xed ,  1.0 I 1.1 1 1.2 , 1.3 I 1.4 W b  I 
A ;O 1 1.38 1.29 I 1.24 I 1.20 

1.5 I 2.0 I 3.0 1 4.0 I 5.0 

I 
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Polygonal Plates 

, . _  /427 Cow res s i on 

9;1 

x t i o n  x,y 

NO. D id .  8 Bound. Cond.. Formulas nr Tnhlec nf R~CII I+= 
qui l a t e r a l  t r iangq lar  

66 

ed 

- 
Q 

68 

- 
e 

di re  

- 
502 

- 1  

11 ate, uni form external  
lressure, end w i t h  e r 4 . F  .et. 

where 

Isosceles r i g h t  t r iangu lar  
p la te,  uniform external  
presslyre, end w i t h  edger8b=5-.00 
r o t a t  I ng 

I 
Isosceles r i g h t  t ra inga l ,  
compression i n  one d i rec t ion ,  
end h i  t h  edges r o t a t i n g  8&=9.110/. 

~ 

Paralleloaram p l a t e  . 

a 

. .  . . .  -a- 

E a' 
= I2 ( I -"') (+Y- 

le f  . -Rernnrkz 

94 

95 

w 



D 
#&a:- ta' ' 

Shea r 

Dia. & Bound. Con 

Regular hexagonal 
shear load. end w 

1 where a = radius o f  base c i r c l e  

1 values of 5 

K I 0.1 I 0.2 1 0.31 0.4 1 0.51 0.61 2/3 

( I ) I 16.411 18.4 22.34 26.94 33.33 42.491 5i.14 

(2) I 16.531 19-03 22.39: 26.53/ 32.1q - 1 - 
(3) 1 16.541 19.04' 21.84 19.733(K=0.1758) I 

Formulas or Tables of Results 

*ks 

/428 99 

Ref. -Rema r!:s 

98 

503 



0 r tho t  rop i c p 1 a tes 
Comp ress i on - 

No. 

72 

ax i 
the 

- 

- 
n 

r 
s id  
wh I 
ax I 
of 

74 

r o t  
d i  r 

- 
504 

ia .  d Bound. Cond 

nd w i t h  4 sides I Et case i n  which tht 
o f  e l a s t i c i t y  mat4 
i r e c t i  on o f  comp ~i 

a 

End w i t 5  sides 
:sting, end w i t s  
b f i x e d  (case i r )  

I s i n  u l a r - p r i n c i g  
matczes di  rec t ipn  

= I = = .  
L a d  J 

ompression i n - 2  t~ 
nd w i t h  4 sides 
ing  (compression I 

t ian  os elastic 

h a -  

pr inc ipa l  ax is)  

, -  

Formulas o r  Tables o f  Results 

t a t  i na 

the minimum values of u k 
a w m = [ V m  +&]T~~-. 2n. 

tne naif-wave length i n  t h i s  case 
i s  

A = z = b  #I=. 
ma 

Case i n  which D-, i s  desregarded 
t when. D~ >> D Y 

k minimum values o f  u 

i case where D is small 
I Y 

' /429 
Ref .  -Remarks 

100 

-- 

D,, D = .bend i ng 
s t i t f n e s s  o f  
o f  p l a t e  i n  
sections x, y 

to rs ion  s t i f -  
ness i n  d i rec-  ' 

2% t i o n  x,y 
=*GJ), 

+ U P .  

+Ma, 

4(GJ), = I 

100 

ect  ions i 

N,, N,= cmp reSS ion component 
w i t n i n  d i r e c t i o n  x, y 

e r un i t 6 Where m, n = number o f  half-wave i 
d i rec t i on  of x, y 

I 



- 
No. 

75 
w i i  

- 

- 
76 

- 

i a .  6 Bound. Cond 

Uniform shear, en 

4 sides rotat ing 

Ir 
in 
r i  

:hotropic s t r i p ,  
form shear, end 
:h sides ro ta t in  

Formulas o r  i'abies o i  Results Ref. -Remarks 

104 

105 
tc=G ( D  &*)'1*/(b/2)*. 

wherec, i s  given by the graph belor 

Case i n  which 
i) l < d  (9  = (Dl D#/Dcl) 

Mavelength l=C , 'VO,14*  (hi2) .  

C. I 13.1710.8 I9.%1 9.251 3.7 18.4 18.251 8.125 

CJ I 2.491 2.26: 2.161 2-13! 2.081 2.05, 2.051 2.05 ' I 1  1 1  

l I 
9 8' o r  cad. 125+5.64--0.6--. 

Case i n  which 
ii) 0 < 8 < l  

o r Cs= I 1.71 +2.155 9*-0.7 9% I koreover, See materials (77) f o r  
c - ,  c, 

Y 

' 102 

,/430 

505 



No 

17 

c_ 

- 
za 

aa. & Bound. Cond 

md with edges f i x  d') I < '  

lrtho t ropic  s t r i c  , 
inif o m  shear ,  

Formulas o r  Tables of Results 

( 0  same as i n  (75)) 

1 Ref. -Remarks 

Case i n  whic!: 102 ,/431 i 

Compression and 
shear  load, end 
with 4 s i d e s  r o t a  
ing,  case where t l  
p r inc ipa l  axis of 

toward the d i rec t :  
of load (45" platc 

E, ,  E,, G = Young's moc 

Case i n  which 
ii) O<S<l 

rr = Ca (a -D~)"2 / (b ,3y ,  
hal f  
wavelength 1 = Cb' d w -  ( b  12). 

4 107 Numerical examples 
Buckling of 45' tension o r tho t r c  i c  

- s t r i p ,  6 

a = ha l f  waveyensth in d i r e c t i o n  
h = Dofate with 

I <. . : 
El= 1209 kg/mms, E~=60' !@KIN*, 

Om 125 kg/mmy v,=O. 150, v,=uJ2, 
, 

1 p=lr/b. 

I L  

l u s  and shear  e las t ic i t  
modulus i n  d i r ec t ion  ( 
2,)f pr inc ipa l  ax i s  
elas t i c i t v  

506 



mrective Vldth b a f t e r  e 

of plc.te 

as an approximation equat ion 

b , = b m  (6 3 0  6) 

/432 

109 

I10 

edge 

I I2 



- 
iia. 6 Bound. Conc 

mere em is  t h e  l i m i t  s t r a i n  with 

P d t ~ b t  0.434~~+2.04E to comprerfsion 
er is the  y ie ldpoin t  stress 

iii) compressive s t r a i n  a f t e r  buckl:.ng 

me as above 
ap p'r oxima t ion  + 

115 

respec t  

t e  

~ ~~ 

Formulas o r  Tables of Resul ts  i Ref --Remarks /433 
'here e is compressive s t r a i n  w i t h  k espect  t o  ak r 4-6 C+ 18.6 C* o(r)= y- -- 

4 fr+31.8c* 
is  parameter ind ica t ing  deformation when 

/% is 25, about 0.06 

114 

t where ek==4ae- (square) i n  any of 
the  above cases, a ind ica t e s  the  mpressive stress 
on the  p l a t e  edge 

b . tar=Kut<% 

I 

508 



No. IDia. 6 Bound. Cond, 

P,(,=2x 9.4 on t' 
where u is  t h e  ul t imate  
tens ion  s t r eng th  B 

(Ends with s ides  
' f ixed  

81 

:ompression test 01 

with s ides  r o t a t i r  
#e i n  which t h e  edg 
i l lel  t o  the  load 
iupported by V cha1 

Load p l a t e  

I 

Formulas o r  Tables of Results 

I )  Effec t ive  width be 

IRef . -Remarks -- I 

/434 
I10 

be- - * l8 t+O. 146. 
-~ d-T 

ii) Ultimate load P u l t  

1 I Purr -6e,: (;; :+O. 14 b 

i 
t 

I L 
nature  of the  material. support  conditions.  

116 

. .  

According t o  KaGan's [ 1091 analys: 

P.rt=C d E t *  
duraiuminum c - I - ~ ~ ~ - ~  
uncast steel I .71-1.24 

1.43-1.15 
1.58-1.18 

monel metal 
n i cke l  

( ca l  .value C=I .W 

16 10 iu 
u3 

120 

509 



c 

Nc 

a3 
r o t  
the  
l o a  
k n i  

- 

-- 
a4 

D i a .  & Bound. Cond. 

end with s i d e s  I Specimen 
i n g  (case i n  which; 
dge p a r a l l e  t o  t h e  
i s  su p o r t e i  on 

Fromulas o r  Tables of Resul t s  - 
Experiment w i t h  

0=4m mm ( -cons tan t )  b , t vary 
par= I 350 I- du r aluminum 

- 
510 

Ref.-Remarks 
I I7 

edge parallel  t o  
oad 

specimen 

-- 
Experiment on f ixec 

I I t  = I OOO t'.' 
dhen t h e  e f f e c t i v e  of t h e  width b t.100, w i t h  
an i n c r e a s e  i n  b ,  P 
even - .  if the  i n c r e a s e s ,  It Plt does not  i n c r e a s e  
Specimen 
a=550mm(-const.), b=56C 1518mm . 

i n c r e a s e s ,  1 u t  above t h i s  

I ILL 

tn2mm. 2.9mm, 4.cm O r  5mm s o f t  Steel 

P,,,* 1 . 7 7 ( ~ ) ~ * ~ V - E ~ t * .  

i d t l  
I t  
11 

I 1  

I" Specimen 
a=2q1 'Fixed, b=lZff,  IW, Wf, W, 4.W 

~ = 0 . 0 3 f f ~ ,  0.061f' (duralmin) 
E f f e c t i v e  width be a t  t i m e  of u l t €  te load  

b.: = - 2' +O. 14 b v z  

p l a t e  wid th-b  (in) 



' 
Formulas 0, Tables of Results Dia & Bound. Cond /436 

' Ref. -Remarks 
rest i n  w ch the 
zdge paraifel  tQ 
load is f ixed w i t 1  

I I I  I I  
I l l .  

I I I ! I ,  

3 reinforcing no. 

a 

t 
+ 
h t n 

Sample 
- 

a=6oomm, a= tu)  mm, 

t=O.lmm, 0.2mm. 0.4mm. 0.6mm, 

Material: duralmin 

i)Load P of p late  a f t er  buckling 

=apt vzz- (Q>3Qt)  

a ,  shown below P is buckling load 
k 

approximation equation 

(Shown by broken l i n e  i n  graph 
below) 

I18 

511 



.~ 

No. 'D ia .  & Bound. Cond. Formulas o r  Tables o f  Results 

a5 

5 12 

iii) Maximum stress cr (resultant 
nding and c o m p h  

Ref .-Remarks 
i 
j /437 
~ 

I 

stress o f  

Resultant stress ,umi tte resul tar,t stress 
Compressive stress i n  center o f  p l a t e  

reinforcing member 



'Ref .  -Remarks No.' D i a .  & Bound. Cond. Formulas or  Tables 01 Results 

i v ) D i s t r i b u t i o n  of s t r e s s  i n  the 
d i r e c t i  on o f  compress i on 

v) Average s t rzss  -u i n  d i rec t ior  v 
a t  r i g h t  angJ32 to  load 

u is average s t r e s  3 t o  compr XB 

rest in which the edges are 
supported by reinforcing 
number: ;.:re measured by wi dth 
vibration methodr) I 

Exper i mrlt va 1 ues o f  e f f e c t  i ve 

s i m  

121 

51 3 
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No. Dia .  E Sound. Cond. Formulas o r  Tables of Results Ref. -Remarks 

7 Effective width at.time &breaking- (based on test results on the 
- 25 k; ,,J-compression of superduralu- 

(Marguerre's approximation 
u ' t ~ - .  - ". - L minum Dlate) 

formula) "'buckling stress of plate 
74 t /b)2 ,  rotating end) 

m I  1 

I 
I 
i 
b aqo, - 1 

tension- -compression 1 

-+ values from experiments on effecti-Je 
width (includi ng also tests on rectangular Plate) 

! 
a i) E'fective width be 3nd with 4 sides rotatinn. ; 

87 ' 1 'I9 
:tiffener in center u w  i I 

I 

I -be I c b (case with no stiffener, curve A) 

I ultimate lead Pult of plate I I Pam&! > / K p  (case with 110 stiffener, curve A) 
0.50 

c-1+1.81 A curve B,  case in which supported 
by stiffener) 

.. . 

1 -  

In the portion where his  small, the rapid 

distribution of compressive stress after 

B to A is due to buckling between rivets 

Case in which 4 sides are supported 
" 9  #-uz-(u&-u&) sin- b '  

( see Figure 4.3.4 i n  original text) 1 I I I 

514 

/439 



No. Dia.  E Bound. Cond. Formulas cr Tables o f  Results 

128 
pressive strain e 

Ref.-Remarks 

:ompression of rectangular A) Case of end w th sides fixed 
'late having initial 
k flec tion 

m / 1 1 2 ( 3 1 4 1 5 1 6 ! 7  

13.51 15.92 18.42 1 12-06; 16-44 21.64 25.84 

B, 12-01 I 1.901 1.88 I 1.94 2.4 2.24 2.37 

B. 10.45 10.55 10.70 1 0.84 0.4 1.4 1-20 

8. 10.55 10.65 10.691 0.74 0.771 0.4 0.81 

u) Effective width 

f r  
f 

is maximum value of initial deflection 
is maximum value of deflection 

B) Case of end with sides rotating 

where 8 n f  -f* 
. + x(+y{ I -( 1;-7). 

Ebt 8 

Example of deflectinn (calculatzd val 
dotted lines show experiment values) 

N 
20 

2;; 
' 8  

4 

0 0 2  4 6 6 1 0  E tmm) 

lues 

* = I  ,-0.0216: ' -- CmaD 1-6- f :-J .= . 
et L et 

shown b 

129 

solid lines, 

126 

/440 
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No. Dia.  E Bound. Cond. Formulas or Tables o f  Rczultq , R e f .  -RP,msrks 
c_ 

a icsidual deformation, 

taining compression 
rectaiTgdar plate SUS- 

90 :Orthotropic plate, end 
. ,  

with 4 sides rotating 

- 
91 

- 
516 

Orthotropic plate, case 
in which the principal 
axis of elasticity is 
inclined in the direction 
of load. 

0: 

laximum stress @-- of flat plate. 
~~ 

8-=[1+6.79842- I )a 
t rhe point where 

flms==@8 is reached, residual deformation does I 

24 The graph below indicates cases in which h a  
tion occurs when zmax = 0.0093, for S .  T. Alcla 

of defori 
allow: 

buckling stress */a*) 

126 

)t occur. 
to 

. the 

nful deforms- 

ation not 
lle 

123 

Condition d t e r  the shcar buckling of . 

E=1200, EZr600, G=IZkg/mmt, u ~ = O .  150, u.=0.075. 

1 . O q  0.45::&026f144'39f 5.289 1 4.020 I 4. I 5 0  I 9.403i2.039 0.834 

1.04 0.381/4-1°9f /44°39',10.015 8.106 18.343 /17.80<2.534' I 0.811 

1.0351 0.340i44°11 '4-1°39';15.638 I 113.058 113.415 :27.8012.91$ 0.798 

G,=G/( 1--E)=4lOkg/mm*, G,=C*c=364kg/mrn* 

/441 
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No. Dia.  & Bound. C0n.d. Formulas o r  Tables o f  Results Ref.-Remarks 

t 

- 
Compression rest on 

92 j rectangular compound 

apparatus 
i 

I 

Problem of the phenome 
93 occurring after the shear 

buckling of a plate beam 
having reinforcing mem 
on the sides. Tension Tension stress Q of plate 

Tension field after she: - buckling of a plate 

2y L- 2P 

F 
I Y  

131 

I 

I 

I 

TENSION FIELD 

# I V = P 4 m  a 4 0 . 9  P - 
. -  ._ 

i d d 

- -  

Specimen, compound plate, plate thickness 2 m 
0=80--5O mD b ~ 2 0 5  

i; relationship of rupture stress f and a/b 

indicate 

rn indicates half 
w ...-: e number 

i t y  
f = P d A  (-4 = cross-. - -tion area) 

- -  
Pdr=cY' d Ea,  

Comparing the values of C in the above equa 
large values are indicated, where L = 13.970, 
T = 14.2% 

'Ifor the value m = 1 4 a/b giving the minimun 
lcritical buckling value 

of specimen 

1'  1.70 I 1.48 

T I 0.59 1 0.43 

125 
1 

In. 

ent 

/442 
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- 
No. 
c 

9J 

, 
Formulas or Tables o f  -1 tz  Ref - -RmnarlrS l i a .  8 Bound- Cnnd. 

I Horizontal force H of vertical edge member (based on u ) 
I 

I 
I 

Cot a 

2 
H r P - k 3 . 6  P. 

Adding directly that which is based on the ioad P 
I 

H=*t'~/d-O.6 P 
[ 4 upper edge member, - lower edge men% er) 

Zhange in angley due to shear 

E T s 2 C O t a  ( s - ~ ~ ) + 2 . 8 ~ .  

4 

! From the above equation, it can be seen that a= 40-4 '. 
! i f  necessary, can be corrected. The collapse of the plate 
: ot buckling of the reinforcing member due to the 0 found above 
i gives the maximum load of the plate beam. 
i 

I 

*-- at+-+ 
rl, a. are average stresses of plate in directions x,  y 
A t ,  -41 are the cross-section areas of the horizontal and vertical reinforcing 
r t ,  uv are the stresses of tk horizontal & vertical reinforcing members 

i) ol=O (&/at=O) I 

I 

~ = - [ a ~ ( i 4 - 1 ) + 2  I ~*--6a+s-~(a-l)) .  2 
4.. 4 

4a. 4a. 2 

-t,- 
4r. 2 

40r 

bA' - '1 -A+- (A4-1) 

I 
ii) el=O (Ar/Qt==c~) 

t - *' - p C  
4 e. 

(A4-1)261*[8( I ++)- I)-4& 
-2a~;a(1+-+ f j-~]-l+Jm+(d-o; I +F)J 2 '  I 

/443 
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Nia. & Bound. Cond 

R 

Formulas or Tables o f  Results Ref .-Remarks 

2 - " =&t-'[&*+(b- I )  ( +-j,-)] 

-=+--a*- I .  ( I ++)m 
- 7E P: + a. (4 &*-*(I +")(I ++))%Ti- 

i 

4 a* 9 d8 

2- >!- + -air( I i4- I )  +(2 61.- U) -- *8 
40. 4 ~ .  40e 2 

4 a, 4 #. 

4 a8 40* L 

(+y= 1.46 p(A4-l)+5.85P2. I 

I 

4 '8 

Where &,&,;,r etc indicate values corresponding to case 1). 
I 

f indichtes the maximum value of wrinkling 

1 a==- 
the 

when e8=o relations a*, az, r. 7 are indicated by ?he following 

/444 

xionships between ul, 01. r ,  UL when E = 0 1 ! 
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pi 

- 
95 

- 
520 

Relationship between #I, :. when ' 1 = 

(dotted line indicates  2/4 e). 1 
Tension field test 

f 
I 
d 

tef . -Rema r t s  
/445 

1139 

Immediately after buckling of the plate, values are indicated 
which are intermedi.ite between tension filed theory and beam 
theory disregarding the buckling of the plate. The values 
approach the  tension field theory as the  buckling develops. The 

graph below is a copulation from results of experiments. 

I 

I 
Relationship of cross-section area, stress and shear stress of 
vertical reinforcer.8 members 



No.Dia. & Bound. Cond. 

f 

e; 

reinforcing member 

Additional compressive force (H) applied to 
lower edge member 

effective width b 

where 
8 or.--drm ctive width bm=-- 2 u:.--Iv &. is stress in direction x i n  tension field 

t%* average stress in  direction x between vertical 
rcinforcing members I 

/446 
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Case where there is 
a dia onal vertical . 
mem i! er 

Case i r l  *;,hicb there are 
upper and lower diagona 
edge members 

.- 
sa 

- 
522 

%e in whciin there are 
slanted up er and lower 
edge mem !I ers 

+ r. 

Tensile stress of plate 
2P 1 I 
d t  a h 2 a  I--tanzCOte 63.7- 

Forces received by upper edge member (H,-J, and 
lower edge member (HJ - .. 

P-x r Eo= ----(Cot ai-Cot 9) 

E, - -- p*z - - (cot a+COt Q )  

a 2  

a 2  
Forces received by vertical member 

131 

Tensile stress Q m  of plate intermediate between 
vertical members a t  a distance x from the end 

131 

Lt the upper and lower ends, respectively 
0- 

de= -- (: -cot %*tan e)' 

I +cot a tan e )a 1 Om '* = 7 
Compressive force V received by vertical member 

8 V= P- -tan a 
dr 

Plate stress Q (x,y) 
o(l,ar) =-.- ?4)-* t - y  cot a 

I--tanecota ( I  -cot z tan e)* 

138 

%=-cot P e [I- docot a 
2 z ( 1 -cot a tan 8)  log p 

vertical force Yo 

Horizontal force X,. and vertical force Y,, sustained by lower 
Yo-x, tan 8 

Y. Exo tan e . I  
Force V sustained by horizontal member 

Ira 

fl-- 
V=t 8 sin' a am(s) ,, 

4 
Where 

Pdo cot e 
om(*)= 2 :ZS sin* a log p 

I +ten tsnA '' i--Eane miia 

x indicates the coordinates of each member 

/447 



99 General theory of tensiOT-General solution of displacement 

field $2 e-u (a) 1% P + P  (.I 
qEy’(l)( I +log p ) + ~ ’ ( r ) + % ( a ) ~ + ~ d r )  R 

The critical values6 l,E,, rll, qL of 5 ,  ri are 
determined from displacement a t  the boundary. 

135 

1 143 End with 4 sides rotating,” 
single longitudinal rein-  

when 
i) bl= b2 = b12 

E t  tan px--bi l o 6 P r  
o(z)- l O g ( P J P 1 )  

@k=k 

where 

Values of k (bending stiffness of reinforcing medber  assumed 

20 

5 

~ 

o *a d ** E I  A = cross-section area of reinforcing member bbt, r = - -  
D b  ’ E1 = bendi ng stiffness of reinforcing member 

v l - T r t l ’ - ; l t  61 - il 
+lOg(GOTO %(a) = --- 

P 1 - h  

t 01-Pa 

Condition for the formation of wrinkling 

where 
r > 0, --rq-tlm >O 

ae 
a p  

r= - 

/448 
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- 
Nc 

IO 
c 

- 
524 

l ia.  G Bound. COI 

For example, 

Formulas or Tables o f  Results Ref.-Remsrks 

/449 Buckling occurs under the values indicated above 
whenY<Y min,  the form of buckling is shown in 
11 of the Figure below 

For the buckling equation of an anti-symmetri 
(he$> ra in  

For symmetrical shaped 111 

Buckline condition eauation 

where 

n 

11 shaped I 

I49 

147 

2 (z+z)(%y 48' 2 8  mi 1 
TmlnE-  us tanM; tan K T  + x a - ( x + - )  ' --_ -. - 2 8  

KS 9. 
ml indicates the half-wave number g'ving the 
minimum critical value of a plate assuming that 

its eqd rotates around the edge and the position of 
the reinforcing member. m is the case in which 
there is no reinforcing member. 

O < B < - T  m i l l ,  m=I. 

where flrn 



No. D i a .  & Bound. Cond, -- 

loo I 
! I 
I 

Formulas or Tables of Results Ref.-Remarks 
e n  

- 
2) bl= b!3, b , o 2  b13 I 149 

3 
4 

When 
E) b,=b/4, b = - b  

iv) Relationship between bl and k wher a=b 

5 

149 

11)9 

525 
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No. Dia. %. -1 .  Cond. Formulas or Tables o f  Results Ref .-Remarks 

I 
101 

I 
I 
I 

I 
i I 
I 

I 
I The shape of I, does nor FOE any problem when 

the minimu? -.-alue of k is 1 4 .  \ \hen Y<Y -:!,Iq 

I 

/451 



No. Dia. & Bound. Comp. Formias or  Tablesof Results Ref .-nemarKs 

,otating, many longi- 
:udinai reinforcing 
members 

Case in whicb :here is equal spacing of 
reinforcing rcembers 

i43 /452 

wheie 
a b p b j ?  

The values of k are g 
Figure bel ow 

(+). 

ven n the 

I I 1 I I 
5: @€ 15 20 ET 1o r. 

>,iinimum values ofY for asymmetrical 
type to be obtained 

149 

527 



-~ 
No. 

Bath sides (sides A) 
supported by reinforci ng 

I 0 4  144 

.L=t 9. 

lilinimun value of k (whec the reinforcing 

lia. & Bound. Comp Formulas o r  Tables of Results Ref.-Remarks 

I 
d 

0.5 I 3.87 1 3.97 3.99 i 4.m 

2.5 I 3.83 I 3.97 1 3.99 1 4.00 

5.0 1 - 1 3.96 1 3.99 4.00 

ralues of L 

i 
X' 

Ut' --@e (fl minimum values are found fro1 
the diagram bzlor,  assuming m; 

146 

/453 

528 



rks  

/454 

- 
One side of sides A is 
supported bv a reinforcin' 
member, the other side' 

---- -__ _ _  

1 
Conditions for elastically supported end 

I 

i .  e. , when the bending moment is propxtional to the angle of 

*=L 0, 
otation 

wl.0 I t  i1.3 11.5 h.8 I l l ,  '2.0 ,2.3 2.5 j2.7 I :  3.0 '4.0 c 
2/b 

6/b 11.58 1.251. I ~~~.11!1.~21.18~1.23~1.2~1.I~~. 1 

11.49; I .  f 31 I -01 io. 92;O. 90 0.89p. 90 0.93k98IO. ,.- 
4 1  I 

I 12 

0 8 4  0, 

Valuec of k indicated in graph 

9 

c 
5 

4 

3 

2 

l 

& 

f 2 3 4 
u s  

145 

I 
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No 

105 

- /455 
Dia.& Bound. Cnmn., Formulas o r  Tables of Rasirlts , Ref.--PfiFa+s 

1 I #&=(+)I- @e 

Minimum values of x determined from graphbelob, 

)ne side of sides A support 
)y reinforcing member, 
one side has ixed end, 
sides B are rotating 

I 
5 30 

where L=T-J.(fl/v4) 

(p*=mrb/a 

m is half-wave number 

Minimum value of x is determiced from graph 
liziow, assuming m 

where 
L-T-J (z'/~') 

v*=m ar blo 

m is half-wave number 

146 

_111 



loi 

whei 

I End with 4 edges rotating, 
' one lateral reinforcing 

When 
U 41=% 

#k=k @e mzmber 

2m ,9 

where r>rm~lrr 
Values of rmcm 

7-18; 4.34 2.80; 1.821 I.Z{ 0.433; 0 
I-- I - - -  -I--- 

____ __ - - -_ 
151 1 12.751 7.24 4-42; 2-82; 1.87 1.19, 0. U5 - 

- where T < rrlr 

When 2 ii) n,=a/3, az=-a 
3 

akskae 

Values of k given in  the diagram and table 

1 0.4 I 0.6 j 1.0 I 1.4 I 1.8 r 
5 I 11.265 I 8.703 I 5.694 I 4.519 I 4.317 

10 I 13.708 1 10.C85 1 5.748 1 4.519 I 4.326 

15 I 15.840 I 10.741 1 5.764 1 4.519 I 4.326 

iii) 01==0'4, a,=3u/4 

e = k  @e 

;- 0.4 i 0.6 j 1.0 1 1.4 I 1.8  

5 1 10.267 1 7 .4 i4  1 5.317 i 4.515 ' 4.453 ' -- 
10 I I l . 9O7  I 8.655 I 5.402 I 4.516 1 3.472 

I -- - 
15 113.213 1 9.22~3, 5.4291 .?.516 1 4.477 - - --_-- 

143 

151 

I43 

I49 

i 

xing  
ti& 

/456 



~~~~~ ~ 

Dia.  6 Bound. Comp. Formulas or Tables of Results 

3nds with 4 edges rotating, 
two lateral reinforzing 
members. 

when 
i) & = ~ = u / 3 ,  rzrr.=r 

nd with 4 edges rotating, 
many lateral reinforcing 

inembers- 

lues of rmin 

t-[n I IO1 42.6 1 21.7 1 12.4 I 7.71 
I 

Diagram of k 

?ef .-Remarks -- 
/457 

I43 

I49 

- I 143 

Case in which reinforcing members are a t  equal distances 

01 
(m'+B')'+(r+ 1) 

r is wmber  of reinforcing members 

6' mr a= 

Where 

532 



NO. 'D ia .  & aound Comp. Formulas or Tables o f  Results ket'.<Kemarks 

pel12 I p=1 
! 

--- . ~~ 

Case in which there is an anti-deflection member 
in the center of the plate 
. A) Critical values when- 

110 Ends with 4 edges rotating, 
and one reinforcing member 
each longitudinally and 
laterally re > To mins r b  > Tb n i n  

P =2 

0 7.09 5.10 4.27, 3.154 3-22; 2.64 2.18: 1.67 

0.20 1 10.20; 7.45 6.39 5.50; 4.83' 3.90' 3.28 2.47 
, I 1  

l t , l l l  

P 

1.0 j 3.22 i 3.62 j 4.02 j 4.42 1 4.83 

(Where m=1, n=l) , 

{Where m=I, n=2) 

(Where m=2, n=1) 

151 

/458 
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T D i a .  & Bound* Cn'd. Formulas o r  Tables of Results No* Cese in which many 
reinforcing members 
are placed at  equal f i) End with 4 sides rotating 

-~ 
'I2 

intervals longitudinally 
and laterally 

f&4 R 

Square plate having 
diagonal reinforcing 
member, end with 4 
edges rotating 

ii) End with 4 sides fixed 

iii) Ends with sides a fixed, sides b rotatlng 

io) End wi th sides a rotating, sides b fixed 

4 K*aE r 0 ( w  I 1- + 3 r:(nb: I ) 1 
U k - - { T  . bt 

:ef .  -Remarks -- 
153 /453 

I 1 1 
SHEAR 

No. Dia. E Bound. Comp. Formulas or  Tables o f  Results -- - 
113 

- 
s 34 

One lateral reinforcing 
member, znds with 4 
sides rotating 

- 
1.5 1 1.25 1 1.0 B ~ I 2.0 

Trim 1 1.66 1 4.35 1 7.88 I 15 
I -. 

The case when 
t > rain matches the critical values when 

supported at  position of reinforcing member 

lef .-Remarks 

155 

#e 

I -_- E x .  
I 2( I - u:) 

x ($Y 
E.C 
Db 



No. D i a .  E Bound. Cond. Formulas or Tables of Results 

6.21 

I 

' Ends with 4 sides rotating,' 
'14 2 reinforcing rnemh3rs n=t a, When 

10.3 1 13.1 I 15.1 
L 

b 154.4 ' 38.8 I 26.4 I 16.06 / 11.6 ! 9.42 

7n1n ja .0  127.6 ~ 16.9 i 7.2 1 3.5 1 2.0 
- 

When 
ii) 7 < 7 n t n  

~ 

k 11.55 1 32.75 j 41.6 1 48.5 ~ 54.4 
I 

8-1.2 - 

: ' 0 1 7.5 1 15 I 22.5 ' i  
t I 8.09 1 19.43 1 25.2 I 29.5 

I 
6.74 13.07 , 18.2 

Ref. -Remarks 

156 

I I 
E I 6.04/ 7.29 I 8.39 1 9.21 i 9.55 

- 

/460 
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rotsting, and many rcin- 
forcing members a t  equal 
intervals 

~. 

Square plate having a dia- 
gonal reinforcing member, 
end with 4 edges rotating 

BENDING 

n = P  oe 

k I 6.98 1 7.70 1 8.67 1 9.36 I 9.90 10.4 

2 J B[ sins b 
D b  TI=  ' 

6, is the bending stiffness of t h e  reinforcing 
member dt a distance ci from one end 

i)  Case in which tension force acts on reiriforcii 

a= k ae 

k= 1 I .75 

ii) Case in which compressive force acts on 
reinforcing member 

rr=30.6ae 

No. - 
117 

- 
5 36 

Dia .  & Bound. Cond. i-ormulas o r  Tables o f  Results 

Single longitudinal rein- 1 
forcing member, in case 

-- 

a k = k  ae 

i )  ar0.8 b, b1=0.75 b. of pur; bending; end  with 
i rotating edges i 

' - a  --A 1 

Ief, - Rrmarkc 

I55 /461 

1 9  

L 57 

:ef . -Remarks 

I59 

I i s  the shape of buckling together 
reinforcing member 

a i s  the shape forming a 
segmented line of the 
position of the reinforcing 
member 



-... . 
No. D i a .  E, Bound. Cmd.  3rrnul;ls o r  Tables o f  Results Ref.-Rema1,s 

32.4 

29.4 

27.0 

25.6 

24.7 

24.2 

23.9 

23.95 

24.21 

24.66 

25.15 

25.6 

26.3 

27.2 

I17 

36.0 

33.6 

31.8 

30.9 

30.25 

30.0 

29.8 

29.8 

F.0  

30.3 

30.6 

31.0 

- 
, 32.8 

i - -  
Wnen 

b ii) b i z -  2 I !61 

-- 
( I  +t i * )* (~ +9,3z)i+?rC(l +~*1'+(~+9~z1?J 

36( I +i3')'+54( 1 +913*)2+5408 7 

rable of k 

0.35 

0.40 

0.45 

0.50 

0.55 

0. a 
0.65 

0.70 

0.75 

0. a0 

0. as 
0.90 

0.95 

I .oo 

37.5 

35.82 

35.0 

34.92 

35.2 

35.9 

36.8 

37.7 

- 
- 
- 
- 
-- 
.- 

37.8 

36.25 

35.6 

36.0 

36.6 

37.7 

39.0 

40.5 

- 

38.2 

37.0 

36.43 

37.2 

/462 
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No. 'Dia. & Bound. Cond: Formulas or Tables o f  Results 

plate under compression i) The assumption is made that the ultimate load is 
obtained from the Euler buckling of a column consisting 

d assume that by 

7 

I 1 

- - 
Eknding and compression 
reicforci.ng ciemher on 
on one side of a, end 
w i  th other 3 sides rotat- 

ing 
m. 

COMPRESSION AND SHEAR 

.*=t 8e 

The values of k are given in tkc diagram 

Ref. -Remarks 

IS 
-- 

No. - 
I I9 

- 

Formalas or Tables o f  Results Ref.-Remarks 
L 

When 
Wb= 1.6, 

4r3.22 

b, = bl2 

1 

ia. i Bound. Cond. 
h d  with 4 edges roiating 
one longitudinal 
reinforcing member 

153 

I i 

i i 
l 

I 
I 

et tr. respecrivelj are the critical valo 

/463 

I !above V c t  to a sinale reinforcim h a e r .  - 
When there are lates on both sides of the reinforcing member, 
8, is taken for rfoth sides. 

538 



ia. & Bound. Cond. Formulas or Tables of  Results 'Ref.-Rernarks 
I /464 

For the ultimate h a d  of the overall reinforced plate, there are sofile 
authors who would ae-che l ~ + &  a<b--2b,)t 
other t t d  the effective section in  the above equation. and oLrs 
w.ho wovid disregard this. For bm , the followi ng ecuatiom are used 

-Fgng On p?"lS 

the reinforcing member with respect to aL. 
b,!,., is used for the effective width 

sbr 
d ea 

&'=b-+es - - 

,) 2&= t-7c<E!z W i t h  respect to internal ' 161 
bemeen reinforcing members 

I 1.6g I/-E~Z W i t h  respect tc the out side , 
portion of reinforcing ,f5 

t e) is determined . members 
by the graph below 

b' is t a k n  as the effective 
width ;and the reinforcing 
member when calculatingul 

m 

165 

~SIJ 

164 
166 
17 5 
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- No, Dia .  & Bound. Cond. Formulas or Tables of Results Ref.+.emarks 

IE 

- 
54Q 

Thc ultimate load is determined by finding the effective width b’ 

reinforcing member to which the Pffective width i s  applied. 
hloreover, if a value is obtained in which there is no great differe 
ence between this ultimate load, and that which is found from the 
relationship 

WIKh respect to 0 L, and determining the buckling stress of a 
I 3  

: P=at(%+bmt) . 
I 
I the Val ue  is considered to be pUlt. 

fi it is assumed that the load-contraction curve after the buckling 
of the flat plate is a straight line. The stress ucv I ‘72 

’ 
i 

where II=2d&=t < it  is azsumcd that there is I 
a reinforcing r,.eln’ e i  AL in the center of the width b). 

i 

1 
a=- tr., : average compressive stress;) 

I d 
I i i.e. gives the coefficient of the effective width 

a 
and , #.u’=(aabt+d~#u) / (bt+&)- 
= ;lt 

I 
gives the ultimate s e e s  in the case where 

bk .adt’. Mareover, UkL is the buckling stress of the 
I reinforcing member and U k* isthe buckling smis of the plate 

of half-widths. I $9 When the ultimate load is not wry great in comparison with 
T h e  buckling load I to be a constant-b the buclcllng ot a column consisting of tk 

effective width and the reinforcing member is found, and then 
t-m p i n t  of yield due to the resultant forces of the bending stress 

of the flat plate. assuming the effective width 

I 176 2 

f o f the  column and the compressor stress is considered to b the 
ultimate load. i.e. 

For soft rteel (from experiments) 

I 
where -($-)%‘<6.6x I (r8  

r 9 . 7 0 X  l l F + o . o ~ p - ( ~ )  I L L’ 

I s > 6 . 6 x I P  

where Ar’=-h+y bt, I is :he distance from the I neutral axis of the 
I 

cross-section AL‘ to the edge of the reinforcing member, I is the 
geometric . moment .- of inertia of AL’, 1 is the length of the 

i 
reinforcing member. 

9 

- I 
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No. D i d .  E Bound. COnd. Formulas or Tables of Results 'Ref.-Remarks 
I I 2 0  ; 

1 
! 

i 
I 

I 
I 

I 

i I 
In the above, when the number 0: panels i s  above 2, the s u m  of 
the loads found for the reinforcing members of each panel becomes - 
the overall ultimate load. 

1 
h) P+aP,+KbTt 

1 
K-125pOOO&-a- ( balanced 2 type) 

1 

r:318@3-4t7 ( unbalanced Z t y e )  

69 

p a  ic thc cxireiiie load of the reinforcing memter when there 
166 

is no flat plate 
c )  based on the torsion bending load 

where &=(E'G, 1 + ~  car) I ca 
8--;ya(=+v I a 

u is the degree of longitudiri 

E'== sine elasticitv modulus . 

, 

I 
i d= center of reinforcing member 

n= i n t ep r  

The smaller value between the bending rupture stress of the 
plate and d, is taken, and the ultimate load is determined 
by multiplying the area of the reinforcing member and the 
effective portion of the plate. 1 

/ 466 
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I2O I 
! 

reinforcii 

Moreover, fcr the eficctive width bm, von Karman's equation 
is used for the side away froin the attached rivets of the reinforcing 
member (refer to the figure below) 

/467 

Details of reinforcing member 

f gravity 
of reinforcin m d i n k 1  

I 

- ~ t & i ~ ~ " p s ' j  +. e=4---+ .4-4--+ 1 
... 3 

S 
I. 

4 e x q p l e  of the thin plate 4 J io 2; i c 
2 length L (in) anti-destructionstructure - 

I 
iii) Case zonsidered to hc due to the buckling cf a plate between the 

centers of the bolts attached to reinforciig members 

a) Maximum compressive stress of section 
between bolts (width w) 

.==- - 
3 L* 

cing 
member cross-section 

stress of reinforcing member USt. 

E 
L 8 u = A r -  

At = degree of contraction of section bea 

I77 

:en bolts 
u1 = maximum stress sustained by the above 

I 
De(&&ir,ing Ut in &e &e i n  which the U iS ecjUa1 t O  the StreSS 
occurring in dangerous permanent deformation, 

I . -..---- 
Prlc==urr(.h-%t). The values of USt when 

are given in the following diagram 
I 

U ' = Z ~  Ibs/in* 
I 



No* Dia* Bound* Cond* Formulas or Tables of Results 

IZ1 flat plate reinforced 
corrugated plate 

b) Effect of center of rivet on ultimate load 

Considering the deformation of a flat plate 

D + E [ ~ ,  J . I ~ & - N (  f m b e t ,  

+B h m ) ] / i 3  

(a' is the buckling load of the 

Et,' 
4- = 1.2 (, -w* )  [ $- +; * >1 

tl 'k +2D4. E t ,  2(rmaE/2)' 
&== I-# 1.218tJt.+l 

bolt center L?) 
I 

c) , In order to make *t and u t  below the 

plate only) 

L -E- proportional limit a,, 
--m1.814 JF. t 

Buckling load Pk 

Pk-( 2 d D T +  2 D.-]+. 

/468 Ref - -Remarks 

rn 
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FLAT PLATE STRUCTURES 

Local Buckling - ~ /469 
No. D i a .  E Bound. Cond. Formulas or Tables o f  Results 

1 , Channel compression 

I 

i 

i 
I 

I 
I 
! 
I 

I 

i 
I 

- i  I 
i 
I 

-- 
123 

- 
544 

-- 

Compression of channel 
type and Z type 

gb=k., 

p b-2 

a/b 12.3 12.5 j 2.7 12.9 3.0 ! 4.0 

k 10-89 10.905 0.928 10.9% 1 0.976 i 0.90 

p b=8 

a/b j 1 . 0  I 1.3 I 1.5 1.8 1 2.0 

k I 1.58 I 1.25 j 1.16 1 . 1 1  1 1.12 

a/b 1 2.3 1 2.5 1 2.7 3.0 i 4.0 

k I 1.18 1 1.23 1 1.22 I 1.16 I 1.12 

D' 2b pb=--  D d  
iJ is side plate (B C and F G) 
D' is tending stiffness of top plate (B F) 

e f  . -Remarks -- 
I8 I 
182 
In this section 
we are dealing 
with the compound 
flexural torsional 
buckling consisting 
of local buckling 
causing ripples on 
the flanges and webs 
together with 
beqding and torsion. 
In addition to this 
there is Euler buck- 
ling and torsion 
buckling due to 
bending but see 
Part 2 for this. 

n Form of buskling 
-7 --. I 

I 
I -. 
I C 

Buckling of flange 

Buckling of web 



No. 

123 

.- 
lis. & Bound. Cod,. Formulas or Tables o f  Results -- 

I 
Ref. -Remarks 

/470 
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No. 3 i a .  E Bound. Cond. Formulas or Tables or Results Pef.-Remarks - __--.----_ 

123 1 
I 
I 

124 

- 

Compression of channel 
cross-section 

125 ! 
Compression of equilateral 
:harmel cross-section havi  g 

'With respect to the critical stress above the pro- 
portional l imit ,  assuming an effective elasticity 
modulus E 

a - z l  E 
If 
P is the experimen 4. a+3 y From P =  

i f  
'value. i; is used 

' P ~ ~ ~ ~  is assimed 

The maximum load occurs .it the same t ime as 
u,. is reached. 

o/b 0.5 i 1.0 1 1.2 1 1.4 1 1.6 1.8 
L 

t 14.40 11.44 I 1.14 

d /b  I 2.0 1 2.5 1 3.0 i 4.0 1 5.0 - 
L! 1 0.698 I 0.~10 I 0.546 1 0.516 i 0.506 

In the case of Figure J [ ]  , this is based 01 
When there is eccentricity e xoss-section value . 

b (0.456+b*/af)- a=-- 
b+4c '' 

The values of are given in the graph below 

5*- 
:ion configura 

182 

:he channel 

184 
I 85 

C 
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125 1 

Sompression of C shape 
and Hut cross-section 

nn 

am given in the table below 

Z/ba 1 6.28 j 3.14 1 1.57 , 1.046 0,785 

am , 0.480 ' 0.427 ! 0.295 0.196 I 0.139 
i 

' -- 
moreover, 1 is the half-wavelengtt , n is the nun1 

/472  

er - 
of sides (considering the end plane a' - h is thestandard width 

I 

I84 
185 

(When Nf and others involve the case of equilatlral channel 
cross-sections with small flanges attached, same as in materials [12 j ]  

50 

3c 

4l 
20 

0 

547 
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/473 

- 
12i 

- 
548 

Compression of hollow 
square cross-section 

Stmess at time of maximum load 

Based on the condition of an end wiih sides rolating 

I 

182 



i a .  8 Bound. Cond.. Formulas or Tables of Results Ref.-Remarks 

Compression of hollow 
rectangular cross-sec,lon 

Compression of hollow 
open web cross-section 

Compression of hollow 
niangular cross-section g I 

a= k*- - E - (+S. 12 (! -9) 

184 

184 

I 

/474 
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No 

131 

- 

- 
550 

c E T = c B + c F .  

CB=~U'*dr- 

et- ;~JPP~s. 
c- thickness 

TORSION AND BENDING BUCKLING 

ia .  & BOUnd*-Condo. I Formulas or Tables of Results 

l€8  

Equilibrium condition 

-ECn d.c, + -%(p.isp*-GJ~)==O. 
d* 

Critical buckling load 

where cm = J u . d ~ .  
u i s  deFee of longitudinal movement 

when-& dv ==I 

I : twist angle 
&,.*=A f + d F + e * T s q T ' d F .  I 

F. 
r : distance from center of rotation 

I 
11 a i ' # ,  Cross-section 

: distance from neutral axis 

e : 

GJr : tonion stiffness of cross-section 

P : cross-section area 

degree of eccentricity of load 

experiment on duraluminum columr, 

/475 Ref. -Ramarks 

187 

end wi th respect to the other ends (with shear center as orinin) 
~ ~ - _ ~  



No. Dia. E; Bound. Cond. Formulas or Tables of Results kef.-Remarks -- 
Ietermining the conditions giving the minimum 
lailure stress from this 

p d ,  0-0 (rotationg axis is shear center) 

case in which the axis 
plo* ' = O D  of rotation is a t  some 

on the principal axis i 0-0 ( point of infinite distance P-00, 

hese conditions determined from any of the above 

I In the case of a I cross-section column 

KBT=KB+K.. . 
Mhen 

e 'tr < f , minimum failurt: occurs due to 
I 

the bend ing Of the axis rara'l . i  to the web. I 
i 

/476 
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No. Dia .  & Bound. Cond. Formulas or Ta6les of Results' Ref.-Remarks 

I 

1 

I,,= polar geometricmoment of inertia I 
L= effective length 1 i 

Jhen applied io duraluminum an leor  channel type 
iiember, i t  is as givenin the folgwinggraphs I 

1 C : bending torsion failure. 
P : c& in which the shear center is the center of rotation. 
-4, fi : bending around axes 1-1 and 2-2 respectively 

(Euler buckling), when Q +a c +Bo ! 
I ' According to Kappus, since d distribution of the 

190 
.- 

where & , = j > d F .  

- .  j 
r IS the distance from the center of rotatioil D 

1 j G,,,p~/r. (average compressive stress) 

The center point D of rotation is determined from energy equations. 

/477 
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I i a .  & Bound. Cond. Formulas o r  Tables-of Results- R e f . - R G r k s  No 
c- 

131 

,- 

I h an I shaped cross-section (E/G = 2.6) 

I n* h*b'+0.312 (A+2 b )  t V  
P-E- 4 b'+lZ bh*+2 -- h* e 

I 
xhere ti: web height, b: flange width 

in a channel cross-section 
.&=I*+ e- 

ar 

t f E  
If &= - -  

2 hW (h+3 - _. b )  1 
(h+2 b): 3 (n2(h+&XA+2b)+8:(2h+b)}"* j l  I 

dhere h: we'. height. b: flange width 

When h/b = 1.0, comparing with Wagner's result OW, the 
following graph is obtained. 

I 8. is Bleich's calculated values. 

/478 
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ISOTROPIC SANDWICH PLATES (supplement) 
Simple Compression (overall vuckling) 

- 
No. Dia. & Bound. Con( 
c_ 

I32 

Formulas o r  Tables o f  Results Ref.-Remarks j 4  79 

i 'D 
a/* E-K 

Here 

( p tension stiffness 

H = El( t-t, ) -i E& 

*Ef( t - tc )  

( b ) Sending stiffness 

207 
208 

if both facing thicknesses E.(I--v/') 
E / (  1 --v<') ' 

are equal Ifr = ifr. 

( 1 ) wnen the core stiffness can be omitted 

when J5 D =  lz(l-"f') cp--1.7. tfl=t,, 

I ( 2 When the facing stiffness can be  omitted 

I 

I 

Ef D = q 1 -" f :  ) t / (  t + t c  )', tfr =tf:  
I 

( 3 ) When the facing is very thin, and the quadruple of it can L- 

E/ I 
I 

omitted, 
D s  ~ [ l - ~ ~ t ; f f e t f  

( c  ) Shear stiffness i n  directior, of plate thickness 

u =t& 

I =* I+ t. ICt 

t 
==( I +  tc 1% 

m n  rf ( t  , these all give the same value. 
I 

U f  = -overall buckling stress. 
t = total plate thickness, tf = facing thickness, tC = core thickness 
h= distance between centers of facing (approximatly, sandwich 
plate thickness). Subscript "f" is facing, "c" is core (as in Eft  G,). 

554 



i a .  & Bound. Cond. Formulas o r  Tables o f  Results ,Ref.-Remarks 

:rids with sides a fixed. 
des b rotating. 

nds with sides b fixed, 
ides a rotating. 

I ' /480 
( d )  K = K / + K .  

.*K- (for a sandwich plate of normal construction) . I 

e t 

207 
208 

~ 

207 
208 



No. D i a .  & Bound. Cond. Formulas or Tables o f  Results Ref.-Remarks 
-_.- 

Jnds with 4 sides fixed 

13? 
Free end and supported 
end. 

: I  
208 

Cases of buckling other than Df the sine 
type 

- 
p,,-=.S (per unit width) 

GCK 

SIMPLE COMPRESSION (ripple type buckling) 

i 
! 

No. Dia. & Bound. ComD. Formulas or Tables of Results R 

the relationship between s and f is 
given by the following graph. 

case of sine type buckling 

h 1 -- 2 - w !~,,=0.82fE,E,G,)~ 

here 1 = half-wavelength of ripple 

W =  width of coiltour 

-0.721 t(E&/G,2)a 

11 a 
I 
I 
I 

:f . -Remarks 
~ 

202 

mi 

/481 
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No. Dia.  & Bound. Con!. Formulas o r  Tables o f  Results Ref.-Remarks 

137 1 I 

SHEAR 

f 

i ia .  & aound. Cond 

3nds with 4 sides rotating 

Edge with 4 sides fixed 

t Ci' I - - - ,  

Formulas o r  Tables o f  Results 

here, N = shear Si ffneu (in plane x, y) 
=G1(t-fc) : G.f- 

*Gf ( f - t c )  

6' 
4 + 3 7  when 1 

O L V h y  
1 + 0 ,  

K=- 

1 K=- V 
when 1 V>---p- 

1 +d 

=,-!-when v >  3 

V 4 (l++) 

I /482 

:f . -Remarks 

205 
208 
212 

207 
208 
212 



.. 

SANDWICH PLATES WITH FACING ISOTROPIC, CORE ORTHOTROPIC (supplement) 
Simple Compression 

- 
No. D i a .  t Bound. Conc - 
140 End w i f i  4 sFlcc 

rota t i n a  

buckling va l  

- Formulas o r  Tables o f  Resu l ts  

Here 
H = E/(  t-t, ) 

c, +2 c, +c, + VA[*+l] 
YA K,= 

1 

e 

:hs 

?ef . -Remarks 

210 
207 

giving minimum 

1483 

558 



NO. - 
140 

- 
141 

- 

i a .  & Bound. Cond, 
._ 

End with sides a 
Eked,  stdes b 
rotating. 

Formulas or Tables o f  Results Ref.-Remarks 

16 d 4 
c1=-J-=. c 1 = 3 *  

4 d  
c a = g r .  3 36' c,=- - r'b' 

/484 

210 
207 

- 
5 59 



I 

I 

(M=l) 3 3  
Ca=-C* = -- 4 Y  

Ends w i t h  sides b 1 
Ked, s i d e s  a ro ta@ng. 

210 
207 



lis. & Bound. C o d .  Formulas or Tables of Results 

h d s  vLth 4 s i d e s  
fixed. 

c , = 4 c 4 = 4 y  r’ (n=.l) 

16 d 
c,=lc*= 3(d+I)  7 (R>l) 

4 n*+6d+l 
r‘+l d c,=3’ c*= 

8 3 

Re?. -Remarks 
, /486 

210 
207 

561 
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No.' Dia. t Bound. con!. Formulas or Tables o f  Results 

ORTHOTROPIC SANDWICH PLATES (supplement) 
Simple Compression 

lef .-Remarks 

/487 

No- Dia. 8 Bound. Cond 

144 1 
i 
I- 

Formulas or Tables of Results R f .-Remarks 

207 
196 



A 

No. Dia .  8 Bound. Cond. Formulas or Tsbles of Results 'Ref.- Remarks 
t 

144 

I tf,=tfl Ot%Rlt. 
E / ,  
8 A/ 
E/# 

Da=-t/(t+tc)' 

I DF -t/ ( r+  t, 1' 

quadruple of i t  can be omitted,  
( 3 )  When the  core is  extremely th in ,  and the 

( c )  D d =  to rs ion  S t i f f n e s s  I 

( a )  u= shear  s t i f f n e s s  i n  d i r ec t ion  of p l a t e  

563 



N ~ .  D i a .  E Gound. Cond 

lU s i d e  a rotating: 

c- 

144 

3 d  # h a  c,=C,=-- 4 y' n=l 

- 
145 

End with 4 s ides  
r o  ta t  ing 

jwE 
-- -- 

+ a 4  

End with s ides  a 
f ixed ,  s ides  b r o  IzEIz 

+=--=I 

Formulas or  Tables o f  Results , Ref. -Remarks 

( f )  K = = K / + K ,  I 

Here 

A -C,C, -B, 'C, '+B~C,(B,Cl+~BICI+~)  

4:. 3a+ZDaO B , = T r c  - - 2 B, + B p r k  

El=- &e - 
Va=-- d b f  DaDe 

y uaa 
IC1 

c/oa 
c , , c l ,C land  C 4 

V o = a  

are given as follows 

Eorresponding t o  t h e  boundary condil 

d de c,=c,=,,. c,=1. c , = 7  

:ating 
16d 4 nw I d  

G=- 3n'y. cl=,, c,=., c,=-- 3 db' 

- 
147 End with 4 s ides  

f ixed  

3€EE r' 4 

1 0 '  

n4+6rr'+1 9 

- 
d+l V '  n'l 

c1-1. c1= n'+l 7 

wher, c,=c,= 

when c,=4. C , 4 7  d n i l  

16 d when c1=4, C,= 3(n'+l) 7 n<l 

4 n4+6n+1 Y 
G=,. c1= n' +l ';i 

.- 

ons . 
to7 
L96 

207 
196 

~ 

207 
196 

/489 
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No. Dia .  & 6ound. Cond Formulas o r  Tables o f  Results Ref.-Remarks /490 

145 ' End with 4 sides 1 I rctnting 
! 

- 
149 

- ,  
j. 

! 

- 
End W i t h  4 s i d e s  
fixed 

-al I 

(approximate equation) ' 
Km = calculated as n = 1 from equation i n  

K (PO)= same as above where V = V, = 0, 
'!M mhterials" 144. 

m a 
1 I where &-(%)' 1 h?d 

8, ~ 

j determined by the graph below. I 

207 
212 



CORRUGATED SAVDWICH PLATES (supplement) 
Simp l e  comp res s ion 

plate thickness 
U=*h l!;el (+y 

No. 

159 

- D i a .  & Bound. Con 

:nd with 4 s i d e s  
'0 tat  ing 

Formulas o r  Tables o f  Results 

Here, 

( 2  1 tension s t i f fness  

( b )  bending s t i f fness  

tef ,-Remarks 

207 

pt M M on io 
t 

4 - 0.3 
* 

when '' 

566 
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Ref. -Remarks lis. E Bound. Cond Formulas o r  Tables o f  Resul ts  

c 

c 

- 

/492 
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l i a .  & Bound.  Cond 

the boundary 

Formulas or  Tables o f  Results 

d D f  b conditions wi th  V=- y a n d  ? as Parameters. 

\ e f .  -Remarks -- 

5 

/493 



lis. & Bound. cond. Formulas or Tables o f  R e s u l t s  kef.-Remarks No. - 
150 

- 
151 Ends with sides 

Y 

V 

see Materials 150 
a fixed, side b 1 

/494 

207 
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NO. 3 i a .  & Bound. Conc - 
I 

- 
No. - 

152 

- 

Formulas or Tables  of Results 

V 

PLASTIC BUCKLING OF RECTANGULAR PLATES 
Compress ion 

i a .  & Bound. Cond. Formulas or Tables of  Results Re 
~~ ~~ 

End with 4 s ides  
rotating rn +a- 

i )  B a s e d  on deformation tlleory 
.7,=1(u,).u~ 

1 

* #. :cr i t ica l  buckling stress based on e l a s t i c i t y  calcu 
E,: tangent modulus 
E,. secant modulus 

Ref. -Remarks . /495 
I 

.-Remarks 

218 

219 

5 70 



153 

s i d e  free  

L a 0  
m 

lis. E Bound, Cond'. Formulas or Tables of Results Ref.-Remarks 
I -- 

q ,EI 
E 

where u=+ 

r r 2 . 6  F 

g,=[(5-4 u ) (  1 + ~ ' ) + 2 ( 5  u - 4 ) B ~  3 eC']E 
-(I-2 u)[(1--2 u)C~-3(l+r)BlE,  

s3: pri-ncipal stress rat io  ( in  
take graph of I-I 

I 
h i s  case 6-0) 

228 

4E "(l++gy 
- - 

decreases r q i d l y  

I 

235 

220 

223 

case i n  which the decrease 
v i c in i ty  of a is s l i g h t .  

EJ( 1 - 9 )  ' =,Tii=7i 

i n  E i n  the 1+- 
213 

219 

220 

I496  

571 



Graph Br. hundary Cond. Formula or Table .bults  

Two edges para1 le1 
:o load clamped, 
Edge b rotating 

i )  Based on deformation theory 

d with one side parallel 
Id cla d othe side :er si&?'& rtnanni. 

ide a with 
:lastic support 
'ide b rotating 

(See t4ateri:rls 152 for A ,  B, D, F) 
i i )  Based on flow theory 

v =7 E, 

Case in which Et decreases rapidly in the vicinity 
of ac 

dase in which dec&%es Et & dight in vicinity O! 

i )  Based on deformation theory 

1 
where 

1 4 . 4 7 3  (m+2,97 F--0.405 b, 

(See Materials for A ,  B ,  S, F) 

Lolution o f  equation (4.7.1) o f  
nitial theorv 

1 b 4 b  

p, n @veri by the root of the following equation. 

-~ 

Notes, Ref. 

/497 - 
218 

219 

228 

237 

-- 
M,=--cU 

Approximate solution of equation (error within 170) 

2 D  c =-P 

b c *  - 
9 = rotation aiigle of side a 

), q functions of and are given by rhe following graph. 

57 2 
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No. 

Y 

- 

- 

- 
- 

. ~~~ 

-- -. - ~~ 

Graph & Boundary Cond. j Formula or Table of Results I Notes, Ref. 

reo 

4 0 0  

-J.M 
- 0  

240 

160 

-0.80 

-a 

- 
157 

P. 
g. 

P 

t 

End with side a having 
elastic suppon and free, 
end with side b rotzting 

I n  a slender p l a t e  3 large. the 
ninimum value of uc i s  given by 
the following equation. 

*cli.= 

n this case, the half-wave length is given by 
)y tk following equation. 

. _ _ _ _ ~  
iolution o f  equation (4.7.1) o f  

, q shown i n  grzph below. The  result of this is 
13 proximate solution 10 the following buckling 
,nJtion_.equgjgn, - - -  

x tanh r , b  tan r,6 

P tanh r ,b-rZ3tan r,b'!=O 
K? 

i 12 

c.10 
P 

n p. 

PPS 

: e4 

c $2 

0 
h c 
r h e  minimum value of 4 of a slender plate and 
.:s half-wave length are given respectively by the 
rollowing equations: 

237 

573 



SHEAR 

SrTph-& Boundary Cond. 

:nd with 4 sides 
-0 t a t i ng 

~~ 

1 Notes. Ref. Formula or Table Results- 

1. = q(rdri 

Rased o n  deformation theory 
Slender rectangular plate 

q =O. 16 

x [a-'{ t'A{A( 1 +a') +2 ( 8 + 2  F )a' 1 
+3 A d  + B +2F)3 

Graph o f  n 

Square plate 
v =6.n( A+B+Z F )  

41 A+9 (B+2 F) xi 8249A+2601(Bt2 F) 

Graph of rl 

(See Materials 152 for A,  B, F where B = 1) 
i i )  Based o n  flow theory 

%( f i r )  
E v *  

Case in which E, decreases rapidly in vicinity 
of T c  4B 

rl+r 
; (I++- ~ /3-r  ))I 
Case ih which the decrease in Et is  slight 
in vicinity of T~ 

219 

235 

219 

235 

228 

574 
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PART 5 SHELLS /SO9 - 

CHAPTER 1 

INTRODUCTION 

5.1.1.  SHELL STRUCTURES 

Objects havin - I C  shape of curved p l a t e s ,  cyl inders ,  spherical  s h e l l s ,  
e l l i p t i c a l  s h e l l s  .A ronica l  s h e l l s  are ca l l ed  s h e l l s  i n  general .  For example, 
these  include gas tanks,  o i l  tanks, pipes ,  bo i l e r s ,  spher ica l  s h e l l s ,  corrugated 
p l a t e s ,  machine s t ruc tu res ,  aircraft s t ruc tu res ,  a r c h i t e c t u r a l  s h e l l s ,  r a i l r o a d  
cars, automobile bodies,  sh ip  h u l l s ,  etc. 
most f requent ly  used s h e l l s .  

Cylinders and curved p l a t e s  are t h e  

Shel l s  can be c l a s s i f i e d ,  i n  terms of  t h e i r  funct ions,  i n t o  cases where 
they a re  required as s t ruc tu res  having curvature and i n t o  cases i n  which they 
are used as s t ruc tu res  which are convenient i n  terms of  s t r eng th  and r i g i d i t y ,  
when se l ec t ion  of t h e  type o f  s t r u c t u r e  is open. Generally, s h e l l s  are l i g h t e r  
and s t ronger  than t rus ses ,  r i g i d  frames, o r  f l a t  p l a t e s ,  and s ince  they normal- 
ly are used f o r  thin-walled s t ruc tu res ,  t h e  occurrence of  buckling is  poss ib le .  
This buckling occurs more rap id ly  than i n  p l a t e s ,  and the  s h e l l s  have t h e  ten-  
dency of  immediately losing t h e i r  s t rength .  Consequently, t he  inves t iga t ion  of  
buckling phenomenon is  a p a r t i c u l a r  problem i n  the  design of s h e l l  s t ruc tu res .  

Problems i n  the  e l a s t i c  s t a b i l i t y  of  s h e l l s  include ca lcu la t ing  the  buckling 
load f o r  s t r u c t u r a l  elements, problems i n  t h e  ana lys i s  of stress when p a r t  o f  
t he  s t ruc tu re  has buckled, and problems i n  ca lcu la t ing  the  u l t imate  breaking 
load. In addi t ion t o  t h i s ,  t h e r e  are problems of s t i f f n e s s .  
a r e  f requent ly  re inforced by re inforc ing  members and i n  t h i s  case, s ince  gener- 
s l l y  the  breaking of  t he  re inforc ing  member determines t h e  u l t imate  s t r eng th  
of t he  overa l l  s t ruc tu re ,  a l a rge  number of da t a  concerning the  buckling of 
columns, beam columns, arches, r i g i d  frames and f l a t  p l a t e s ,  as re inforc ing  mem- 
bers  is necessary. 

She l l  s t r u c t u r e s  

5.1.2.  FORMS OF BUCKLING THAT MAY OCCUR I N  SHELLS. 

Generally, i n  s h e l l s ,  t he re  are few cases i n  which, as i n  columns and 
p l a t e s ,  buckling occurs i n  t h e  form of  in f in i t e s ima l  deformations and general ly  
they have the  property t h a t  the  buckling phenomenon occurs rap id ly  toge ther  with 
f i n i t e  deformation. The e f f ec t s  of i n i t i a l  deformation are p a r t i c u l a r l y  marked 
i n  t h i n  she l l s .  

(1) Buckling occurs due t o  compression, bending, t o r s ion ,  ex terna l  pressure 
and combined loads of these i n  cyl inders ,  curved p l a t e s ,  e l l i p t i c a l  cyl inders ,  
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and conical s h e l l s .  
forces .  

In curved p l a t e s ,  buckling a l s o  occurs due t o  shear ing 

(2) In spher ica l  s h e l l s  and e l l i p t i c a l  s h e l l s ,  t he re  i s  a p o s s i b i l i t y  of 
buckling occurring due t o  ex terna l  pressure and i n  f l a t  e l l i p t i c a l  s h e l l s ,  buck- 
l i n g  may a l so  occur due t o  i n t e r n a l  pressure.  

(3) In blocks,  - type s h e l l s ,  buckling occurs clue t o  compression, bending, 
to rs ion  and ex terna l  pressure.  

(4) In re inforced s t ruc tu res ,  t he  types of buckling t h a t  can occur are 
outer  p l a t e  buckling, buckling of longi tudinal  re inforcing members, buckling of 
r ive t ed  members, buckling between r i v e t s  i n  outer  p l a t e s  and re inforc ing  members , 
simultaneous buckling of ou te r  p l a t e  and re inforc ing  member ( loca l  and ove ra l l ) ,  
and buckling of  re inforc ing  members a f te r  buckling of ou te r  p l a t e s .  

The forms of buckling enumerated above are shown representa t ive ly  i n  Fig- 
ure  5.1.1. 
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4 
(b) Tors ional  buckl  ing (a) Compi-sss i v e  buckl i ng 

o f  c y l i n d e r s  o f  cy1 inders 

6 buckling= 0 
I 

(c)  Bending buckl ing  o f  cy1 inders (d) Buckl ing  due t o  ex terna l  
pressure on cy1 inder 

- 

- 
1 

(f) Buckl ing due t o  ex terna l  
pressure on spher ica l  she11 

dent 

(e) Compressive buck l ing  and 
shear buckl ing  o f  curved 
p l a t e  

External  pressure I nterna 

Buckl i n g  around 
c i  rcumference 

Compression Tors i c, I 

pressure 
(9) Buckl ing due t o  ex tz rna l  (h) Buckl ing due t o  var ious 

pressure and interbial  pres- loads on con ica l  s h e l l s  
sure on e l  1 i p t i c a l  she1 Is 

FIGURE 5.1.1 
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- E Buckl ing o f  o u t e r  
-_- -  p l a t e s  

Compressive buck] i ng  Y i e l d i n g  accompanying 
reduc t i on  i n  S ize Of p l a t e  r e i  n f o r c  i ng 
cross-sect ion due t o  :nembers 
t w i s t i n g  (j) Compressive buck1 ing 

( i )  Buckling of o f  r e i n f o r c e d  she1 1 
box-type s h e l l  

member - 
Buck1 ing between r i v e t s  

(k)  Buck1 ing  between 
r i v e t s  i n  r i v e t e d  
sec t  ion 
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5.2 .1 .  GENERAL DESCR 

CHAPTER 2 

BUCKLING THEORY OF SHELLS 

P T I O N  OF HISTORY [ -391 

The h i s to ry  of t he  theory of buckling with r e l a t i o n  t o  s h e l l s  can be con- 
s idered  t o  be divided i n t o  two main areas; t h e  in f in i t e s ima l  deformation theory 
t h a t  was first developed, and the  f i n i t e  deformation theory t h a t  was la te r  
constructed.  
s t ruc t ions .  
t h e  extensive appl ica t ion  of t h i s  theory i n  mechanical s t ruc tu res ,  a r ch i t ec tu r -  
a l  s t ruc tu res ,  sh ip  s t ruc tu res  and aircraft  s t ruc tu res .  

She l l s  involve problems as s i n g l e  bodies,  and as reinforced con- 
The amount of research i n  these f i e l d s  i s  extremely g rea t ,  due t o  

R. Lorenz [l] was t h e  f i r s t  t o  attempt an analysis  of the  buckling phenom- 
ena of cyl inders  under compressive force i n  te--.as of f i n i t e  defomat ion  theory. 
A s  can be seen from t h e  t a b l e  of  references,  :ue theory of buckling f o r  cyl in-  
d r i c a l  and spher ica l  s h e l l s  under compressive forces  and ex terna l  pressure was 
es tab l i shed  by S. Timoshenko (1910) [2] ,  E. v. Southwell (1913) [4], R. v. 
Xises (1914) [SI,  R.  Zoelly (1915) [6]. In  t h i s  method of ana lys i s ,  t he  buck- 
l i n g  load is determined as the  case i n  which, when a load i s  sus ta ined  and a /512 
s t a t e  of equilibrium changes from a balanced equilibrium t o  another equilibrium- 
causing an inf in i tes imal  added displacement which can be under an iden t i ca l  
load. The difference equation which expresses the  second state of equilibrium 
is l i n e a r  with respect  t o  the  in f in i t e s ima l  added displacement. Consequently, 
t h i s  i s  ca l led  in f in i t e s ima l  deformation theory. Afterward, buckling phenomena 
due t o  various types of  load were inves t iga ted  f o r  s h e l l s  of varying types,  i n  
accordance with t h i s  theory. In  addi t ion t o  the  above, o thers  who have s tudied  
the  Compressive buckling of cyl inders  include W .  R .  Dean (1925) [7],  L. FOppl 
(1926) [71], J. W. Geckeler (1928) [73], A. Robertson (1929) [72], W. Fltlgge 
(1932) [75], K.  v. Sanden-F. TOlke (1932) [74], R. Lorenz (1911) [105], R. v. 
Southwell (1915) [ i06] ,  R. v. Mises (191.4) [110], Tokugawa Takesada (1925) 
[112, 1131 have inves t iga ted  i n t e r n a l  pressure.  A.  G .  Greenhill  (1883) [85], 
E.  Schwerin (1925) [86], Sezawa-Kubo (193:) [87], Sezawa (1933) [89], Yamana 
(1933) [121], K.  v.  Sanden-F. Tblke (1932) [88] have s tudied  buckling under 
tors ion ,  f l exura l  buckling has been the  subjec t  of s tud ie s  by L. G.  Brazier  
(1927) [96], R. W. Mossman-R. G.  Robinson (1933) [99], W .  Fltlgge, (1932) [98], 
E.  E. Lundquist (1933) [ l o l l ,  L. H.  Donne11 (1934) [103], and compressive loads 
have been s tudied by R. v .  Mises (1929) [120, 1211,  K.  v.  Sanden-F. TCIlke (1932) 
[122],  W.  FlUgge (1932) [123], Yamana (1933) [124] ,  D. F. Windenburg-C. T r i l l i n g  
(1934) [126]. 

Similar  inves t iga t ions  have been ca r r i ed  out f o r  cyl inders  and curved 
p l a t e s .  S. C.  Redshaw (iY53) [41] ,  S. Timoshenko (1936) [43], J .  S. Newel1 
(1931-32) [40] have s tudied  compressive buckling; H. Wagner-W. Bal le rs ted t  
(1936), D. M.  A. Leggett (1937) [54],  and A. Kromm (1938) [57] ha? invest igated 
shear  buckling. 
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With regard t o  spherical  s h e l l s ,  there  have been s tud ie s  on buckling due 
t o  external  pressure by R .  Zoelly (1915) [135], E .  Schwerin (1922) [136], A.  
Van der  Neut (1932), T. Tokugawa (1936) [137]. 

In re inforced s t ruc tu res ,  when the  spacing between lateral  and longitudin- 
al  re inforc ing  members i s  r e l a t i v e l y  c lose ,  it i s  possible  f o r  t he  reinforcing 
members and the  outer  p l a t e s  simultaneously t o  undergo buckling over a wide 
area.  Such cases can be handled as a s h e l l  having or thot ropic  outs ide p l a t e s .  
Plywood cyl inders  are a l s o  e s s e n t i a l l y  or thot ropic  external  p l a t e s .  The buck- 
l i n g  of  curved p l a t e s  and cyl inders  having such or thot ropic  outer  p l a t e s  has 
been s tudied b Yamana (1933) [146], D. D .  Dschou (1934) [147], Shibuya (133;) P4n sue -7b2)- [1597-&a Hayashi Fl949) [TSS), [i60]. Hzyashi (1949) - 7 
1n60, 1641 has invest igated f lexura l  and to r s iona l  buckling, while Shibuya (1932) 
T1321 s tudied the  compression oE ellipt.$cal cy l inders  and 0. S .  Heck (1937) 1 
lrl61] invesr igated bending. I 

In  p l a t e s  and s h e l l s ,  considerable deformation occurs, depending on the 
buckling, and there  a r e  many cases i n  which the  displacement extends from the  
range of i n f in i t e s ima l  deformation i n t o  the  range of f i n i t e  information; i . e . ,  
from one t o  ten times the  p l a t e  thickness,  s o  it became n e c e s s a q  t o  e s t ab l i sh  
the so-cal led f i n i t e  deformation theory which could handle problems within t h i s  
range. From t h i s  point  of view, E. Tref f tz  1113 es tab l i shed  2 f i n i t e  deformation 
theory i n  1930, and discussed problems of  e las t ic  s t a b i l i t y  i n  terms of it. 
This cons t i tu ted  the  first research i n  the second theory mentioned above. In  
1937, E. Trefftz-K. Marguerre r13, 141 succeeded i n  applying the  theory t o  prob- 
lems i n  e f f ec t ive  width after the  compressive buckling of rectangular  p l a t e s ,  
and A. Kromm (1938) 1571 applied it t o  the  shear  buckling of  curved p l a t e s .  
E .  Trefftz (1935) obtained equilibrium equation f o r  f i n i t e l y  deformed s h e l l s .  
L .  H. Donne11 (1934) [ l o ]  found equilibrium equations f o r  cy l ind r i ca l  s h e l l s  and 
K. Marguerre (1938) [ l S ]  derived equakions f o r  arc p l a t e s .  

The major problem i n  s h e l l s  a t  t h a t  time was t h a t  t he  discrepancy between /513 - 
t heo re t i ca l  values and experimental values f o r  compressive buckling was g rea t e r ,  
the  smaller  the r a t i o  of diameter t o  p l a t e  thickness i n  cyl inders  and the exper- 
iment values were widely sca t te red .  In  L.  H .  Donnell's [ l o ]  research,  which 
considered the reason f o r  t h i s  discrepancy t o  be due t o  t h e  o r ig ina l  deformation 
of  the  s h e l l ,  s ince  it was necessary t o  p o s i t  a r a t h e r  la rge  o r ig ina l  deforma- 
t i o n  i n  order  t o  explain t h i s ,  he w a s  unable t o  avoid f u r t h e r  t heo re t i ca l  prob- 
lems a t  the  poin t  where he could not explain the  s c a t t e r i n g  of  the experiment 
values.  In 1938, K.  Marguerre [19] published h i s  inves t iga t ions  i n  the  case of 
a beam having two moving ro t a t ing  ends and an extremely small i n i t i a l  curvature,  
and C.  B. Biezeno [20] published h i s  study o f  t he  case i n  which a spher ica l  
s h e l l  having extremely small i n i t i a l  curvature underwent a concentrated load. 
In  each case, marked i n s t a b i l i t y  phenomena was shown and it was demonstrated 
t h a t  they were accompanied by f i n i t e  deformation. In 1940, Th. v. Kgrmfin-H. S. 
Tsien [22] ,  who were grea t ly  s t imulated by these  s tud ie s ,  first made an ana lys i s  
of spherical  s h e l l s  under external  pressure, iaking the f i n i t e  deformation of 
s h e l l s  i n t o  account, and es tab l i shed  a new theory which made c l e a r  t h e  poss ib i l -  
i t i e s  of a new buckling mechanism, which a i f f e r e d  completely from t h a t  which was 
based on c l a s s i c a l  in f in i tes imal  deformation theory. This mechanism was s t r i k -  
ingly similar t o  t h a t  of K.  Marguerre [19] and C. B.  Biezeno 1201 mentioned above. 
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They showed t h a t  the number of buckling waves at  the  beginning o f  a buck- 
l i ng  of a cyl inder  w p =  la ige ,  ana tiiai i; 2:zT-ased as the  deformation increases ,  
t h a t  a s t a t e  of deformation which was s t a b l e  f o r  s t r e s s  iu:;:: than c l a s s i c a l  
h x k i i n g  s t r e s s e s  ex is ted ,  and t h a t  s t r e s s  was extremely close t o  the  value3 
obtained by experiment. 
from experiments. In the  above theory,  i f  the  c l a s s i c a l  buckling value i s  not 
reached a t  l e a s t  once, the  lower s t a t e  of s t ab le  s t r e s s  w i l l  not be reached. 
Karman and Tsien found t h a t  i n  experiments, with regard t o  the f a c t  t h a t  buck- 
l i n g  occurs a t  stresses much lower than the  c l a s s i c a l  buckling values,  ac tua l ly ,  
when the load increases  t o  a point  within the theo re t i ca l  curves,  i t  jumps t o  
the  lower s t a b l e  s t a t e  of s t r e s s ,  as i n  the  experiments, due t o  some external  
v ibra t ion  and impact. Kuranishi Masatsugu 
ca l led  t h i s  "jump t r a n s i t i o n  the0ry.I' 
making explanations by t h e i r  theory,  Hayashi Shigeru and Imanaka Keisaburo [28], 
i n  order  t o  cor rec t  t he  theory found t h a t  a very small i n i t i a l  def lec t ion  causes 
a marked decrease i n  the  compressive buckling load, and showed t h a t  it was poss- 
i b l e  t o  explain roughly the  f a c t s  of t h e  experiment by taking t h i s  i n i t i a l  de- 
f l ec t ion  i n t o  consideration. Later,  L.  H.  Donne11 [29] obtained the  same re- 
s u l t s  by ca lcu la t ing  the e f f e c t s  of the  same type of i n i t i a l  def lec t ion .  

In t h i s  manner, they were able t o  explain many facts 

They ca l led  t h i s  the  jump theory. 
Since there  a re  problems involved i n  

Since there  were s t i l l  def ic ienc ies  i n  Karman-Tsienls jump theory f o r  

Assuming t h a t  the  jump 
spher ica l  s h e l l s ,  Tsien (1942) made a de ta i l ed  ana lys i s  of changes accompanying 
energy buckling i n  pos i t ions  throughout the  system. 
began from a s t a t e  having an energy which was e q : d  tc! t he  energy i n  the  s t a t e  
af ter  jumping, he ca lcu la ted  the pressure of t h z t  s ta te  and with respec t  t o  the  
s t a t e  a f t e r  jumping and shewed t h a t  t h i s  could be cnmpared favorably with t h e  
t e s t  values. However, it i s  liecessary f o r  some energy t o  be supplied extern- 
a l l y  i n  order f o r  one of the  two s t a t e s  of equivalent eneryy t o  jump t o  the  
o ther ,  and there  are s t i l l  problems with regard t o  t h i s  p0ir.t. I t  i s  bel ieved 
&hat  such defec ts  can be a t t r i b u t e d  t o  t h e  f a c t  t h a t  t h e  above research concerns 
only static s t a t e  of equilibrium. Even considering t \a t  buckling phenomena i n  
cyl inders  and s h e l l s  occurs suddenly, it becomes necessary t o  t r e a t  these phen- 
omena as dynamic buckling phenomena. No research has yet  been conducted on the 
dynmic bucLling of s h e l l s .  

R. Kappus [21] expanded E .  T r e f f t z ' s  [ll, 121 f i n i t e  deformation theory and 
determir:ed a buckling condition equation based on energy. 

The same kind of f i n i t e  deformation buckling phenomena as occurs i n  cy l in-  
In s h e l l s  ders  i s  an t i c ip r t ed  with regard t o  s h e l l s  of var ious configurat ions.  

having a double curvature,  t he re  i s  a p o s s i b i l i t y  of l oca l  buckling waves t o  
occur, but these problems have not ye t  been invest igated.  

- /SI4 

W.  A. Wenzek (1938) [63], A. Kromm (1937) [62], H.  Ebner (1937) [61], E .  
Schapitz (1937) [109], Th. v. Kgrmsn, L .  G .  Dunn, H.  S. Tsien (1940) [82] ,  and 
Kawano (1946) [64] have invest igated t h e  proper t ies  of t he  case a f t e r  shear  
buckling, and of  e f f ec t ive  width a f t e r  t he  compressive buckling of cy l ind r i ca l ly  
curved p l a t e s ,  as a problem i n  s t r u c t u r a l  dynamics. H.  Ebner-H. KUller (1937) 
[31], H.  Ebner (1937) [30], H. Ebner-H. KUller (1938) [32]: E .  Schapitz-G. 
Krthunling (1937) [33], E .  Schapitz,  H.  Fe l l e r ,  H.  KUller (1938) [34], have 
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studied the  problems i n  the buckling of reinforced s t ruc tu res ,  the  d i s t r i h u t i o n  
of s t r e s s  a f t e r  the buckling of s i d e  p l a t e s ,  and the  u l t imate  breaking s t rength .  
When a s h e l l  has a f l a t  p l a t e  sec t ion ,  e f f ec t ive  width theory a f t e r  the  buck- 
l i ng  of the  p l a t e  i s  usefu l ,  and f o r  t he  ul t imate  s t rength  of re inforc ing  mem- 
k r s ,  t : ; c  5 1 ~ k l i ~ g  c t r m v t h  of  a s o l i d  member supported by e l a s t i c  supports 
using external  p l a t e s  becomes a problem. 
s t ruc tu res  was f irst  developed af ter  an adequate inves t iga t ion  of the  u n i t  
s t r u c t u r a l  elements of which these reinforced s t ruc tu res  are made. 

Buckling theory r u i  sach re inforced 

Although it is normal f o r  the outer  p l a t e s  of r 4 n f o r c e d  s h e l l s  t o  buckle 
f i r s t ,  a t  the  present time, it i s  poss ib le  t o  determine the  d i s t r i b u t i o n  of 
s t r e s s  a f t e r  the  buckling of ex terna l  p l a t e s  by ca lcu la t ions .  
turr?s,  the  overa l l  s t rength  of the  s t ruc tu re  general ly  i s  l o s t  when the  re in-  
forcing members buckle and i f  it is  possible  t o  determine t h e  buckling load of 
t he  reinforcing mer.ibers having external  p l a t e s  af ter  buckling, i t  i s  poss ib le  
t o  ca lcu la te  the  s t rength .  In re inforced s h e l l s  undergoing fewer bending loads,  
i f  one determines t h e  e f f e c t i v e  width a f t e r  t h e  buckling of t he  outer  p l a t e s ,  it 
is  possible  t o  ca lcu la te  the  buckling s t rength  of t he  re inforc ing  member w i t h  
some degree of accuracy, and t o  estimate the  breaking-bending moment. 
i n  cases where combined loads a res l s ta ined ,  o r  t h e  configuration of the  re inforc-  
ing members undergoes complex types of buckling, s ince  problems i n  determining 
t h e  buckling s t rength  of the  re inforc ing  member, and t h e  maxinium load t h a t  can 
be withstood must be d e a l t  w i t h  i n  terms of d i f f i c u l t  non-linear problems, 
t heo re t i ca l  inves t iga t ions  have not ye t  been made on t h i s .  In  such cases,  a t  
t he  present time, the  only spproach is t o  make estimations based on t e s t  da t a  

In ordinary s t ruc -  

However, 

[301. 

P rac t i ca l ly  no work has been done up t o  t h e  present  time on problems of the  
buckliiig of s h e l l  s t ruc tu res  within the  p l a s t i c  range. For t h i s  reason, fu r the r  
inves t iga t ion  is  required,  as i n  the  case mentioned above. The sandwich con- 
s t r u c t i o n  method makes it poss ib le  t o  increase t h e  conventional allowable s t r e s s  
of thin-walled s t ruc tu res  and the  loca l  s t i f f n e s s  so it is  now used extensively 
i n  a i r c r a f t  s t ruc tu res .  I t  is  a l so  expected t h a t  sandwich construct ion methcrds 
w i l l  a l so  be applied extensively t o  automobiles, r a i l r o a d  cars ,  sh ips  and arch i -  
tect:*re.  We have a l s o  co l lec ted  references on t h i s  i n  t h i s  sec t ion .  

5.%.2. ANALYTICAL THEORY 

In the  course of t he  above developments, Zoel ly 's  [ 6 ]  general  theory of 
the  buckling of s h e l l s  i s  an important f i r s t  s t ep ,  and the  in f in i t e s ima l  defor- 
mation theory of Love [9] ,  Southwell [4] ,  Flugge [35] ,  and Donne11 [ l o ]  i s  gen- 
e r a l l y  applied t o  buckling phenomena i n  s h e l l s .  
gained considewble success,  and the  la te r  f i n i t e  deformation theory w i l l  form 
the  bas i s  of fu tu re  developments i n  the  sense described above, and f o r  t h i s  
reason, much is expected of i t  i n  the  fu ture .  
theory.  

I t  is important s ince  i t  has 

Below we s h a l l  explain t h i s  

Denoting the  deformation energy of a s h e l i  i n  a s t a t e  of  equilibrium with 
a p a r t i c u l a r  load as A ,  and the ex terna l  force po ten t i a l  as V ,  the  conditions 
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f o r  equilibrium a re  

d(A+ V )  =O 
The condition f o r  s t a b i l i t y  t o  obtain i s  

;'(A + v )>o 
Here 

(5.2.1) 

(5.2.2) 

/515 

EP 
+ - ~ [ ( 4 + C . ) ' - 2 ( 1  - v )  (w*- .a,; 

€1, € 2 ;  y = elongation s t r a i n  in- two in t e r sec t ing  d i rec t ions  i n  the  c ..ter 
plane of s h e l l  element and s'lear s t r a i n  between these  two d i -  
r e c t i  ons 

KI, ~ 2 ;  T = curvature and twist i n  center  plane as above 

E ,  v = Young's modulus, Poisson's r a t i o  ( i so t rop ic  mater ia l s )  

f ,  t = surface area of s h e l l ,  p l a t e  thickness of s h e l l .  

We consider a hypothet ical  displacemenx measured irom the  j t a t e  of equilibrium 
expressed by these  €1, €2, w ,  ~ 1 ,  KZ,  T.. The new state, of defo-mation i s  assum- 
ed t o  be expressed by € 1  + A €1, € 2  + A €2 . . . . Herr,, we assume t h a t  !E] ,  k ~ . .  . 
a r e  in f in i t e s ima l ly  small. Moreover, assuming 

dr ,=(d  clh+Cdrl)x~+(d ~ J I I I + * .  

de express the o ther  degrees of change s imi l a r ly .  
i s  the  i n f i n i t e l y  small change i n  the  first pos i t ion  of elongation s t r a i n ,  
( A  E I ) I I  is the  i n f i n i t e l y  small change i n  pos i t ion  2 .  
s t a b i l i t y ,  s ince  it i s  not necessary t o  have an i n f i n i t e l y  smaLler qun t i ty  of 
a higher order than the  i n f i n i t e l y  -mall second pos i t ion ,  we can write 

Here we assume t h a t  ( A  E ~ ) I  

In order  t o  inves t iga t e  

d rl=(d r J ~ + ( d  c l h  

The deformation energy ~f the  s h e l l  accompanying t h i s  change i s  

~ + a  A+PA 

In order t o  determine the s t a b i l i t y ,  62A i s  necessary. 
f o  1 lowing : 

We express t h i s  by the  

d'd=J,+J, 4 J ,  
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N1, N2, N12 are the  in t e rna l  force components. 
components. 
p rac t ice .  
are considering, bending has no effect. 

MI, M2, M12 are t h e  moment 
Below we s h a l l  cox-rider cases t h a t  are pa r t i cu la r ly  important i n  

That is, we s h a l l  assume t h a t  i n  the  state ofequilibrium which we 

F i g u r e  5.2.1 

In t h i s  case, J1 becomes 

Now, i f  when the  hypothet ical  displacemmt is given 

f5 .2 .4 )  PV+J,+ J*+Js < 0 

t h i s  is unatabZe. 
t e r  plane, and .Tg i s  ca l led  t h e  bending term s ince  it i s  t h e  term or ig ina t ing  
from bending, and twisting. 
quant i t ies  unrelated t o  t h e  s ta te  of stress of  t h e  s h e l l  o r  the ex terna l  load, 
they a re  merely quan t i t i e s  t h a t  are due t o  the  deformaticn and material constants 
of the  she;:. t2': and J1 a re  r e l a t ed  t o  the  ex terna l  load. 
given s t a t e  cf  eqcilbrium and consider t he  load condition i n  which a:. loads are 
m d t i p l e d  by l. 
t h e  s t r e s s  a l so  i s  multipled by the  same degree 1. 
rium is  unstkhlle, 

J2 is  ca l led  the  extension term due t o  extension of t he  cen- 

The J 2 ,  J3 on the  l e f t  s i d e  of equation (5 .2.4)  are 

We proceed f r o m  a 

In t h i s  case, 8 new state of erui l ibr ium i s  obtained i n  rJhich 
I f  t h i s  new s t a t e  of equi l ib-  

I [ F T + J ~ ] + J ~ + J ~  o (5 .2 .5 )  

heic ,  we assume i n  the  abow.  two cases an equivalent hypothet ical  defcrmation. 
In t h i s  case, J ; ,  J 2 ,  5 3  a r e  the sa!e as ;-I the  f i rs t  case. 
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Since if J2 and J 3  are not 0, they ;..re alway-s a pos i t i ve  value,  f o r  some 
small value of h we obtain h ( S 2 V  + 51) + 5 2  + 5 3  > 0, and we see t h a t  the; 
s h e l l  must be i n  s t a b l e  equilibrium. 
an a r b i t r a r y  load, i n  a s u f f i c i e n t l y  small s ta te  of t h i s  load, it is always 
poss ib le  f o r  stakle equilibrium. 
l y  la rge  pos i t i ve  o r  negative vslue of A ,  t h e  unequal equation (5.2.5) obtains  
and the  equilibrium becomes unstable.  

In  t h i s  manner, when the  s h e l l  undergoes 

On t h e  o ther  hand, i n  the  case of a s u f f i c i e n t -  

Next, depending on whether o r  not  J 2  is 0, it i s  poss ib le  t o  c l a s s i f y  t h e  
The first one is  of t he  shape s t a b i l i t y  problem i n t o  the  following two types. 

J2 = 0 

and i n  t h i s  case, at each place on t h e  aenter  plane 

obtains ,  so  s ince  the  center  p l a e  of  t h e  s h e l l  does not  undergo expansion o r  
cont rac t ion  o r  shear ing deformation i n  the first approximation, t h i s  is c a l l e d  
t h e  inext-nsional deformation. The i n f i n i t e l y  small (A E ~ ) I I ,  (A  E - ~ ) I I ,  ( A  w ) I I  
i n  the  second pos i t ion  general ly  do not disappear.  
t he  - \e l l  is unextended, and has a form i n  which only t h e  curvature changes. 

As a first approximation, 

Employing the  above considerations when t h i s  inextensional  deformation J 2  =/SI? 
0, the  buckling load of the  s h e l l  i n  t h i s  case is proport ional  t o  t3. Since the  - 
thickness of t he  s h e l l  en t e r s  i n  t h e  form of  t3, i n  the  case of inex tewiona l  
deformation, the  s h n y  of the  buckling wave of the  s h e l l  i s  r o t  r e l a t e d  t o  the  
thickness of t he  s h e l l .  
is  proport ional  t o  t2 so, depending on t h e  configurat ion of t h e  s h e l l ,  i f  t h e  
p l a t e  thickness is adequately th in ,  w e  can conclude t h a t  t he re  is a p o s s i b i l i t y  
of  the  occurrence of t h i s  type o f  buckling within the  e l a s t i c i t y  range. 

Moreover, t h e  maximum s t r a i n  €0 ar the  t i m e  o f  buckling 

Above we have explained t h e  cha rac t e r i s t i c s  of inextensional deformation, 
bu t  i n  any problem of  t h e  equilibrium of s h e l l s ,  t he re  is a problem as t o  
whether o r  not it i s  possible  f o r  any o the r  type of addi t iona l  displacement 
without extension t o  occur. The condition f o r  inextensional  deformation t o  be 
possible  i s  r e l a t e d  t o  t h e  configuration of t h e  s h e l l  and t h e  boundary condi- 
t i ons .  
of the  def lec t ion  term and a good example is J2 = 0. 
displacement i n  the d i r ec t ion  perpendicular t o  the  p l a t e  a t  a poin t  on t h e  
center  plane of a p l a t e  as w, t he  s t r a i n  i n  the  center  ?late due only t o  w be- 
comes 

In the  case of a f l a t  p l a t e ,  t h e  buckling i s  poss ib le  only by v i r t u e  
Actually,  denoting the  

SO 
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The center  plane,  i n  the  case of  such deformation, as a first approximation is  
not  extended. However, t he  i n f i n i t e l y  small extensional s t r a i n  i n  the  second 
pos i t ion  is  not 0 and has t h e  f o l b w i n g  values 

Also i n  the case of a cyl inder ,  which is  adequately long and which undergoes 
ex terna l  pressure inextensional deformation is  poss ib le ,  and t h e  pressure a t  t h e  
time of buckling i s  proport ional  t o  t3. 

Moreover, there  are cases i n  which addi t iona l  inextensional  displacement 
(addi t ional  displacement a t  the  time of buckling) may not occur owing t o  the  
configurat ion of t he  s h e l l  o r  t he  boundary conditions,  and t h i s  belongs t o  the  
second type. Such a state of equilibrium is  much more s t a b l e  than i n  the  case 
of inextensional deformation, and t h e  buckling load is considerably grea t .  This 
i s  because t h e  pos i t i ve  term J2 is  added t o  t h e  l e f t  s i d e  of  t he  inequal i ty  
?quation. 
The form of buckling of  a cyl inder  undergoing compression o r  undergoing t w i s t -  
ing  belongs t o  t h i s  extended type of  deformation. 

When t h e  term J2 i s  present ,  general ly  J2 i s  much g rea t e r  than J3.  

The above is a discussion of t he  types of buckling of s h e l l s ,  and now w e  
s h a l l  consider i n f in i t e s ima l  deformation theory and f i n i t e  deformation theory 
as means of  determining buckling load. 

Equilibrium equation based on t h e  theory o f  i n f in i t e s ima l  deformation of 
cy l ind r i ca l  s h e l l s .  

F i g u r e  5 . 2 . 2  

In  the  state i n  which a cy l ind r i ca l  s h e l l  undergoes tension and shear ing 
load (P, S) and the  cy l inder  i s  i n  a state of balance, w e  assume t h a t  an addi- 
t i o n a l  displacement (u, '., Y) occurs i n  the  center  plane and a new s ta te  of 
equilibrium is entered. Assuming the  displacement component, i n t e r n a l  force  
component and moment component as shown i n  t h e  figure, 

a. 6 %  a. s t r a i n  component t=ac, 8 u  c b = F + - ,  rSb= a y + z  

curvature,  twist a c  
s - a 9 ,  

L -- a b  
E,= - ay' ' 

/518 - 

E t  E l  lV,=-(c,+v 1-u' c,) 
+ c ~ '  * i n t e rna l  force component N = = ~  
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moment component 

The equilibrium equation f o r  t h e  new s ta te  of equilibrium is  expressed by 

- a N,, -- a AT. - a s  +---0 aY a s  + - a z = o ,  

XF a y  a 2  S ~ = o  

a hvB a h" 
Y I- a Q= + B L + N , - p - - . ,  azw a=w 

Here, P, S are the  uniformly d i s t r ibu ted  i n t e r n a l  force  of  tension and 
in t e rna l  force of shear  ac t ing  i n  the i n i t i a l  state of equilibrium. 
changes i n  t h e  case of  added displacement ( in f in i t e s ima l ly  small displacement) 
bu t  s ince  it is  s l i g h t .  it can be  regarded as unchanging. 

This 

In the  displacement equation 

Moreover, as Love found, it is poss ib le  t o  introduce a higher  order  term, 
b u t  as the  r e s u l t  of examining the  effects of  t h e  magnitude of  u, v ,  w which 
are the  components of displacement with respect  t o  the  buckling deformation of 
a s h e l l  sur face  by Donne11 [ lo ,  901 and of high order  terms, u, v both are 
quan t i t i e s  about equal t o  

so t h e  high order  terms omitted f r o m  the  above equation, as long as they a r e  
viewed i n  terms of in f in i t e s ima l  deformation theory,  do not  have any substan- 
t i a l  effect. Moreover, 

pz=azlaz*+a=ia~a 

Eliminating v and u from the  above equatic.1 

d'w d'w 
r a y  Y' 

7 p ' v = - c2 + u)32- - -d- 

599 



i s  obtained. Inser t ing  t h i s  i n  the  t h i r d  equation, the  equation f o r  w only,  /519 

is obtained. 

Assuming t h a t  i n  t h e  problem of buckling, when the  added displacements from 
the  i n i t i a l  state (u, v, w )  when there  is a uniform P ,  S, occurs,  the  change i n  
t h i s  s ta te  of i n t e rna l  forces  i s  sxall even i f  it occurs,  and assuming a const-  
an t  everywhere, w e  determine t h e  (u, v,  w) which s a t i s f y  t h e  boundary conLitions 
and equilibrium equation. The method is widely used i n  which the  buckling wave 
form (u, v, w) s a t i s fy ing  the  boundary conditions i s  appropriately pos i t i ve ,  in-  
s e r t ed  i n t o  the  equilibrium equation, t h e  matrix is assumed t o  be 0,  and P,  S 
are found t h a t  w i l l  s a t i s f y  t h i s .  This i s  the  eigen value,  i s  normally handled 
i n  terms of solving a complicated function equation, and considerable e f f o r t  is 
required i n  order  t o  solve it .  

Similar ly ,  f o r  spher ica l  s h e l l s  and parabol ic  s h e l l s ,  an equilibrium equa- 
t i o n  is derived f o r  i n f in i t e s ima l  deformation. 

E Q U I L I B R I U M  EQUATIONS FOR C Y L I N D R I C A L  SHELLS BASED ON F I N I T E  DEFORMATION 
THEORY [ l o ,  1 1 ,  21 ,  241 

When a cy l ind r i ca l  s h e l l  undergoes f i n i t e  deformation, and reaches a s ta te  
of equilibzium, it is necessary t o  consider a higher  order  term. 
component i n  t h e  midplane, 

For the  s t r a i n  

ax=- a + p q ’ ,  
a z  L a z  I 

a0 1 a w  (0 

aY 2 a Y  
a,=- + -(--).+-;-, 

aU a v  aw aw t r s=-+7--+z  a y  o z  ay. 

Similar ly ,  the change i n  curvature and t w i s t ,  

The s t r e s s - s t r a i n  re la t ionship  i n  t h e  midplane i s  

u,= - * (r,+u e.), 
1-u’ 

The equilibrium condition f o r  an element of force p a r a l i e l  t o  the  s h e l l  sur face  
can be considered t o  be approximately 

From t h i s  it is  possible  t o  assume t h e  presence of one stress function F(xy).  
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The s t r e s s  component i s  expressed by using th i ,  .-tri;_iss f u n c t i m  F(xy) and 
el iminat ing u, v from t h e  expression based on t h e  displacement components, the  
r e l a t im  between F(xy) and w is  obtained as a compatahili ty condition. 4 

-' /52* Next, t he  s t r a i n  energy with respect  t o  a sec t ion  ( z s x  b) of the  cy l inder  - 

t h e  po ten t i a l  energy of t h e  external  force  is  

Consequently, t he  equilibrium equation is fcund by assuming 0 f o r  t he  va r i a t ion  
of W1 + W2. Donne11 found the  following equa t ionby  t h i s  method. 

p i s  i n t e r n a l  pressure.  Using the  stress function F 

The problem i s  t o  determine exactionF,w from (AJ (B) under t h e  given bound- 
ary conditions,  o r  as a Fecond method, t o  f i r s t  p o s i t  an appropriate  w(xy) t h a t  
w i l l  s a t i s f y  the  boundary conditions which include an unknown f a c t o r  and then 
f i n d  the  s t r e s s  function F from (A) .  
W 1  + W2, t he  unknown f a c t o r  is determined which i s  included i n  w sa t h a t  t h i s  
i s  reduced t o  a minimum. 
tab l i shed  a new theory,  by ca lcu la t ing  the  buckling of a cy l inder  under com?res- 
s ion .  

Then, ca lcu la t ing  the  change i n  energy 

KBrmBn-Tsien [24] by means of t h i s  second method, es-  

E .  T r e f f t z  (1933) [12]  proceeded from t h ?  f i n i t e  deformation thepry of 
e l a s t i c i t y  and derived f i n i t e  deformation equilibrium conditions f o r  s h e l l s  
from Cas t ig l iano ' s  energy p r inc ip l e ,  hypothesizing a normal stress d i s t r ibu t ioE  
i n  the d i r ec t ion  of t he  p l a t e  thickness  in 1935. 
s t r i c i l  s-ti!~2e with the  normal cons-ervation - law. This i s  an equation 

This hypotlicsis i s  not 

601 



having t h e  same s t r u c t u r e  as t h a t  which was derived by W. FlGgge (1934) [35] 
assuming t h e  normal conservation law, at  least t o  t h e  ex ten t  of  an approxima- 
t i on  which excludes t h e  term of the  square of t /r.  In 1934, L. H.  Donne11 [ l o ]  
derived the  equation described above and i n  1938, K .  Marguerre [15] derived t h e  
s i m i l a r  s t r i c t  equation f o r  a cy l ind r i ca l  s h e l l .  In 1939, R.  Kappus (1939) 
[21]  general ized the Trefftz-Marguerre theory and found a general  equation for 
energy. These 5 t r i c t  t heo r i e s  a re  complicated and a t  t h e  present  time are not 
of p r i c t i c a l  use.  Donnell's [19] equation is not  highly accurate ,  bu t  it is  
easy t o  use i n  p rac t i ce .  Moreover, according t o  R. Kappus [21] method, s i n c e  
t h e  energ:. expression i s  s t r i c t l y  determined, i t  has a powerful bas i s  when the  
energy method is appl ied.  Generally, i n  most cases i t  is d i f f i c u l t  t o  emplcy 
t h e  e q u i l i b r i u !  conditions f o r  a neu t r a l  s ta te  of  equi l ibr ium, s ince  t h i s  be- 
comes non- 3 inear and t h e  necess i ty  f requent ly  a r i s e s  t o  make s impl i f i ca t ions  of 
t h e  t reatment ,  by making appropriate  s impl i f i ca t ions  according t o  t h e  s h e l l  
.configuration. 

F f i e  ;?ader i s  r,.ferred t o  the l i t e r a t u r e  f o r  d e t a i l s  on f inA+?  deformation 
tke0F-i 
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CHAPTER 3 /521 - 
S U C K L I N G  PHENOMENA AND B U C K L I N G  LOAD FOR V A R I O U S  T Y P E S  O F  S H E L L S  

5 . 3 . 1 .  B U C K L I N G  O F  C Y L I N D E R S  

Compressive B u c k l i n g .  Research on the  c(-.,p:essive buckling of cyl inders  
began as described i n  the  previous chapter with P. Lorenz (1908). Extensive re-  
search has a l s o  beer, ca r r i ed  out by the  following: s. Timoshenko (1910), R .  
Lorenz (1911), R. v. Southwell (1914), W .  R .  Deai (1925), L. Foppl (1926), A. 
Robertson (1927),J. \V. Geckeler (1928), K.  v.  Sanden-F. Tolke (1932), W. Fliigge 
(1932), E .  E .  Lundqui-ct (1933), L .  H. Lmnel l  (1933), W. Kaufmann (1935-371, 
K. Marguerre (1938), Th. v. KQrmQn, L.  G. Dunn and il. S. Tsien (1940), Th. v. 
K6rm51-1-H. S. Tsien (1941) and L. H. Donnell-C. C.  W a n  (1950). 

According t o  compression tests [72, 761 of cyl inders  with simple supports 
a t  both ends o r  with both ends f ixed,  the  forms of breakage can be c l a s s i f i e d  
i n t o  the follswing three  types depending on the  value of t h e  radius  t o  p l a t e  
thickness r a t i o  r/t of the cyl inder .  

(1) Breakage of mater ia l .  

(2)  Axially symmetrical deformation buckling (A ) .  

(3) Asymmetrical deformation buckling ( B ,  C ) .  
C If r/t i s  s u f f i c i e n t l y  small, break- A 8 

age occurs a t  t he  breaking s t rength  of 
t h e  material and when r/t i s  within a 
small range, a x i a l l y  symmetrical deforma- 
t ior .  o r  asymettr ical  deformation occurs 
due t o  compressive stress i n  the  p l a s t i c  
region, and i n  thin-walled cyl inders  
where r/t i s  la rge ,  asymmetrical h c k -  
l i n g  occurs within the  e las t ic  region. 

,J c 

In the case of a x i a l l y  symmetrical 

00 0 
pd )L? 

*I& 

10 %- 100 ‘4 =IO0 
wsve forms, almost a l l  of t h e  cyl inder  
planes are displaced i n  t h e  outwards 
d i rec t ion .  In asymmetrical buckling, 
t he  same degree of displacement occurs 
outwards and inwards i n  the  case of t h e  
p l a s t i c  region, and i n  the  case of buck- 
l i n g  i n  the  e l a s t i c  region, displacement 
inwards i s  predominant. Moreover, these 
wave forms are hardly e f f ec t ed  by the  
boundary conditions a t  both ends when 

’ 
P la) 

6 

8 
Figure  5.3.1 
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the  length of the  cyl inder  1 i s  1.5 times g r e a t e r  than the  radius .  

The experimental curves f o r  the  compressive load P and contract ion 6 a re  
of the types ( a ) ,  (b) ,  ( b l ) ,  (c ) .  I n  Robertson's experiments (1929) [72],  i n  
almost a l l  cases,  buckling occurs i n  the  p l a s t i c  regior., but i n  both the  cases 
of A and B,  the  P-6 curve is usual ly  of t h e  type (a) and (b ' ) .  In the case of 
type B deformation, there  Ere examples i n  which P-6 curve type (b) occurs. 
This (b) i s  seen i n  the  case when the  wave form around the  edge of t he  cyl inder  
is symmetrically formed. lVhen, on the o the r  hand, asymmetrical l o c a l l y  concen- 
t r a t e d  wave forms appear, they take the  shape of (b ' )  and then, s ince  the  d i s t r i -  
but ion of s t r e s s e s  i s  affected by the compressive bending which deviates  from 
the  neut ra l  axis  i n  the d i r ec t ion  opposite t o  t h e  wave c r e s t ,  t he  cy l inder  under- 
goes breakage loca l ly .  The P-6 curve assumes a sharpened form. In  the  case of 
a t h i n  wall and buckling occurring i n  the  e l a s t i c  region, t he  number of waves 
OcLilrring i n  the  d i rec t ion  of the  circumference is r e l a t i v e l y  la rge  (n = 10-20). 
Conseqttently, the  occurrence of wave forms extends around t h e  circumference, 
and has a tendency t o  occur r a t h e r  evenly. 
emit a loud noise .  Mcreover, more than i n  the  case of the p l a s t i c  region, t h e  
P-6 curve m a n i f s t s  a sharp saw-tooth curve shape and each time t h a t  a wave is 
formed, a crest i s  a l s o  formed. 
i l a r  P-6 curve i s  manifested, but  i n  t h i s  case,  the  v a l u e d  P where the  first 
peak appears i s  much greate--  than the value of t h e  peaks a f t e r  t he  second one. 
(Unpublished repor t s  of experiments by Majima and Hanada.) 

/522 - 
When the  wave forms occur, they 

Also i n  the  case of impact compression, a sim- 

R. Lorenz (1908) [ 6 6 ]  was the  first t o  analyze a x i a l l y  symmetrical compres- 
s i v e  buckling, and he der ives  an equilibrium equation corresponding t o  the  d i s -  
placement w i n  an outs ide d i rec t ion  i n  the  e las t ic  region. 

(5.3.1) 
dbW b w  +-w=o E t  pk=u,;= l i m i t  width 

*+pk-&i-  ,,a 
compressive force  

assuming w = C s i n  niiX/l f o r  t h e  half-wave length and buckling stress he obtained 

( 5 . 3 . 2 )  

but  the  posi ted wave form has the  same shape both inkards and outwards and he 
was unable t o  explain by experiment the  outwards displacement. Moreover, t he  
s t r e s s e s  themselves did not agree with the  experiments. 
made the same calculat ions.  L. Fbppl [71] suggested t h a t  the disagreement was 
due t o  the f a c t  t h a t  the  end conditions o f  the  ac tua l  cyl inder  d i f f e red  from 
theory (1926). That i s ,  depending on t h e  compression, the  cyl inder  bulges i n  
a l a t e r a l  d i rec t ion ,  hu t  owing t o  f r i c t i o n  with the test apparatus,  the  ends are 
not displaced and the  cyl inder  plane a t  t h e  end undergoes considerable bending. 
Taking t h i s  i n t o  considerat ion,  J. W. Geckeler (1927) solved (1) but  he was 
unable t o  make a co r rec t  explanation. Discovering t h a t  t h i s  form of buckling 
occurs within the p l a s t i c  region, Geckeler [73] i n  1928 employed the  same 
Knickmodul K as i n  Engesser-KSrmgnIs p l a s t i c  region buckling of a column, and 
using E f o r  the circumferent ia l  d i r ec t ion ,  he derived an equilibrium equation 

S .  Timoshenko [67] 



h e r e  
P= 4'1 E=(-, 4 EE' m, E'=( -"%) 

d r  0.' 

In solving t h i s ,  he obtained, f o r  t he  buckling load 

(5.3.3) 

(5.3.4) 

For the  buckling str s s ,  t he  E i n  equation (5.3.2) appears i n  the  form m. 
The Wk-r/ t  f o r  s o f t  s t e e l  i s  as shown i n  the  f igu re  i n  Materials 1 7 .  [This 

r e fe r s  t o  the  materials following p a r t  5 . 1  
r/t, breakage occurs a t  the coinpressive breaking s t r eng th  of the  mater ia l .  

Where t'iere i s  an extremely small 

Since the  deformation is  considered t o  be of a s i n e  wave shape, t he re  are 
s t i l l  discrepancies with the experiments, bu t  equation (5.3.4) a t  l e a s t  becomes 
one measure of convenience. 
of e las t ic  buckling. 

Shibuya and Kuranishi provide analyses of t h i s  type 

R. Lorenz (1911) [68], R. v.  Southdell  (1914) [69],  S. Timoshenko (1911) 
[67] have calculated asymmetrical buckling i n  the e i a s t i c  region.1 On the  bas i s  
of the equilibrium equations f o r  a s h e l l  sur face  i n  in f in i t e s ima l  deformation 
theory,  assuming the  added displacement at the  time of  buckling t o  be 

/523 

(1) When r/t is qu i t e  la rge ,  and the  wave length i n  the  d i r ec t ion  of the  
ax is  is shor t ,  i .e .  , when m . r r r / l  i s  la rge  

Half-wave length i n  d i r ec t ion  of circumference = 7 - 3 . 4 W F .  K T  

(2) In pa r t i cu la r ,  i n  t h e  case of  a shor t  cysinder,  

X'F! 1' - = Euler-buckling s t r e s s  
12(1--') I': 

(3) In a long cyl inder  where the re  a re  r e l a t i v e l y  long longi tudinal  
waves produced 

E n'-1 t 3 E t -.- u&=v/3-(l_y~r . --. - , when n = 2 a=--' 
n*+l  j 7 ' Z i - p b )  r 
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were obtained. 
a cyl inder  with a defined t/r.  

\V. Fltlgge obtained a graph of n k - l / m r  with n a s  a parameter f o r  

E.  E .  Lundquist (1933) [76],  L.  H.  Donnell (1934) [77] conducted compres- 
s ion t e s t s  on thin-walled cyl inders  i n  r e l a t i o n  t o  problems i n  the  design of 
a i r c r a f t  s t ruc tu res  (see Materials 19).  

According t o  the  r e s u l t s  of these experiments, as shown by in f in i t e s ima l  
deformation buckling theory,  t h e  buckling wave forms display r e l a t i v e l y  small 
waves. Normally the  wave length i n  the d i r ec t ion  of t h e  ax is  and the  circrm- 
ference a re  about the  same. The number of waves i s  about 80 t o  50% of tha t  i n  
the  theory.  The waves t h a t  a re  f i rs t  produced increase i n  size with the  load 
and the number of waves decreases.  
l y  inwards. The experiment points  of  r/t with respect  t o  the  buckling s t r e s s  
ak a re  extremely sca t t e red  as shown i n  Donnell 's paper [77 ]  (See Materials 19) .  
They appear t o  be 20 t o  60% of the  theo re t i ca l  values ,  and t h i s  discrepancy i s  
more marked the g rea t e r  t he  r / t  i n  thin-walled cyl inders .  

Moreover, the displacement w s  overwhelming- 

Donnell (1934) attempted t o  explain the discrepancy between the above re- 
s u l t s ,  by considering t h a t  the  cause f o r  t h i s  discrepancy was due t o  t he  i n i t i a l  
deformation a t  the time of manufacture of t h e  cyl inder ,  and he analyzed i t s  
e f f ec t s ;  however, even though t h i s  w i l l  explain the decrease i n  the  buckling 
s t r e s s ,  t h e  problem s t i l l  remain? concerning t h e  s c a t t e r i n g  o f  t he  t e s t  po in ts .  

I t  gradually became c l e a r  t h a t  t h i s  deformation accompanied f i n i t e  deforma- 
t i o n  and th?  development of f i n i t e  deformation e l a s t i c i t y  theory was thus stimu- 
l a t ed .  From t h i s  point  of view, Kgrm5.n-Tsien (1938) analyzed the  problems of  
the  buckling of spherical  s h e l l s  [138] and the  compressive buckling of cyl inders  
and es tab l i shed  a new theory.  In the  case of a spher ica l  s h e l l  supported around 
the  circumference, and sus ta in ing  pressure , the  r e l a t ionsh ip  between the pressure 1524 
p and the cen t r a l  def lec t ion  6 is as shown by 0 A B C D i n  Figure 5.3.2.  
re la t ionship  gradually takes  the form of the upper curve, as the  p l a t e  thickness 
increases .  
occur i n  the case of t he  compression c f  a cyl inder ,  and i n  thecon- 
ventional theory, the  equilibrium equation was determined t o r  the  shape p r i o r  
t o  deformation. 
ing in f in i t e s ima l  deformation. A s  a spec ia l  case, they proceeded from a m G r e  
r a t iona l  cieformatim equation which included t h e  conventional theory and ex- 
pressed the  f a c t s  of the ,xpzriments. That i s ,  considering tha: displacement 
inwards is s t rongly nanifested,  f u r  the  displacement they considered 

- 
This 

Such a buckling phenomenon accompanying f i n i t e  deformation can a l so  

Moreover, it was assumed t h a t  there  was a bas i c  defect  i n  assum- 

and the) is0 considered f o r  convenience, t he  conventional wave form w i t h  
respect t o  def lec t ion  i n  inf in i tes imal  deformation 



and ul t imately posi ted the f o i .  . -ng equation: 

fo ,  f l ,  f 2  a r e  unknown q u a n t i t i e s .  
consideration expansion i n  the  d i r ec t ion  of t h e  radius due t o  compression. 
is  the  number of waves i n  the  d i rec t ion  of t he  circumference. I f  the  length is  
g rea t e r  than 1.5 times the  radiu-r, there  is p rc - t i ca l ly  no e f f e c t  from the ends, 
and may be excluded here.  Assuming f o  = f2 =: 0,  t h i s  becomes the  expression 
w l / r ,  an i  assuming 

f o  i s  the  term used i n  order t o  take i n t o  
n 

(fJ4 +I&) =o, h++ = 0 

w2/r appears. 
between these two extreme ends. Pos i t ing  the  above buckling deformation, i n -  
s e r t i n g  them i n  the above compatability condl t ions  of the  f i n i t e  deformation 
theory,  determining the  s t r e s s  function F(xy) and ca lcu la t ing  t h e  s t r e s s  com- 
ponent and displacement component, t he  energy W 1  + W2 with'n the  region of one 
wave length is  found as a functio? of fo ,  f l ,  f 2 .  Moreovv, from the  c y a t i o n  
a/afo(Wl + W2) = 0,  f o  i s  expresser! as f l f 2 a  (a i s  the  avt;,ge compressive 
s t r e s s ) ,  assuring W i  + W2 = fn  ( f l f z a ) ,  p a r t i a l l y  d i f f e r e n t i a t i n g  t h i s  by f i r  
f 2 ,  the  equilibrium condition is  determined. As a numerical e x q l e ,  the  follow- 
ing r e s u l t s  were obtained using the case where p = m/n was 1.0 and 0.5 ( the  r a t i o  
of the  wave length i n  the  d i rec t ion  of  the  circumference o f  t h e  wave t o  the  
wave length i n  the longi tduinsl  d i r ec t ion ) .  Kdrmk and Tsien s t a t e  t h a t  they 
calculated the  case where p = 1.0 and 0.5 on the  bas i s  of zxperiments and de- 
r ived 1.1 = 1.0 from inf in i tes imal  deformation theory a l so .  However, t h e  case of  
0 .5  i s  s t i l l  t heo re t i ca l ly  undetermined. 

In values o ther  than these  paramet:rs, these appear int-rmediate 

For a cyl inder  wheie r / t  = 1000, the curve 
f o r  a r / E t  and 5 = flr/t o r  F r/t i n  the  case 
where 1.1 = 1.0 ,  case i n  which ;he wave length is 
equal i n  the  ax ia l  d i r ec t ion  and i n  the  d i rec t ion  
of the  circumference i s  as shown i n  the  diagram 
i n  Materials 22 descr ibing 11 = n 2 t / r  as a param-/525 
e t e r .  Also n i s  considered as the  parameter, if 
i t s  envelope l i n e  i s  determined, the  l a t t e r  gives 
the re la t ionship  between the  deformation 2-d the  
a r /E t  t h a t  should ac tua l ly  occiir. ' h e  wave form 
suddenly develops from the  c l a s s i c a l  value 

0 ar /Et  = 0.6,  t he  cor,traction a t  the  ends decreases 

l i n g  p romss  is  extremely unstable .  Moreover, t he  
curve passes through the  minimum poin t  a r /Et  and 

then r i s e s  again During t h i s  time the number of  waves i n  :he d i r ec t ion  of t he  
circumference is 26 i n  the  i n i t i a l  Feriod of buckling when r / t  = 1000 and then 
it gradually decreases,  becomes 13 a+  t he  minimum point  and then decreases fu r -  
t he r .  Moreover, the  wave form becor.es large.  Such a property o f  cha,ige i-; wave 

C and the  load decreeses.  Consequently, t h i s  buck- 
v Figure 5.3.2 
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i n  experiments. 
stress is 

form is  very of ten seen 
The lower minimum point 

b? - 
t E t  #=a'% E- 
r 

This stress is  extremely close t o  the  
experiment values of Lundquist and Don- 
ne l l .  K5rmh and Tsien explain tha t  it 
jumps from the  u l t i n a t e  load point t o  wt - t h i s  value. I t  is for t h i s  reason t h a t  
they propose t h e i r  "junp theory." They 
a l so  assume t h a t  t h i s  j m p  could occur 

the  classical buckling stress is reached 
when there  is a shock f r o m  the  outside.  
Even when v = 0.5, they showed t h a t  the  
same phenomenon could occur, but i n  t h i s  
case they obtained the  result tha t  the  
toad dropped as far as a value of 0 .  In  

the  process i n  which the  load increases,  t he  jump can occur suddenly due to  some 
stimulus and they say tha t  t h i s  affected by the  r i g i d i t y  of t he  test apparat- 
us- 

Case -:.hen r / t  = 1,000, u = 1.00 
Curve of ar/Et to c r / t  before the  ul t imate  load point;  i.e., 
The parameter n is t h e  wave 

number i n  t h e  d i rect ion o f  
t h e  ci rcumference 

Figure 5.3.3 

Ikeda indicated t h a t  KSrmh-Tsien's 
jump theory contradicted the  experimental 
evidence and with respect t o  t h i s ,  Hay- 
a s h i  and Imanaka [28] invest igated the  
effects of i n i t i a l  def lect ion,  f -wd 
t h a t  when there  was i n i t i a l  def lect ion,  

ence between the  ul t imate  stress and t h e  
minimum point  decreased, and t h a t  the  
e f f e c t  w a s  extremely marked. 
cluded t h a t  the  experiment curves ap- 

4 - qit t h i s  sharp peak became round, the  d i f f e r -  

They con- 

l!!2 
Figure 5.3.4 

peared t o  be very close t o  the  curves i n  the case of such i n i t i a l  defomation, 
without taking Khuh-Tsien 's  idea l  form in to  account. In  t h e i r  analysis ,  they 
posited a per iodic  deformation as an i n i t i a l  deformation and assumed t h a t  the  
additional def lect ion caused by compression increased in  exact ly  the  same form. 
This  can be posited on the  bas i s  of the de ta i led  r e s u l t s  of measurements of the  
deformation of a cy l indr ica l  plane undergoing a compression t h a t  was car r ied  out  
by Shibuya. I 

Figure 5.3.5 



As described above, i n  experiments wave forms are not formed a l l  a t  once 
throughout t he  e n t i r e  cyl inder  plane,  but  occur loca l ly ,  and when the  waves 
that accur  i n  one p a r t  reach a c e r t a i n  magnitude, it is observed t h a t  new buck- 
l i n g  occurs i n  o the r  pa r t s .  
gradually formed. By means of  t h e  above, some explanation was provided f o r  t h e  
discrepancy between the  explanation of t h e  phenomena of  campressive buckling of 
a cyl inder ,  t h e  theory of buckling stress and experimental r e s u l t s .  
found t h a t  t he  experiment values which were about 1/2 of  the  classical theore t -  
ical  values,  indicated a lower Stress of 

This expresses t h e  peak of t h e  o-E curve which is  

I t  was 

/ 5 2%- - 
t t 

#k=O. 194 E - e . 2  ET r 

f r o m  an analys is  based on t h e  above f i n i t e  deformationt!ieory. 
i s  more r a t iona l  t o  employ t h i s  value than t h e  ak = 0.6 E ( t / r )  whic? is t h e  
classical theo re t i ca l  value. 

In  p rac t i ce ,  it 

Later, L. H. Donnell and C. C. Wan [W] performed t h e  same ca lcu la t ions  as 
Hayashi and Imanakn [28] f o r  t he  effects of i n i t i a l  de f l ec t ion  and t h e  y i e l d  of 
t h e  plane of  a cy l ind r i ca l  s h e l l .  
an i n i t i a l  def lec t ion ,  assumed t h a t  t h e  Tdditional def lec t ion  a l s o  occurred i n  
t h e  same form as t h i s ,  and by the energy method, they determined t h e  r e l a t ion -  
s h i p  between the  average cmpressive stress of t h e  cy l inder  and t h e  average com- 
press ive  s t r a i n .  
Hayashi and Imanaka [28]. These a t h o r s  have &,!.so compiled t h e  r e s u l t s  of many 
experiaents  t h a t  have been performed up t o  t h e  present  t i m e .  

As shown in the Materials 23, they pos i ted  

Their r e s u l t s  are p r a c t i c a l l y  no d i f f e r e n t  from those of 

In  a shor t  cy l inder  (1 f 1.5r) t he  effect o f  boundary conditions becomes 
involved and when Hayashi and Muralkami [158] analyzed two or t h ree  cases of t h i s ,  
they found t h a t  t he  effects were great .  
minimum stress value; i .e. ,  t h e  lower s t a b l e  stress value de-- 
creased s i g n i f i c a n t l y  more than i n  t h e  case of  a pe r fec t  cyl inder .  
values have been obtained f o r  buckling within the  p l a s t i c  r e g i o n n  a cyl inder ,  
q d  i n  the  ana lys i s  of these,  i n  addi t ion  t o  Geckeler's ana lys i s  described above, 
Shebuya and Kuranishi [39] considered t h e  case of  syinmetrical buckling. 
i s h i ' s  r e s u l t s  explain well A. Robertson's experiment. 

They obtained t h e  r e s u l t  t h a t  t h e  

Experimental 

Kuran- 

Torsional B u c k l i n g  o f  a C y l i n d e r .  A. G. Greenhill  (1883) was the  first 
t o  study the  to r s ion  buckling of  a s lender  axis, and ana lys i s  of t h e  to r s ion  
buckling of cyl inders  have been ca r r i ed  out  by E. Schwerin (1924), K. Sezawa- 
K. Kubo (1931), K. Sezawa (1933, K. v. Sanden-F. mike (19321, L. H. Donnell 
(1933), W. FlUgge (1934), A. H. Stang, W. Ramberg and G. Back (1937) and J. E. 
Younger. Experimental research has been ca r r i ed  out  by K. Sezawa-K. Kubo (1931), 
L. H. Donnell (1933), E.  E. Lundquist (1932), W. Ballerstedt-H. Wagner (1936), 
A. H. Stang and W. Ramberg and G. Back (1937). 

In the case where the  axis is s lender ,  and t h e  p l a t e  thickness t o  radius  
r a t i o  i s  small, t he  buckling waves do noteoccur on the  wall of t he  cy l inder  
axis, t h e  cross-sect ion shape remains c i r cu la r ,  and t h e  ove ra l l  axis is  twisted 
and buckles i n  the  shape of a morning glory vine. 
moment is a minimum when the  tors ion  wave forms one pe r fec t  wave length over t h e  

This t o r s iona l  buckling 
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wave length 1 and i t s  value agrees with t h a t  which Greenhill  [8S] determined f o r  
a t r u e  t h i n  rod and i s  given as 

J i s  t h e  polar  moment of i n e r t i a  or" area. 

In thin-walled cyl inders ,  buckling waves may occur on the  walls i n  t h e  
e l a s t i c  region (refer t o  the  configurations o f  buckling i n  Chapter 1). L. H. 
Donne11 [go] inves t iga ted  buckling wave f o m s ,  and denoting the  addi t ional  d i s -  
placement at the  time of buckling i n  t h e  bas ic  equations f o r  i n f in i t e s ima l  de- 
formation i n  chapter  2 by 

he obtained general  r e s u l t s  by so lv ing  d i f f e r e n t i a l  equations carrying out s i m -  
p l i f i c a t i o n  with respect  t o  deformation, by taking i n t o  considerat ion the  boun- 
dary conditions ( ro t a t ing  ends and f5xa i  t a b )  of  both ends sf t he  cylinder.  
Since the  experiment values f a l l  withi. .; t o  70% of  t h e  theory,  i n  design for-  - /S27 
pulas, t he  equation which uses t he  60% f igu re  can be employed. In a r e l a t i v e l y  
long cyl inder ,  i r r e spec t ive  of the  boundary conditions at both ends, 

i s  obtained and t h i s  r e s u l t  matches with the  r e s u l t  found by E. Schwerin [ 8 6 ] .  

In  a r e l a t i v e l y  sho r t  cyl inder ,  l/r < 5,  t he  experimental equation of W. 
Bal lerstedt-H. Wagner [93] 

where k = 5.0 with both ends 
rL=O.l E$+k*E! 4 ' ro t a t ing  

9.1 with f ixed ends 

is usefu l  [Materials 261. 

A. H. Stang, W. Ramberg and G. Back [9S] have s tudied  t h e  buckling accomp- 
anying p l a s t i c  deformation and have provided experimental equations and chLrts.  
I n  shor t  cyl inders ,  a f te r  buckling, i f  t h e  shape o f  t h e  ends is unchanged, the  
simple p a r t  becomes cons t r ic ted  and t h e  cy l inder  assumes the  shape of an hour 
glass .  Sezawa, Kubb [87] have conducted de ta i l ed  experiments on rubber cyl in-  
ders,  for t h i s  type of deformation. Hayashi, and Shimano ( l ec tu re s  a t  the  
Applied Japan Dynamics Society,  1948) have analyzed and discussed the  to r s ion  
s t i f f n e s s  and stress d i s t r i b u t i o n  af ter  buckling. 
t he  tors ion  s t i f f n e s s  decreases t o  about 70% of t h a t  before  buckling, immediate- 
l y  after buckling. 

According t o  t h e i r  ana lys i s ,  
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Flexural B u c k l i n g  of Cylinders. L. G -  Srazier (1927) was the  fSrst t o  
Ii1 addi t ion,  there have been analyze the  pure f lexura l  buckling of  cyl inders .  

s tud ie s  by S. Timoshenko (1930), If. Flugge (1932), R. !'1 Mossman and RDbinson 
(1933), E. Chwalla, E .  E .  Lundquist, J. E. Younger (1933), L. H. Dornell (1934). 
The case of compound loads is discussed later. 

When a pure bending moment M is  applied t o  an i n f i n i t e l y  long c y l i n i e r ,  F 

curvature K occurs i n  the  d i r ec t ion  of  t h e  axis. Now, i f  i n  t h e  two cross-sec- 
t i ons  a port ion in f in i t e s ima l ly  long is  cu t  out, t he  bending stress ac t ing  on 
the  cross-sect ion has a component i n  the  d i r ec t ion  toward t h e  neut ra l  ax is ,  and 
owing t o  th i s ,  t h e  shape cf t h e  cross-sect ion becomes f l a t .  Consequently, t he  

'.exural s t i f f n e s s  decreases.  When t h e  s t i f f n e s s  decreases,  t he  curvature in-  
creases, t h e  f i a t t e n i n g  progresses and f i n a l l y  when the  f l a t t e n i n g  has pro 
gressed t o  a c e r t a i n  con ' iprat ion,  a m a x i m u m  r e s i s t ance  is  ind ica ted  af ter  
which, i r '  t he  curvature increases  f u r t h e r ,  unless  t he re  is a small bending mom- 
en t ,  the equilibrium no IC .ger can be maintained. 
occur i n  the  M-K curve. 
accepted. 

In  t h i s  manner, a peak can 
The bending moment above t h i s  maximum value cannot be 

This phenomenon is ca l l ed  t h e  bending y i e l d  o f  a cyl inder .  

L. G. Brazier 1961 determined t h e  
m a x i m u m  bending moment i n  t h e  following 
manner. Considering the  -unit length of 
t h e  cyl inder ,  i f  t h e  s t r a i n  energy W 1  
due t o  expansion and contract ion i n  the  
d i r ec t ion  of t h e  ax is  due t o  t h e  ex ter -  
nal moment when a displacement (v, w) 
is  formed a t  a poin t  OF t he  cross-sec- 
t i o n  and the  s t r a i n  energy W2 due t o  
change i n  curvature i n  t h e  d i r ec t ion  of 
t h e  circumference are determined 

"F a=# w&: 

! 
c- a> n 
H - ( $  

F i g u r e  5.3.6 

a1 = Tensi le  s t i f f n e s s  i n  d i r ec t ion  of ax i s  of ou ter  p l a t e .  

D2 = Bending s t i f f n e s s  i n  d i r ec t ion  of  circumference of ou ter  

kl = Curvature i n  d i r ec t ion  of ax is  due t o  bending moment M 
% = Change i n  curvature i n  d i r ec t ion  of circumference due t o  

p l a t e  

deformation v, w 

d = Distance froid neut ra l  ax i s  NA a t  poin t  a f te r  deformation. 

The s t r a i n  energy is u = u1 + u2 

The bending moment, f r o m  Cas t ig l iano ' s  theorem is  given as 
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Since normally it  is  possible  t o  assume inextensional deformation with respect  
t o  the  deformation of the  circumference, on the  bas i s  of t h i s  assumption, 
determining the  re la t ionship  between M and KI i n  t he  above equation 

Theref ore 

This is  the  r e s u l t  obtained by Hayashi [165] f o r  
Eloreover, wmax = 2/9r. 

The maximum compressive i n t e r n a l  force  (per u n i t  
most remote poin t  f - r o m  t h e  neu t r a l  axis is 

In an i so t rop ic  cyl inder  with mi fo rm thickness ,  

a general  o r thot ropic  cyl inder .  

width) N 1  due t o  bending at t h e  

s ince  it is 

E t  . a,=- D,=-.-- Et* 
i2 (1-#) I-u' 

when v = 0 . 3 ,  t h i s  is 
t 

H-= I .  OS6 E rt' #,=0.346 E l  

and t h i s  agrees with t h e  r e s u l t s  obtained by Brazier. 

In  a comparison [96] with experiment r e s u i t s ,  the  m a x i m u m  experiment values 
are close t o  the  above values f o r  %a. However, normally before such buckling 
due t o  f l a t t e n i n g  can occur, l oca l  buckling occurs on the  compression s i d e  a t  a 
? a r t i c u l a r  load. Consequently,m thin-walled cy l inders ,  i t  i s  poss ib le  t o  es t i -  
mate approximately the  maximum bending moment i n  the  case when breakage t o  a 
thin-walled cyl inder  occurs due t o  such loca l  buckling as t h e  value a t  which t h e  
bending stress reaches the  lower extrene value stress of t h e  cyl inder  undergoing 
pure comprgssion ak = 0.2 E ( t / r )  (Ka'mh-Tsien's t heo re t i ca l  value) .  According 
t o  t h i s ,  

M-=Z ut=r tr'0.=0.2 n E rP (For thin-wall  Z%n r't ) 

is  obtai-ned. Actually, s ince  the  loca l  buckling stress is l a r g e r  than the  
buckling stress 0.2 E t / r  a t  the time of  pure anpression, t h e  value of t h i s  
%ax should appear on the  s a f e  s ide .  
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As can be seen from Materials 29, i n  L .  li. 1kxnel: 's [lo31 experiments, /529 
the buckling s t r e s s  with respect  t o  various r/t i s  extremely sca t t e red ,  and the  
s c a t t e r i n g  of such experiment points  i nd ica t e s  t h a t  t h e  buckling, as i n  the  
case of compressive buckling of a cy l inder ,  occurs together  with f i n i t e  defor- 
mation. 
mined by beam theory from the  bending moment, comes c lose  t o  the  pure compres- 
s ion  buckling stress 0.2E r / t  indica tes  t h a t  t he  est imat ion of %ax described 
above is  q J i t e  va l id .  The y i e l d  buckling due t o  f l a t t e n i n g  occurs i n  the  case 
of r e l a t i v e l y  t h i n  rubber tubing. 

The fact  t h a t  the maximum bending s t r e s s  a t  t he  time of buckling de ter -  

Cylinder Under  External Pressure. When an ex terna l  pressure p ac t s  on a 
long cyl inder ,  a compressive stress p r/t i s  sustained i n  t h e  d i r ec t ion  of  t h e  
circumference. 
and buckling occurs due t o  t h i s  compressive stress. 
invest igated over a long period of time, and the re  has been research by H. 
Bryan (1888), R .  Lorenz (1911), R. v. Southwell (1913), G .  Cook (1913), R .  v .  
Mises (1914), K.  v .  Sanden-K. GUnther(1920, 1921), Tokiigawa (1925, 1931, 1932, 
1936, 1940), H. M. Westergaard (1934) and W. FlUggft (1334). 

When p is gradually increased, the  cy l ind r i ca l  shape i s  l o s t  
Such problems have been 

When the  cyl inder  i s  extremely long, s ince  a x i a l l y  symmetrical deformation 
occurs,  t h i s  becomes the  same form as t h e  expression of buckling pressure due t o  
ex terna l  pressure on t h e  circumference. In t h i s  case, inextensional  deformation 
bec-nes pcas ib le  (See Materials 31). 

When t h e  length is  f i n i t e  and t h e  def lec t ion  a t  both ends i s  suppressed, 
t h e  boundary conditions f o r  both ends become involved, so inextensional  defor- 
mation becomes unallowable. In t h i s  case, for t he  
the  s h e l l  cen ter  plane,  it i s  convenient t o  assume 
zxis (x) and i n  the  d i r ec t ion  of t h e  Circumference 

displacement a t  a poin t  on 
a per iodic  wave form on 
($1. . 

9lbITZ 
w=WcosnpSiD--j- 

This satisfies the  condition t h a t  both ends be r o t a t i n g  ends a:id t h a t  the  force  
i n  the  d i r ec t ion  of  the  ax i s  i s  0. 
equilibrium condition equations af ter  buckling, it is  poss ib le  t o  determine the  
r e l a t ionsh ip  between the  buckling pressure pk from the  buckling conl i t ions  ob- 
ta ined  assuming t h a t  t he  matrix of t he  coe f f i c i en t s  U, V ,  W i s  0,  and m, 
na r / l .  This is the  equation obtained by Tokugawa [112, 1191 given i n  Materials 
32. 

By s u b s t i t u t i n g  t h i s  displacement i n  t h e  

In exact ly  the  same manner, R .  v. Mises [120], W. Fltlgge [117] and Toku- 
gawa [113, 114, 1191 analyzed the  case i n  which an ex terna l  pressure a c t s  on 
the t o t a l  surface of a cyl inder  closed a t  both ends. R. v. Mises derived the  
formc1.a shown i n  Mat.erials 33 and D. F. Windenburg and C .  T r i l l i n g  [126] calcu- 
l a t ed  the end which should be made a minimum with respect  t o  the t/2r, 1 / 2 r  
giving the pk i n  t h i s  equation, and obtain the  char t s  ind ica ted  i n  Materials 
33. 

W. FlUgge conducted an analysis  of t he  case i n  which the  compressive stress 
G i n  the  d i r ec t ion  of t h e  ax is  simultaneously acts with exteimal pressure p ,  
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and obtained tl,e char ts  shown i n  Materials 35. This is  a numerical example of 
the  case when P = t 2 / ( 1 2 r 2 )  = 1 x v = 1/6.  From t h i s  char t ,  it can be 
seen t h a t  the buckling value must be decreased i n  t h e  case when t h e  presence 
of compressive s t r e s s  i n  t h e  d i r ec t ion  of the  axis  o r  of ex terna l  pressure a c t s  
independently. According t o  experiments by D. F. Windenburg and C .  T r i l l i n g  
E1261 and by Tokugawa [114],  t he  wave number i n  t h e  d i r ec t ion  of t h e  circumfer- 
ence agrees with the  theory. However, as f o r  the stress a t  the  time of buckling 
the  theory explains the  general  tendency, but the  experiment po in ts  a r e  sca t t e red  
a t  a lower value than i n  the  theory. 
381, the  experiment valdes seein t o  be about 60% of t h a t  o f  the  theory.  

According t o  Tokugawa's experiments [119, 

The sca t t e r ing  of the  experiment po in ts  p red ic t s  t h a t  t h e  buckling phenom- 
enon accompanies f i n i t e  deformation and occurs suddenly. However, no research 
has yet  been conducted which takes  f i n i t e  deformation i n t o  account. 

Compression and Bending. This is equivalent t o  the  case i n  which an - /530 
eccent r ic  compressive load acts on a cyl inder ,  and with regard t o  t h i s ,  W.  
Fltlgge [ 1231 made ca lcu la t ions  of the  buckling displacement using the  equations 
of i n f in i t e s ima l  deformation. 

The s o l i d  l i n e  i n  the  graph i n  Materiaas 36 ind ica t e  h i s  r e su l t s .  
l i n e s  a r e  approximations i n  which the m a x i m u m  stress is made t o  be equal t o  the 
c l a s s i c a l  buckling value a t  the  time of pure compression, and as explained i n  
the a r t i c l e  on pure bending, it i s  v a l i d  t o  make t h i s  equal t o  the  lower l i m i t  
value q = 0.2 E t/r taking f i n i t ?  deformation i n t o  consideration. 

The chain 

Ikeda [139] analyzed the  case i n  which bending and external  o r  i n t e r n a l  
pressure i s  sustained,  using the  same method as L. G .  Brazier, and compares h i s  
r e s u l t s  with experiments. In the  case of external  pressure and tending, the  
r e s u l t s  match favorably with the  experiments, but i n  the  case of i n t e r n a l  pres- 
sure and bending, an extreme discrepancy i s  shown, In theory,  a y i e l d  buckling 
due t o  f l a t t en ing  is  assumed, treat;.ng an adequately long case,  bu t  i n  the  ex- 
periments, l oca l  buckling occurs on the  compression s ide .  
in f in i tes imal  ueformation theory can alsc be seen here .  
deformation theory relcains t o  be ca r r i ed  out .  

Thc l imi t a t ions  of 
Analysis by f i n i t e  

Yoshimura and Mori [130] have analyzed the  case of  t o r s ion  and ex terna l  o r  
i n t e rna l  pressure,  and have found an approximate equation. 
isons with experiments, when the  externalpressure pk i s  small, they agree with 
the theory,  but when the  pressure i s  increased, the  experiment values reach 
about 85% of t h a t  of t he  theory. A.  K i m m  [130] has inves t iga ted  the buckling 
s t rength  of reinforced s h e l l s  under tors ion  and in t e rna l  pressure but  s ince  the  
o r ig ina l  report  i s  unavailable,  i t s  contents are not known. 

According t o  compar- 
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Torsion and Compress ion ?r Tsns ion. F .  J.  Bridget, C .  C.  Jerome and 
A. B.  Vosseller [125] have conducred extensive experiments on t h i s  case. Denot- 
ing  the  tors ion moment by T, t he  comprss ive  stress by u arid denoting the buck- 
l i n g  values when tliese act indzpendently by TO, u 0, the  curve (?k/TO- k /  00) cor- 
responding t o  the buckling values Tk,U k when they act simultaneously is  given 
i n  the  graph i n  Materials 3!'. I t  can be seen t h a t  the t h i r d  order  parabola i n  
Mater ia ls  41 is  extremely close t o  t h i s .  According t o  experiments by W. Baller-  
stedt and H. Wagner f o r  t h i s ,  t he  r e s u l t s  are c lose r  t o  a second order  parabols,  
Mater ia ls  40, f o r  to rs ion  and compression. 
s i o n  and tension range a re  expressed by 

The experiment values within the  t o r -  

Yamana [124] derived bas i c  equations f o r  compound loads from the  poin t  of 
view of i n f in i t e s ima l  deformation. 

5.3.2.  CURVED PLATES 

In most cases, curved p l a t e s  refer t o  p a r t s  of  cyl inders  and a re  ca l l ed  
var t ia l  cyl inders ,  cy l ind r i ca l  curved p l a t e s  o r  cy l ind r i ca l  p l a t e s .  Here, we 

As f a r  ?a l l  mean the  p l a t e s  of cyl inders ,  when t a lk ing  about curved p l a t e s .  
5 the  cha rac t e r i s t i c s  of these curved p l a t e s  are concerned, they have the  

property of a " f la t  plate"  from the  f a c t  t h a t  they have four  s ides ,  and the  
property of  a "cylinder" from the  fact t h a t  they have t h e  curvature  arc. 
e r a l l y  the  sec t iona l  ou ter  p l a t e s  i n  rejmforced members a re  most f requent ly  
considered as curve p l a t e s .  

Gen- 

The compressive buckling of curved p l a t e s  has been inves t iga ted  by J. S. 
Newel1 j1931-32), S. C. Redshaw (1933), S. Timoshenko (1936), H. Ebner (1937), 
W. A. Wenzek (1938), Shibuya (ld4O), Kawano :1941) and Yokoo (1941) and Kuran- 
i s h i  (1948). 

/531 

J. S. Newell's experimental equations and the  analyt-  
ical  equations of  R.  C .  Redshaw and S. Timoshenko each 
cons is t  of terms fox f l a t  p l a t e s  and terms f o r  the  curva- 
t u re  i n  cyl inders .  Both Timoshenko and Redshaw determine 
t h e i r  buckling s t r e s s  equations from the  same kind of 
i n f in i t e s ima l  deformation theory as i n  t h e  case of cyl in-  
ders .  Kawano [64] inves t iga ted  these  phenomena i n  terms 
of f i n i t e  deformation theory on the  bas i s  o f  t he  bas i c  
equations es tab l i shed  by K.  Marguerre [ lS ] .  I t  became 
c l ea r  t h a t  t he  same marked i n s t a b i l i t y  phenomena occur as 
i n  the  case of cyl inders .  

Figure  5.3.7 

The shear  buckling of curved p l a t e s  has been inves t iga ted  by H .  Wagner 
[1928), G .  M.  Smith (1930), D.  M. A. Leggett (1937), H. Ebner (1937),A. Zahor- 
s k i  (1937), A. Kromm (1938). H. Wagner f52] developed a famous experimental 
equation while A.  Kronm [57] car r ied  out a de t a i l ed  ana lys i s  i n  terms of 
f i n i t e  deformation theory and obtained the char t s  shown i n  Materials 7.  As can 
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be seen from the  char t s ,  the  theory well explains Wagner's experimental equa- 
t i ons .  

Moreover, H.  Ebner [55] foilbwing the formulas of Timoshenko and Redshaw 
f o r  compression, formulated the equations such as those shown i n  Materials 9, 
i n  which he reasons t h a t  the same kind of expressions might be usable formally 
even i n  the  case of shear .  These can a l s o  he used as experimental equations.  

Buckling d u e  t o  external pressure of  curved p l a t e s .  When the  curved 
p l a t e  i s  s u f f i c i e n t l y  long, buckling due t o  external  p e s s u r e  i n  the  case i n  
which the two s t r a i g h t  edges are considered t o  be r o t a t i n g  edges o r  f ixed  edges 
can involve inextensional deformation and th,: same type of r e s u l t s  are obtained 
as i n  the  case of a bent beam. This has been s tudied  by E ,  Hurbrink (19081 
1581, E.  U.  Nicolai  [ 5 9 ]  (1923) and S. Timoshenko (1936). 

Inextensional deformation does not  occur when t h e  p l a t e  i s  of f i n i t e  
length and the boundary conditions of both ends a re  included, so  t h e  buckling 
pressure increases  fu r the r ,  but  no research has been done on t h i s  ye t .  

- 44 
Relationship between compressive load 
P o f  curved p l a t e  and end s t r a i n  E 

$I = center  angle = b/r 
b = length o f  a r c  o f  curved pl.ate, 

r = radius 

buck1 i n g  1 ac tua l ly  
P k  = compressive force a t  time o f  

Ek = b u c k l i n g  s t r a i n )  measured J; 

*Wenzek's experiments 
Figure 5.3.8 

- b,=Z,+= 8R Cb-ba) 

Effect ive W i d t h  o f  Cilrved P la te .  
I t  i s  convenient t o  express the  forces  
sustained i n  terms of  the  concept of 
e f f e c t i v e  width, as i n  t h e  case of f l a t  
p l a t e s ,  when dealing with curved p l a t e s  
a f t e r  compressive birckling. (See Sec- 
t i o n  on Effec t ive  h id th  of P la t e s . )  
With regard t o  t h i s ,  W. A.  Wenzek [63] 
has conducted experiments and published 
experimental equations,  Kawano [64] has 
made an ana lys i s  and H. Ebner [61] has 
constructed design formulas. 

H. Ebner's approach i s  t o  consider 
t h a t  when a curved plaKe i s  conpressed, 
buckling occurs due t o  buckling s t r e s s  
(UR =. 0 . 3  E t / r )  and then i t  loses  i t s  
curvature e f f e c t  as a curved p l a t e ,  be- 
comi .3 a "flat  plate"  aA 1 t h i s  a c t s  on 
the  edge re inforc ing  members. Conse- 
quently,  the e f f e c t i v e  width of the  
edge reinforcing members with respect 
t J  a qiven stress U L  is given by 

In q, UR is  used t o  cause the  buckling of the  cuived p l a t e  and - funct ions as a 
" f l a t  plate"  with respect  t o  the  pressure difference c r ~  - UR. 
ive d id th  with respect  t o  UL - UR; e . g . ,  according t o  Marguerre's equation [I41 
it i s  given by 

/532 
bm i s  the  e f f ec t -  

f z . b  
b*= aL-aa 
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This m.jthcd of Ebner's has been compared with the  r e x l t s  of s t rength  t e s t s  
on tension s h e l l  constructions and found t o  be general ly  va l id .  

5.3.3. B U C K L I N G  OF E L L I P T I C A L  C Y L I N D E R S  

t i on  
l i ng  
men t 

Compress ive  Buck1 i n g .  Shibuya (1940) r132] determined buckling condi- 
equations from in f in i t e s ima l  deformation theory f o r  the compressive buck- 
of e l l i p t i c a l  cyl inders ,  and compared them with experiments- and the experi-  
values turned out t o  be 50% of the  theo re t i ca l  ones. 

0. S. Heck (1937) [161] has corducted investig:  Ions of f l exura l  buckling, 
(Materials 66). 
itesimal deformation theory.  

He analyzed or thot ropic  e l l i p t i c a l  p l a t e s  i n  terms o f  i n f in -  

5.3.4. B U C K L I N G  OF S P H E R I C A L  SHELLS 

In  1915, R. Zoe1l.y [135] s tudied the  buckling of spher ica l  s h e l l s  under 
external  pressure,  and, l a te r ,  a l so  on the  bas i s  of classical theory,  research 
was conducted by E .  Schwerin (1922) [136], Tokugawa (1939) [137] (1940) [139]. 
In 1938, C .  B. Biezeno [133] made analysis  i n  tenns of f i n i t e  deformation, -n 
which he explained the marked i n s t a b i l i t y  phenomena occuring i n  the  case i n  
which a p a r t i a l  spher ica l  s h e l l  having i n i t i a i  curvature undergoes concentrated 
forces .  Th. v. K i r m h - H .  S. Tsien (1939) [138] analyzed the  case i n  which a 
uniformed pressure is sustained,  using the  same method, and es tab l i shed  t h e i r  
I'jump theory" which e s s e n t i a l l y  gives t I e  same r e s u l t s  as those of C.  B. 
Biezeno. 

R.  Zoelly [135], using inf in i tes imal  deformation theory,  assumed ax ia l ly  
symmetrical concave-convex wave forms and f o r  the buckling pressure,  obtains  

t: p l a t e  thickness  
d: diameter 
n: number of w l n k l e s  

4E 
p =r( d )+.&N(+r* 

N=4 n'+2 n- 1 

This equation i s  composed of an expansion term and a bending term, as i n  the 
case of f l a t  p l a t e s  and cy l l ind- ica l  curved p l a t e s .  The former decreases as 
n increases  while t he  l a t t e r  increases .  The n giving the  minimum value,  pk 

is 

617 



The coiapressive stress along t h e  s h e l l  surface,  which i s  generated by t h i s  
pressure, is 

This is the  same equation as t he  c l a s s i ca l  compressive buckling stress equation 
for a cylinder rJf radius r, and thickness t. Later, E. Schwerin [136] obtained 
the  same resu l t s .  
showing a wide discrepancy. 
elegant approximation equation from the  fact tha t  t he  wave forms tha t  occur on 
the spherical  s h e l l  surface a re  regular  polygons. 

The experiment values w e r e  302 of the  theore t ica l  values, 
In t h i s  regard, Tckugawh (1939) [137j d-rived an 

On the  other  hand, C. B. Biezeno (1938) investigated t h e  deformation char- /533 - 
acteristics of the  case of  p a r t i a l  spherical  s h e l l  having a small curvature 
-upported on the  edges a t  a concentrated load act ing on the  center  and obtained 
the  r e su l t s  given i n  Materials 43. 
s h e l l  is determined by X 
tion. 
i n  direct ion P f o r  various values of X and ccnstructed the graph shown i n  Mater- 
ials 43. 
Ta2/2 R) is used. 
the values of X, e.g., C20 means t h a t  A. = 20.  
ness is large, and when it is  large,  t h e  wall is thin.  
curve is S-shap-d but up to  A = 20, t h i s  S curve does not occur. 
above 50, tic posi t ion of t he  minimum point sags downward, when X = 100, only 
the  pa r t  IJ < 0 is obtai-ned and when X is large,  t he re  is a fu r the r  dowxard drop. 
When t h i s  is not a negative P, t h i s  means t h a t  such a state of Geformation can-- 
nct  occur. 
t i v e  minimum point,  P = 0 i s  obtained, but t h i s  idicates t h a t  the  previous con- 
VJX sxrface "turns outside in" t o  a concave s-uface.  When the  load is increased 
fmthe i ,  t h i s  becomes exactly l i k e  the  case i n  which a rice bowl is supported by 
the  edges and its bottom is pushed by ;he t i p s  of chopsticks [sic] and then the 
P-u curve comes t o  have the  posi t ivz slope. 

The configuration of the  p a r t i a l  spherical  

H e  detemined the  relat ionship between the  load p.anu the  def lect ion uo 

On the  y axis  p E F R / E t 3  is used, while the  x axis u : UO/XO (xo = 

ra4/R2t2, R radius,  t thickness, ra radius of sec- 

Tne subscr ipts  for the  parameters C of each curve ind ica te  
When A is  small, the  wall thick- 

When X = 50,  the  p-u 
When X is 

As the  defomaticn progresses .&d becomes grea te r  than at the  nega- 

l?..xs there is a portior. w i t h  a negative s iope i n  the  in te rva l  from the  f i r s t  
maximum point t o  the  nexi: minimum point i n  the  p-u curve f o r  X where A > 20 
Cand t h i s  pa r t  indicates  an unstable state of equilibrium). 
aade t o  reach ??,e max imum point  and maintained there ,  t he  displacement jumps 
fron the  maximum point t o  the  point which corresponds t o  the  load on the  2nd 
s t a b i l i t y  curve pa ra l l e l  t o  the  abscissa  i n  the  graph. Cowequer\tly, the  s t a t e  
oT equilibrium at  the m a x i m u m  point is  unstable, and tLe displacemmt, when the 
f i m p  occurs, is a f i n i t e  quantity. 
Oilcanning, and is  referred t o  as "jump transit ion. ' '  (Tobiutsuri i n  Japm) .  

If the  load is 

Such a phenomenon is  ca l led  Durschlag, o r  

When such a great displacement is  not allowed, t h e  value of the  p of the 
first peak of the p-u curve corresponds t o  the  maximum load allowable f o r  a 
given spherical  she l l .  Denoting t h i s  by pk, the  graph i n  Materials 43.1 i s  
obtained from a pk - X curve. K. Marguerre (1938) [19] discovered t h a t  a l so  
i n  the  case of a curved beam having a small curvature and under concentrated 
force,  a s t r ik ingly  s i m i l a r  phenomenon occurs. 
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Figure 5.3.9 

Th. v. KSrmSn-H. S .  Tsien (1939) [138] analyzed the  case of ex terna l  pres-  
sure  from exact ly  t h e  same point  of view as Biezeno and Marguerre. 
determined the  expression f o r  t he  t o t a l  pos i t iona l  energy change W by combining 
t h e  change i n  pos i t iona l  energy when the  s h e l l  undergoes uniform compression 
from external  pressure and t h e  addi t iona l  change i n  energy when loca l  buckling 
occurs. Then subs t i t u t ing  the  a x i a l l y  symmetrical dent "deformation" approxi- 
mation expression as t h e  deformation enterii ig the  equation, they obtained t h e  
.following r e s u l t s ,  by determining t h e  cnknown coe f f i c i en t s  from t h e  minimum 
condition W using t h e  R i t z  method. 

F i r s t  they 

1534 - 

Here u is  the  average compressive stress ins ide  t h e  s h e l l  plane,  6 is t h e  m a x i -  
mum degree of  "dent" displacement i n  the  center ,  r, t are spher ica l  s h e l l  rad i -  
us and thickness ,  28 i s  t h e  center  angle of buckling wave. 
whe:e Q is reduced t o  a minimum. 

Determining t h e  B 

B with respect  t o  th ih  CI is 

This gives t h e  re la t ionshi2  between the  average compressive stress Q and the  
maximum def lec t ion  6 .  "Consideration of F i n i t e  Deformation" i n  Mater ia ls  46 i s  
based on t h i s  fornulat ion.  When 6 / t  = 0, Q = 1.4606 E t / r  and 8 = 1.8257 m. 
This eqresses the  stress at  the time of buckling and t h e  center  angle and the  
stress at  cime of buckling i s  much higher  than the classical theo re t i ca l  value 
0.606 E t / r .  From the  above equation 

when a/talo u,,,=0.~6253 E tlr 

is obtained. The B f o r  t h i s  is 
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In experiments by E .  E. Sechler-W. Bollay 
u = 2480 l b s .  p e r  sq. i n .  w a s  obtained as the  
stress at t i m e  of buckling when an ex terna l  
pressure w a s  appl ied t o  a t h i n  walled copper 
hemispherical s h e l l  with r = 18 i n . ,  t = 0.020 
in . ,  E = 14.5 x 106 lbs .  pe r  sq. i n .  
i s  expressed by u = 0.154 E t / r ,  t is c lose  t o  

c #.' the  minimum value umin based on t h e  above the- 
Lt ory. Moreover, whereas i n  t h e  experiments B = 
I 8O, UtZ12.5, i n  t h i s  theory B = 7.4O, 6 / t z  10, 

so  t h e  theory gives a good explanation of t he  
experimental values.  In c l a s s i c a l  theory 
B = 3.3" and 6 / t  i s  not determined. From these  
facts, KSrmfin and Tsien explained t h a t  a "lower 
buckling load" appears. However, t h e  fact t h a t  
t h e  "upper buckling load" appears i n  t h i s  theory 
is  much higher  than t h e  classical theory ind i -  
cates t h a t  t he  pos i t i ve  buckling wave form i s  
inappropriate  f o r  t he  i n i t i a l  buckling. Since 
i n  t h i s  per iod it is easier f o r  t he  classical 
theory wave forms t o  appear, t he  classical 
theo re t i ca l  values were assumed t o  be lower. 
Moreover, i f  t h e  deformation is  not  la rge ,  
s ince  t h e  pos i ted  concave wave forms express 
very w e l l  t h e  ac tua l  wave forms, they assumed 

t h a t  a good f i t  with t h e  above experiment is obtained, and as shown i n  Mater ia ls  
46, they explained t h a t  ac tua l ly  a course is followed such as t he  dot ted l i n e  
which smoothly connects t h e  classical buckling values with t h e  lower buckling 
points  obtained above. 
lower buckling load cannot be reached without once passing through the  classi- 
cal theo re t i ca l  valiies. 
were close t o  t h i s  lower buckling load, and as an explanation of t h i s ,  both 
authors state t h a t  i n  t h e  process of  increase  i n  load, due t o  some externa l  
impact o r  v ibra t ion  o r  the  e l a s t i c i t y  of the  loading apparatus i t se l f ,  a sud- 
den jump is made t o  the  lower buckling noin t ,  and s ince  t h i s  i s  a very sho r t  
period of t i m e ,  i n  conventional experimectal methods, values c lose  t o  the  lower 
buckling value a r e  measured. 

Since t h i s  

Figure 5.3. IO 

/535 - 
By t h i s  explanation, when t h e  load is increased,  t he  

Thus i n  the  exljeiiiiients, almost a l l  values cj5talned 

The l a t t e r  author,  I I .  S. Tsien' ca lcu la ted  the  pos i t i ona l  energy values of 
t he  e n t i r e  system, and when he invest igated the  poin ts  ind ica t ing  the  same posi-  
t i o n a l  energy i n  the  course of  buckling (ur/Et-G/t) for the  two extreme cases of 
a r i g i d  t e s t i n g  machine and dead weight t e s t i n g ,  he found t h a t  such a s ta te  w a s  
present before the  upper buckling value is  reached. He thus explained t h a t  as 
long as  there  i s  some external  st imulus,  jump can occur. 
measured the  pressure a t  th,. beginning and ending of buckling, found t h a t  t he  

'H. S. Tsien, "A Theory f o r  the  Buckling of Thin Shel ls ,"  Jour. Aero. Sci.,Vol. 

In l a t e r  tes ts ,  he 

9, NO. 10 (Aug. 1942), pp. 373-384. 
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pressure a t  t h e  beginning was higher than a‘: t h e  end, and when he compared t h e  
pressure appearing a t  the  beginning which he estimated from observation of the  
energy, and the  pressure a t  the  time of equilibrium, after buckling, having an 
energy equal t o  t h i s ,  with the  above experiment values,  he reported t h a t  they 
agree extremely well. 

Although the  comparison with pressure after buckling i s  in t e re s t ing ,  as i n  
t h i s  explanation, t he  s h i f t s  between these two states, which are equivalent  t o  
the  pos i t i ona l  energy, cannot occur f r ee ly .  Some kind of  ex terna l ly  supplied 
energy is required,  and t h i s  point  remains unexplained. Since i n  t h i s  regard 
i t  has been found recent ly  t h a t  t h e  effects of  i n i t i a l  deformation are pro- 
nounced i n  the  case of cyl inders ,  it would be des i r ab le  t o  take  t h i s  i n t o  con- 
s ide ra t ion ,  make p rec i se  measurements on an actual specimen, determine the 
i n i t i a l  deformation, make an ana lys i s  of it and compare it with experiments. 
Since the  i n i t i a l  deformation makes t h e  sharp peak of  t h e  curve o r / E t - & / t ’ f l a t ,  
it is ant ic ipa ted  t h a t  i n  experiments, due t o  such a reason, e i t h e r  t h e  upper 
buckling load w i l l  disappear or become extremely low, and tu rn  out t o  be rough- 
l y  equal t o  t h e  lower buckling load. 

In actual designs, using 

0~0.18 St lr  

for t h e  lower buckling load, t h i s  should be on t h e  5afe s ide .  

5.3.5.  ELLIPTICAL SHELLS 

J. W. Geckeler (1928) [140] inves t iga ted  buckling due t o  i n t e r n a l  pressure 
i n  e l l ipt ical  s h e l l s .  
e l l i p t i c a l  s h e l l  around t h e  sho r t  axis, denoting the  rad ius  i n  t h e  equator ia l  
plane by r and the  minimum radius  of curvbture of t h e  meridian by c’, when P < 
r /2 ,  a compressive stress is  formed due t o  i n t e r n a l  pressure,  i n  t h e  d i r ec t ion  
along a c i r c u l a r  cross-sect ion p a r a l l e l  t o  the  q u a t o r i a l  plane,  and is  m a x i m u m  
a t  the  equator, being 

In ro t a t ing  e l l i p t i c a l  s h e l l s  formed by r o t a t i n g  an 

When the  in t e rna l  pressure p increases ,  buckling can occur along t h e  equator 
due t o  t h i s  i n t e rna l  force.  The equator  assume:; exac t ly  t h e  same state  as a 
c i r c l e  under compression, bu t  t he  poin ts  !:wing elast ic  support d i f f e r .  Geck- 
eler considered the ac t ion  of e las t ic  support a ily occurs due t o  t h e  elongation 
and contract ion of t he  equator,  but  did n? t  con; ider  t h e  support ac t ion  coming 
from other  p a r t s  of the s h e l l  connected t o  t h e  rtquatorial zone. 
of e l a s t i c  support due to expansion and contract ion of  t h e  equator i s  given by 
B = E t / r Z .  The thickness of t h e  s h e l l  t is  asslimed t o  be uniform. 

The modulus 

He obtained - /536 
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as t he  buckling i n t e r n a l  force of t h e  c i r c u l a r  zone kaving a u n i t  width under- 
going t h i s  support act ion.  B i s  the  bending stiffness of the  equator ia l  zone 
having a u n i t  width. The second term i n  parentheses i s  small and may be omit- 
ted,  f o r  the buckling i n t e r n a l  pressure Nk = 2-, he obtained 

In t h i s  case he f inds  the  length X of one wave and the  wave number. 
ia ls  48). 
edly agrees w e l l  with experiments (see Handbuch der  Physik VI, Mechanik der  
EZastischen Karper, 1928, Springer,  S .  304-335). 

(See Mater- 
This equation f c r  buckling in t e rna l  pressure and wave number report-  

5.3.6. COMICAL SHELLS 

. 

(1937) [141] and Tokugawa (1940) [142]. 
Invest igat ion of the  buckling of conical s h e l l s  has been done by A. Pf luger  

Pfluger,  using in f in i t e s ima l  deformation theory,  formulated cha r t s  f o r  t h e  
buckling load f o r  t h e  buckling of  conical  s h e l l s  whose wall thickness  i s  pro- 
por t iona l  t o  t h e  d is tance  from the  peak, and which undergo sur face  pressure and 
d i s t r ibu ted  load i n  t h e  d i r ec t ion  of t h e  ax i s  (see Materials 49, 50). 

- Tokugawa Takesada found p r a c t i c a l  equations f o r  ex terna l  buckling pressure,  
from ac tua l  observations of wave foFHIs, €row many r e s u l t s  of experiments in the 
case i n  which a uniform externa l  load i s  sustained.  (See Materials 51.) Refer- 
ence 1381 provides a de ta i l ed  comparison with experiment r e s u l t s .  The buckling 
waves t h a t  are formed are accompanied by f i n i t e  deformation and should be inves- 
t i ga t ed  from t h i s  po in t  of view. 

5.3.7. RE I NFORCED CURVED PLATES 

Rcinfarzed curved p l a t e s  include :.hose roughly supported by la rge  re inforc-  
ing members and those which can be t r e a t e d  as or thot ropic  p l a t e s ,  i n  which the  
spacing between re inforc ing  members i s  r a t h e r  c lose .  
l a t t e r  here.  
made of an iso t ropic  materials. 
a r t i f i c i a l  o r thot ropic  p l a t e s  made of  i so t rop ic  materials. We s h a l l  consider 
cases i n  which buckling occurs i n  reinforced p l a t e s  at  the same time t h a t  a l l  
re inforc ing  members buckle with the  outer  p l a t e s .  

We s h a l l  consider t he  
Veneer and plywood p la t e s  a r e  an iso t ropic  and are e s s e n t i a l l y  

Plates having c lose ly  spaced reinforcements are 

Tension shear and e l a s t i c i t y  constants f o r  bend- 
ing  and tors ion  serve as quan t i t i e s  expressing ortho- 
tropy. l bo  orthogonal d i r ec t ions  are present  , such 
t h a t  owing t o  simple in t e rna l  t e n s i l e  forces  o r  mom- 
en t s ,  elongation and curvature occur only i n  the  same 

d i r ec t ion ( s )  of e l a s t i c i t y .  Denoting these  d i r ec t ions  

I .  

F igure 5.3.11 di rec t ion  as. fbqse. This i s  ca l led  the  r- incipal  

:- cEz3 
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as 1, 2,  we s h a l l  use the  subscr ip ts  1, 2 t o  refer t o  quan t i t i e s  r e l a t e d  t o  
these d i rec t ions .  
t i ons  as N 1 ,  N 2  and t h e  i n t e r n a l  shear forces between them as N12, N 2 1 ;  a l so ,  
w e  s h a l l  use M I ,  M2, b112, M21 to express the  bending moments and to r s ion  moments 
fo r  a u n i t  width of the  p l a t e .  
s t r a i n  by €1, €2, y, and the  curvature and tw i s t  by ~ 1 ,  ~ 2 ,  T, general ly  t h e  
.following r e l a t ionsh ip  i s  a t t a ined .  

IVe denote t h e  in t e rna l  force pe r  u n i t  width i n  these  d i rec-  

Corresponding t o  these,  i f  w e  express the  plane 

/537 - H-ere 
c r l ,  a:; B = Extension s t i f f n e s s  ala2 with respect  t o  forces  i n s i d e  

the center  plane,  and shear  s t i f f n e s s  B 

ance with t h e  u n i t  elongation s t r a i n  i n  d i r ec t ion  l ( 2 )  .... 
Poisson's r a t i o  with respect  t o  plane i n t e r n a l  forces .  

vl(v2) = Shrinkage s t r a i n  generated i n  d i r ec t ions  2(1) i n  accord- 

D1D2; R = Bending s t i f f n e s s  DID2 and to r s iona l  s t i f f n e s s  R.  

v l , p 2  = Poisson's r a t i o s  f o r  bending (general ly  these  do not  
match b l ,  u2). 

For example, i n  the  case of  a uniform material and uniform thickness,  p 1  and p2 
respect ively agree with v 1  and v2 expressed by 

1 R=-G I' . 3  @=at 

81, E2 are the  e l a s t i c i t y  noduli  i n  d i rec t ions  1, 2; G is the  shear  e l a s t i c i t y  
~ modulus between them. Moreolrer, i n  t h e  ease of reinforcement on only one s i d e  

o-€ the  outer  p l a t e  with a re inforc ing  member, t h e  center  plane does not e x i s t ,  

@e may t reat  t h i s  as an approximately symmetrical o r thot ropic  p l a t e .  
t he  e l a s t i c i t y  i s  asymmetrical; but  i f  t he  e c c e n t r i c i t y  i s  notvery  large,  

In ordinary reinforced p l a t e s  such as 
t h a t  shown i n  Figure 5.3.12, it is  poss ib le  
t o  use 

e e s  I >  4 ea 
Figure 5 . 3 . 1 2  
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f3,, Rs a r e  contr ibut ing terms respect ively f o r  t h e  shear  s t i f f n e s s  and tors ion  
s t i f f n e s s  given by t h e  re inforc ing  members. ELFL, EQFQ are the  tension s t i f f -  
nesses of  the longi tudinal  and lateral  re inforc ing  members and B1, B2 are t h e i r  
respec t ive  bending s t i f f n e s s e s .  

Compressive Buck1 ing o f  Reinforced Curved Plates.  Yamana (1933) 11461, 
D. D. Dschou (1935) [147] and Shibuya (i940) [148] have s tudied  the  comrressive 
buckling of curved p l a t e s  having such or thotropy.-  The method of determining 
t h e  buckling load is the  same as i n  i s o t r o p i c  p l a t e s .  
s u l t s  shown i n  Materials 52 from buckling condition equations.  
bas ic  equilibrium equation f o r  general  loading. Shibuya t r e a t e d  the  case of 
c i rcumferent ia l ly  r o t a t i n g  edges, and t h e  case of a f ixed  s t r a i g h t  edge with 
t h e  o the r  edges ro ta t ing .  

Dschou obtained t h e  re- 
Yamana f inds  a 

Normally, when t h e  spacing between re inforc ing  members i s  large,  first the  
outer  p l a t e s  buckle, then the  re inforc ing  members buckle and the  s t rength  is 
l o s t .  These cases w i l l  be  surveyed i n  Chapters 4 and 5. 

5.3.8. B U C K L I N G  OF R E I N F O R C E D  C Y L I N D E R S  /538 

We s h a l l  a l so  consider here  buckling i n  t h e  cases i n  which the  s h e l l  sur-  
That i s ,  we a r e  deal ing with cases face can be t r ea t ed  as or thot ropic  p l a t e s .  

in which both the  ou te r  p l a t e s  and re inforc ing  members undergo t o t a l  buckling 
simultaneous l y  . 

Compression of Rei::Corced ;yl in..-..-s. T h ~ s  has been s tudied  by Yamana 
(1933) [153], D. D. Ds2j:ob (1935) 11547,. .iir.:Suya (1940) [148], Hayashi (1949) 

- 1  t' t ,  t 

f o r  the u n i t  width f o r  the compressive buckling load of  a cyl inder  re inforced 
longi tudinal ly  and l a t e r a l l y .  Taking t h e  axes x, y i n  t h e  axial and circumfer- 
e n t i a l  d i rec t ions ,  it is  assumed t h a t  the  p r inc ip l e  d i r ec t ions  of  e l a s t i c i t y  are 
taken i n  these d i rec t ions .  I, and Iy are t h e  average moments of i n e r t i a  of t he  
cross-sect ion cons is t ing  of re inforcers  and oute: p l a t e s  f o r  the  u n i t  widths of 
the  x and y cross-sect ions respect ively;  tx, ty a r e  t h e  average thicknesses  of 
planes x, y and t i s  the  outer  p l a t e  thickness 
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D s  chou obtains  - - 
pt=ua,V t t. o r  Pc=duv t t u  

f o r  the un i t  width compressive buckling loads i n  the  case of supports only i n  
the d i rec t ion  of x (cyl inder  ax is )  o r  t he  circumference, but  t h i s  i s  considered 
inappropriate .  
depends on the reinforcement, not only the  average p l a t e  thickness ,  but  t he  
bending s t i f f n e s s  becomes extremely high. 
tween the  bending s t i f f n e s s  and the  tension s t i f f n e s s ,  i n  t he  formula f o r  pk i t  
i s  nect sa ry  t o  include the  bending s t i f f n e s s  i n  addi t ion t o  the  tx o r  t which 
are r e l a t ed  t o  the  tension s t i f f n e s s .  
s impl i f ica t ion  and t h e  reader should be warned of t h i s .  

This i s  because, i n  cases i n  which the re  i s  a d i f fz rence  which 

Since the re  i s  no re la t ionship  be- 

Dschou's formula is a bold attempz at  

In t h i s  regard,  t h i s  may be handled as an outer  p l a t e  having or thot ropic  
cha rac t e r i s t i c s .  
i o r .  For example, Hayashi obtains  

On t h i s  po in t ,  t he  formulas of Shibuya and Hayashi a r e  super- 

f o r . t h e  case i n  which the  p r inc ip l e  d i rec t ions  of e l a s t i c i t y  agree with the  
d i rec t ions  1, 2 of the  cyl inder  ax i s  and the  circumference. Here 

k=-=-- n 1  - wave length r a t i o  of ax ia l  and circumferent ia l  
d i rec t ions  of buckling wave 

The wave-length r a t i o  i s  determined i s  as follows 

C&* + C*&f - c1= 0,  

Now we s h a l l  describe the r e su le s  obtained from the  above squations f o r  /539 - 
the  following two cases. 

(1) Cylinder made of corrugated p l a t e s  (d i rec t ion  of waves p a r a l l e l  t o  
cyl inder  ax i s ) .  
the  above equation is s impl i f ied  t o  

In t h i s  case, s ince  Yamana's r e l a t i o n  a1/ay2 = D 1 / D 2  obtains  
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This gives the  envelope of t he  family of curves ca lcu la ted  by Yamana f o r  

Hayashi and 
some numerical examples. 
imer,t values appear as 30 t o  60% of those i n  the  above equation. 
Mxrakaimi [158] performed numerical ca lcu la t ions  f o r  t he  specimbn t e s t ed  by 
Yamana from the  point  of view of f i n i t e  deformation theory,  and when they found 
the lower buckling load, they obtained almost t he  same r e s u l t s  as i n  Yamana's 
experiment. 

Shibuya alsq obtains  a s imi l a r  expression. The exper- 

(2)  
ness (t) 

In  the case of a cyl inder  of  homogeneous mater ia l  and uniform thick-  

Here 

In t h i s  case, even i f  the pr inc ipa l  d i r ec t ion  of t h e  outer  p l a t e  i s  replaced, 
it i s  i n t e r e s t i n g  t h a t  t he  buckling stress does not  change. 

(3)  In the  case of an i s o t r o p i c  p l a t e  

k l ,  t .- E ut= V / ( l - U S  t 

is  obtained. I t  should be noted t h a t  i n  t h i s  case k = 1, i .e . ,  the  aspect r a t i o  
of the  buckling wave is  1 and the wave lengths i n  t h e  d i r ec t ion  of  t h e  circum- 
ference a re  equal. 

In ac tua l  p rac t i ce ,  t h e  most important case is t h a t  of a sho r t  cyl inder  
supported only i n  the d i r ec t ion  of the  axis. 
the  two r i b s  (frame) of a reinforced tension s h e l l  s t r u c t u r e  i s  an example of 
t h i s .  
of the circumference. Dschou obtains  the  following equation f o r  such a case. 

For example, t h e  sec t ion  between 

In a shor t  cyl inder ,  many buckling waves can occur only i n  the  d i r ec t ion  

Consequently 

- 
P&=d&tz=b# ~ + U R  I' t ta 

)!ere 
t O.=n'E'I+/(t;1*)r ~ i ~ - ~ ~ ,  .- 

and oE expresses the  Euler ' s  buckling s t r e s s  of a reinforced p l a t e  of length 1. 

In a s u f f i c i e n t l y  long reinforced s h e l l ,  i t  is  necessary t o  have reinforcement 
simultaneously i n  both d i rec t ions  i n  order  t o  increase the  buckling load, while 

i 

From the  above equations it i s  possible  t o  compare methods of reinforcement. 
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i n  =hart s h e l l s ,  longi tudinal  re inforc ing  members have a subs t an t i t i ve  e f f e c t  
and the use of cnly lat.era1 reinforcers  i s  ine f f ec t ive .  
formulas a re  appl icable ,  ind ica tes  t h a t  t h i s  is the case i n  which, p r i o r  t o  the 
9 k  and ?k i n  both the  reinforcing members and oute:. p l a t e s ,  t h e  hypothesis t h a t  /540 
l oca l  buckling does not occur, obtains .  
made regarding taking f i n i t e  deformation cha rac t e r i s t i c s  i n t o  consideration, it 
i s  su i t ab le  t o  use about 20% of the  above equation. 

The f a c t  t h a t  the above 

Although no general statement can be 

Torsional Buckling o f  Reinforced Cylinders. In 1949, Hayashi [161], i n  
order  t o  determine the  tors iona l  buckling load of a wooden plywood cyl inder ,  
posi ted the  same form as i n  Donnell's formula f o r  an i so t rop ic  cyl inder ,  f o r  t h e  
addi t ional  displaccment during buckling, i n  a cyl inder  having or thot ropic  p l a t e s  
on the bas i s  of in f in i tes imal  deformation theory.  He obtains  r e su l t< ,  by advanc- 
ing the  ana lys i s  and expanding Donnell's r e s u l t s  f o r  i so t rop ic  cy l inaers  t o  in-  
clude general  o r thot ropic  cyl inders .  This i s  & ien by t h e  following formulas i n  
which s k  denotes t h e  circumferential  u n i t  with shear load. When assuming 

d = diameter,  1 = length.  
B=- st .=J 12D.P The p r inc ipa l  d i r e c t i o n s  

a1 ( l -v lv . )  a,(1--vxv,)d. 1, 2 match the  axial and 
circumferent i a1 d i r e c t  ions 

(1) For shor t  cyl inders  

With both ends ro t a t ing :  ~ = i . i s U  t1=2.31T-~-  (JC5 .5 )  

With both ends f ixed:  B = l . 2 9 0  n z 2 . 6 2 6  (J<7 .8 )  

(2 )  For long cyl inders  

Case of both ends r o t a t i n g  J > 5.5 

Case of both ends f ixed J > 7 . 8  

B = O . ~ I U  
n=2 

In a cyl inder  of hom~gsnecur material  aid uniform p i a t e  thickness ,  with S k j t  = 
Tk, t h i s  is expressed by 

The shear  s t r e s s  a t  the  time of to rs iona l  buckling of  a long cyl inder  i s  given by 
8 

r~O.272-($)~ n e 2  

To increase Tk, it i s  e f f ec t ive  t o  increase the  circumferent ia l  modulus of elas- 
t i c i t y  E2. 
20" i n  the d i r ec t ion  of the ax i s ,  and espec ia l ly  when n = 2 ,  the  degree of def lec-  
t i on  of the cyl inder  plane and the  d i r ec t ion  of the  circuaference i s  grea t .  
order  t o  reduce t h i s  deformation, the bending s t i f f n e s s  should be increased i n  
the d i rec t ion  of the  circumference and from t h i s  f a c t ,  E2 has a g r e a t e r  e f f e c t  on 

When E 1  > E 2 ,  usual ly  the  tors iona l  buckling waves a r e  inc l ined  10 t o  

In 

Tk * 
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T A B L E  5 . 1 . 3 .  COMPARISON WITH I N O U E ' S  T E S T  R E S U L T S  

60 
70 

7.9 95 -- 
average 8.1 75 

I 8  

L ["den P 1 ywood I 
I 

E1=731 kg/mm' 3 

&-I18 I average 8.3 65 
v,=o.m 
#a=O.o8I 200 

9.0 240 

average 9.0 220 

190 

average 8.4 200 

I 7.5 120 
2 8.0 90 

4 7.7 100 

average 7.7 100 

I' 3 7.8 80 

--- 
, I  

B i rch  P 1 ywood 

v1=o.Ux) I aGerabe 7.9 [ IZO 

8.1 260 

- 
0.14 I 0.112 (condition at  

0.31 0.31 
0.39 0.39 supported 0.231 
0.39 0.39 fixed 0.256 

0.36 0.36 

0.18 0.162 
0.21 0.189 

0.20 0.176 

0.39 I 0.351 
0.36 I 0.324 

0.232 o-208 I 0.26 
0.29 
0.24 0.192 supported 0. xx, 
0.23 0.184 lfixed 0.219 

0.25 0.204 I 
0.79 supported 0.332 

0.71 1 0.71 1,fixed 0.368 

0.72 I 0.72 I 
' I 

0.50 0.dU 
0.43 0.387 

0.47 0.419 

0.78 I 0.702 I 
- 
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Remarks: (1) I n  the  experiments, the t o r s i o n  buck l i ng  moments were as f o l l  
f o r  the break ing t o r s i o n  moments: 
w i t h  sur face g r a i n  // 80%, hence the  experiment va lue = 0.80 TB 

I I  I1 I '  = 1.00 'TB 
I t  I 1  ' I  = 0.90 TB 

I I  I I  I I  l o l o o % ,  
I I  I I  45 go%, 

(2) A sur face g r a i n  d i r e c t i o n  // i s  p a r a l l e l  t o  the  c y l i n d e r  a x i s  1 
i s  perpendicu lar  t o  i t .  "Regular 45"" means t h a t  the d i r e c t i o n  
o f  t e n s i l e  stresses o f  the ou te r  p l a t e  occu r r i ng  t o  t o r s i o n  matches 
tha t  o f  t he  wood surface g r a i n .  
s i o n  load i n  the  case when these a re  orthogonal .  

"Reverse 45"" means t h a t  the t G r -  
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We s h a l l  compare the  above equations with tnoue's r e s u l t s  (l942) [160] of 
t e s t s  of the tors ion  of wooden cyl inders .  (See Table 5.3.1.)  The specimens 
were a three-sheet wooden (?) plywood cyl inder  and a birch plywood cyl inder .  
Their respect ive average moduli of e l a s t i c i t y  E l ,  E 2  and Poisson's r a t i o s  
L, I t  can be sa id  t h a t  i n  t h i s  case,  
t8ere  is  a r e l a t i v e l y  good agreement between the  experiment values and the  shear  
s t r e s s  during buckling, which was 60% of t h a t  proviJed i n  the  theory. 

ind ica te  values determined by experiment. 

Flexural Buck1 i n g  of Reinforced Cy! inders.  Research on t h i s  includes 
Inoue's [164] bending t e s t s  on plywood cyl inders  i n  1942 and Hayashi's ana lys i s  
[165] which was conducted i n  order  t o  explain them. 
buckling and bending moment due t o  y i e l d  i n  a general  o r thot ropic  cyl inder  i n  
which the pr inc ipa l  d i rec t ions  of e l a s t i c i t y  matched the  d i r ec t ion  of the cyl-  
inder  axis  and circtimference. The equations discussed under i s o t r o p i c  cyl..nderc 
are the  r e s u l t s  obtained by Hayashi f o r  the  general  case.  
bending moment is  given by 

Hayashi determined the  

The y i e l d  buckling- - /542 

The marimum bending in t e rna l  force f o r  % i s  

( in t e rna l  force f o r  u n i t  width i n  
d i r ec t ion  of circEnference) 

As can be seen from these r e s u l t s ,  i n  order  t o  increase the  y i e l d  moment, the  
c u r v a t v e  should be increased and, ir. addi t ion,  f o r  anisotropy, i t  can be seen 
t h a t  the bending thickness D2 and the  tension s t i f f n e s s  a1 i n  the  d i r ec t ion  of 
the  axis should be increased. 

In a cyl inder  of  homogeneous mater ia l  of uniform thickness ,  t h i s  is 

and even i f  the p r inc ip l e  d i r ec t ion  of e l a s t i c i t y  is changed, t he  value Lor 
y i e l d  morcent o r  m a x i m u m  i n t e rna l  force w i l l  not change. 
of the above equations with r e s u l t s  of Inoue's bending experiments [164] i s  
r a t h e r  good. 

The comparison [165] 

Local Bt...kl i n g  i n  Reinforced Cy1 i n d e r s .  The above cases concern the  
simultaneous buckling of s t r u c t u r a l  elements composing the o a t s r  p l a t e s  of re in-  
forced cyl inders .  
which occurs very frequent ly  i n  prac t ice .  
s t rong reinforcements placed a t  large i n t e r v a l s ,  buckling w i l l  uccur f i r s t  i n  
the  outs ide p l a t e s  i f ,  f o r  example, the cyl inder  i s  subjected t o  bending. 

Diametrically opposite t o  t h i s  i s  the  case of loca l  buckling 
In cyl inders  which are reinforced by 

IR 1936 and 1937, E .  Schapitz [163, 1701 constructed an ana ly t i ca l  theory 
fo r  the  s t a t e  after only the  outer  plate undergoes tors ion  and t h a t  i s  subjected 
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t o  shear  buckling; i .e.,  f o r  ail imperfect tension f i e l d .  

?!. T. Hoff [163] proved ana then confirmed by experiment t h a t  when a ten- 
s ion s h e l l  s t r u c t u r e  undergoes a pi ': bending moment, t h e  y i e l d  buckling due t o  
f la t ten ing ,  posi ted by Brazier doe: lo t  occur, and t h a t  loca l  buckling occurs on 
the  compression s ide.  

5.3.9. REINFORCED E L L I P T I C A L  CYLlNCERS 

In 1940, Shibuya invest igated compressive buckling [148] and i n  1936, 0. S. 
Heck [162] s tudied f lexura l  buckling, f o r  t h e  case i n  which an ou te r  p l a t e  can 
be t r ea t ed  as an orthotropic  p l a t e ,  and i n  which t h e  p r inc ipa l  d i r ec t ions  of 
e l a s t i c i t y  match the  d i rec t ion  of t h e  axis and t h e  circumference. 
derived an equilibrium equation. 

Shibuya 

0. S. Heck determined the  y i e l d  moment due t o  bending by following the  
Brazier app-roach. 
beam theory, d i f f e r s  depending on whether t h e  bending is around t h e  long or 
shor t  axis. 
experiments, t h e  agreement is poor f o r  bending around the  sho r t  axis, except 
when the  eccen t r i c i ty  i s  extremely small. 
f o r  t h i s  case. 

The m a x i m u m  bending stress cfk found f r o m  t h e  y i e l d  moment by 

Whereas the  ca lcu la ted  stress around t h e  long a x i s  agrees well with 

Heck derived an experimental formula 

5.3.10. CORRUGATED MEMBERS 

In determining what configuration should be used when employing corrugated 
members, it is n e c e s a r y  t o  make sure  t h a t  buckling w i l l  not occur with respect  
t o  ir given type of load. In pa r t i cu la r ,  s ince  the re  are many cases i n  which 
focal buckling can cause t o t a l  col lapse,  caution is required.  /543 

For example, i n  the  case of a member under compression which has i n  i t s  
cross-section configuration a f l a t  sec t ion  and a curved sec t ion ,  i f  a la rge  
width 01) i s  taken f o r  the f l a t  sec t ion ,  due t o  the  compression, t h e  f la t  sec- 
t ion  w i L L  buckle f i rs t ,  and before t h e  curved sec t ion  displays adequate s t r eng th  
to ta l  col lapse w i l l  be caused. The buckling stress ak i n  t h e  case of compres- 
s ion i n  the  dii-ection of t he  length of a s t r i p  with two r o t a t i n g  ends i s  

so i n  order t o  prevent buckling from occurring up t o  t h e  y i e l d  point  oy.p, b / t  
should be se lec ted  so t h a t  from Ok > 0y.p 

As f o r  the f la t  sec t ion  fuqctioiling as part of a frame, the  two s ides  i n  the  
d i rec t ion  of length are e l a s t i c a l l y  supported from the  r o t a t i n g  end f o r  s t i f f -  
ness, but i t  i s  sa fe  t o  use the  above formula. 
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The stress under which the  curved sec t ion  undergoes compressive buckling i s  
1 ~ = 0 . 2  E- 
? 

a d  i n  order  t o  prevent t h i s  from occurring up t o  the  y i e ld  poin t ,  

r E - < 0.2- 
t us.?- 

should be used. 

In cross-sect ions having f la t  p l a t e  o r  curved p a r t s ,  i n  addi t ion  t o  de te r -  
mining the  dimensions with consideration f o r  each p a r t  ind iv idua l ly ,  it i s  neces- 
sa ry  t o  take measures t o  improve t h e  s t a b i l i t y  f o r  t he  overa l l  cross-sect ion 
[see Mater<-als 73). 

With regard t o  the  compressive s t rength  of corrugated p l a t e s ,  t he re  are 
s tud ie s  by Shibuya (1942) [175] and 0. Nissen (1937) [176] and U.S. Standards. 
In corrugated p l a t e s ,  s ince  the  bending s t i f f n e s s  with respect  t o  the  d i r ec t ion  
of  the waves i s  much higher  than f o r  t h e  bending s t i f f n e s s  at  t h e  d i r ec t ion  of 
r i g h t  angles t o  the wave d i rec t ion ,  t h e  buckling which occurs when the  four  
s ides  of t he  corrugated p l a t e s  are supported by r o t a t i n g  edges, and a compressive 
load is applied i n  t h e  d i r ec t ion  of  t h e  wave crest, shows t h e  c h a r a c t e r i s t i c s  
almost of a column. 
sho r t  with respect  t o  width, only t h e  boundary conditions of the  compressed s i d e  
have any inf luence.  
no effect ,  so t h e  p l a t e  behaves l i k e  a column with a wave-form cross-section. 
Usually the  wave crests break and buckling occurs. 

In t h e  compression of corrugated p l a t e s  whose length is 

The conditions of  t he  two sides p a r a l l e l  t o  t h e  lead have 

In reinforced p l a t e s  with f l a t  p l a t e s  a t tached t o  corrugated p l a t e s ,  t h e  
phenomenon occurs according t o  which, due t o  loca l  buckling of t h e  f l a t  p l a t e  
sect ion,  buckling i s  induced i n  the  corrugated p l a t e s .  
espec ia l ly  great  when the thickness o f  the  f la t  p l a t e  i s  la rge .  According t o  
experiments by H. Ebner [177], as shown i n  Materials 69, it i s  not useful  t o  
increase the  f l a t  p l a t e  thickness i n  order  t o  increase the  overa l l  compressive 
s t rength  of  the  reinforced p l a t e .  
thickness of t he  corrugated p l a t e .  
form is  super ior  t o  s i n e  wave forms t h a t  can be formed by s x t i o n .  
s ion t e s t s  on f l a t  p l a t e s ,  re inforced by frames, it can be seen t h a t  it is more 
effeztive t o  reduce the  thickness of t he  ou te r  p l a t e s  and use s t rong  re inforc ing  
members. 

This type of e f f e c t  i s  

Rather, it is more e f f e c t i v e  t o  increase the  
A s  f o r  t he  shape of t he  waves, semi-circular  

From conpres- 

/544 - 5.3.11.  T O R S I O N  Y I E L D  PHENOMENA I N  S H E L L S  W I T H  CLOSED CROSS-SECTIONS 

This phenomenon was discovered by Ikeda (1940) [143] when a non-circular  
thin-walled hollow cyl inder  undergoes +omion,  the  shear  stress generated i n  the  
cross-sect ion has a component i n  the  norqal d i r ec t ion  with respect  t o  the contoul! 
of t he  s h e l l  cross-sect ion and f o r  t h i s  reason,. deformation of t he  cross-sect ion 
occurs so  t h a t  t he  cross-section area F i s  reduced. 
s t i f f n e s s  decreases s l i g h t l y ,  the  decrease i n  s t i f f n e s s  with respect  t o  the  

Consequently, t he  to r s ion  
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increase in torsinn moment increases, and finally the maximum resistable torsion 
moment is reached. This is strikingly similar to yielding due to the bending of 
a cylinder and can be termed “the torsion yield phenomenon.” 
sion moment (Mt)k at the time of yield is given by 

The maximum tor- 

appropriately positing deformation of the cross-section contcur. Here G: elas- 
ticity modulus; t: plate thickness; s :  distance along cross-section and F :  area 
bounded by cross-section. 

Denoting the strain energy due to change in configura- 
tion of cross-section by V, the degree of change (decrease) 
in the area bounded by the cross-section by f, K is deter- 
mined as a coefficient when 

K can be easily calculated if one assumes displacement of 
the cross -section. 

V=K*f’  

Figure 5.3. I3 (i) For an equilateral triangular hollow cylinder, 
length of one edge a) 

0 E G  car‘)&%--- 
S’l--v 

Writing (Mt)k = nGat2 and comparing w5th a celluloid e- 
angular cylinder, there is a good match since 

= 0.20 “experiment ‘theory = 0.176 

rotation angle 

Figure 5.3.14 Figure 5.3.15 

T = L  0 153 
V1-p in the above equation is the deformation of the cross-section, and 

cine posits fo r  each side the equation for beam deflection due to uniformly dis- 
tributed load. 
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(ii) For a square hollow cyl inder  

0.61 (When the connection i n  t h e  four  corners (a) (.lfJL==- Gar; v 1-u ro t a t e s )  
1.49 

v 1--v (When t h e  connection i n  the  four  corners @) ( . l f : ) t - ~ G u t '  

is r i g i d )  

The experiment r e s u l t s  show t h a t  t he  case i n  which t h e  connection i s  not  r i g i d  
i s  c lose r  t o  r e a l i t y .  

/545 

1 .  In 1941, Shibuya 11451 i n  h i s  paper rrOn the  L i m i t s  of I n s t a b i l i t y  Phenom- 
ena Caused by the  Tc,rsion of a Thjwwalled Angular Cylinder," discovered the  
following two types of a i lu re .  

(1) Cases i n  which f a i l u r e  occurs when a decrease i n  s t i f f n e s s  arises due 
t o  maximum tc\rslon moment. 

(2) Fai lure  due t o  t h e  compressive failure of  a re inforc ing  member bvhen a 
tension f i e l a  is  formed after t h e  shear  buckling of the  plane.  

Assuming r=0.109 1.3, p*=3(1-v3 ($>' f a i l u r c  type (1) occurs when K < 3 .2 ,  n'E 

He concludes t h a t  t h e  l i m i t  point  of ( 1 )  and and type (2) occurs a t  K > 3 .2 .  
(2) is K = 3 .2 ,  consequently a / t  = 62.  

Figure 5.3.16 Figure 5.3.17 
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CHAPTER 4 

STRESS CONDITIONS AFTER THE BUCKLING OF 
OUTER PLATES I N  REINFORCED SHELLS 

In the thin-walled reinforced s t ruc tu res ,  t he  s t rength  and r i g i d i t y  i s  
determined by the  means by which t h e  ou te r  p l a t e s  and reinforcements are com- 
bined. 
biickling: (1) Buckling occurs f i r s t  i n  t h e  outer  p l a t e s ,  (2) Buckling occurs 
simultaneocsly i n  reinforcement and ou te r  p l a t e s ,  and (3) Buckling first occurs ,  
i n  reinforcement. Type (3) is  the  most undesirable i n  s t ruc tu res ,  meaning t h a t  
t he  s t ruc tu re  is, i n  essence, not re inforced.  In terms of s t rength ,  type (1) 
i s  LI 3 a c s t  to le rab le .  In tems of r i g i d i t y ,  normally (1) o r  (2)  i s  most des i r -  
ab le  i n  s h e l l s  having curved p l a t e  sec t ions .  O f  course, t h e  se l ec t ion  of struc- 
e7 -2 type d i f f e r s  according t o  whether s e l ec t ion  is  mad= i n  terms of s t rength ,  
r i g i d i t y  o r  s t rength  and r i g i d i t y  and i~ each case est imat ion of s t r eng th  is  
necessary. In estimating the  s t rength  of re inforced s t ruc tu res ,  inves t iga t ion  
of t he  state of  stress after buckling of outer  p l a t e s  is indispensible .  
determining the  stress conditions,  it a l s o  becomes possible  t o  ca l cu la t e  t he  
r i g i d i t y  . 

Depending on the  method of combination, t he re  are th ree  types of 

By 

Below we s h a l l  consider the  d i s t r i b u t i o n  o f  stress a f te r  the  buckling of 
ou ter  p l a t e s  pr imari ly  i n  terms of s t r u c t u r e s  of  type (1) .  

5.4 .1 .  E F F E C T I V E  WIDTH OF FLAT OUTER PLATES 

In t h e  cases when the  outer  p l a t e s  of re inforced s t ruc tu res  are f l a t ,  t he  
concept of e f f ec t ive  width has been employed i n  considering the  effects on an 
outer  p l a t e  of compressive force  after it has buckled. The ou te r  p l a t e  which 
has cooperated with the  reinforcement up t o  t h e  time of buckling, loses  i t s  
cooperation a f t e r  buckling. Now, i f  the re  a re  re inforced p l a t e s  under compres- 
s ion  and it  is  assumed t h a t  t he  outer  p l a t e s  buckle f i rs t ,  t h e  s t r e s s  d i s t r ibu -  
t i o n  w i l l  change as shown i n  Figure 5.4.1. That is ,  the  stress of t he  outer  
p l a t e  a t  the  edge is  equal t o  t h e  s t r e s s  OL of :he reinforcement, and i n  t h e  
cen te r  i t  is  not much d i f f e ren t  from the  0 1 1 t 6 . r  p l a t e  buckling stress U k ,  show- 
i n z  the  d i s t r i b u t i o n  i n  the  f igure .  

/546 

The force  received by t h e  outer  p l a t e  i n  
t h i s  case, i s  

If we denote by 
? ra tes  with the  
reinforcement 

bm the  width a t  which it i s  possible  t o  consider t h a t  t h i s  coop- 
reinforcement at  a stress UL which is  t h e  same as t h a t  of t he  
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Thus, 

Denoting the  average stress sustained by t h i s  p l a t e  as om, t h i s  is expressed by 

(5.4.1) 

In  t h i s  manner, K5rmh pos i t s  t h a t  a p l a t e  (or ig ina l  width bb) under a load 
above t h a t  0 ”  buckling, has t h e  same durab i l i t y  as the  du rab i l i t y  of  a narrow 
p l a t e  of width b, such t h a t  i t s  buckling 
the  stress of the  reinforcement q. 

i s  e-:actly equal t o  t h a t  o f  

From t h i s ,  the  e f f ec t ive  width (Mittragende Brei te)  i s  obtained. 

The average stress is  

(5.4.3) 

E .  T r e f f t z  and K. Marguerre [13, 141 made de ta i l ed  ca lcu la t ions  according 

As a r e s u l t ,  on t h e  bas i s  o f  t h e  hypothesis t h a t  t h e  four  edges of a 
t o  f i n i t e  deformation e l a s t i c i t y  theory and es tab l i shed  a theory of e f f e c t i v e  
width. 
rectangular  p l a t e  are displaced while maintaining t h e i r  l i n e a r  shape, they i m -  
proved on the  coe f f i c i en t s  a and B i n  Cox’s equation.‘  

(5.4.4) 
supported edge a = 0.80 8 = 0.09 - cox’s equation fixed edge a = 0.82 B = 0.14 b l - = a e + a  b 

and obtained 

Moreover, as a simple approximation, they obtained 

(5.4.5) 

If, when t h e  buckling stress ok of  the  outer  p l a t e  i s  determined by t h i s  equa- 
t i on ,  the  u n i t  stress 0 it the  edge of t h e  outer  p l a t e  i s  given, it is poss- - /547 
i b l e  t o  ca l cu la t e  t he  e # f e c t i v e  width of t h e  outer  p l a t e  i n  t h a t  s t a t e .  
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F i g u r e  5.4.2 

In  experimentally determining t h e  e f f e c t i v e  width, i f  the  stress uL of the  
reinforcement having a compressive force  P and a reinforced p l a t e  having n p l a t e  
f i e l d s  is measured, t h e  following equation can be used t o  f ind  the  e f f e c t i v e  
width bm for t he  load. 

k = ( P -  UL 6 FL) (n t ut)  (5 .4  - 7 )  

Here FL i s  the  cross-sect ion area of  one reinforcement. Also,  i n  t h e  case of 
curved p l a t e s  and the  ou te r  p l a t e s  of re inforced s h e l l s ,  t h e  e f f ec t ive  width 
can be s imi l a r ly  defined and employed t o  s implify s t r u c t u r a l  design. 

5.4.2. THE EFFECTIVE WIDTH OF CURVED PLATES 

Experiments on the  e f f e c t i v e  width of  curved p l a t e s  af ter  compressive buck- 
l i n g  were ca r r i ed  out by Wenzek [46] and J. s. Newell [40]. Newell conducted an 
experiment by clamping the  long edges o f  a curved p l a t e  on V channels and press-  
ing f la t  the  upper and lower ends. 
does not occur i n  t h e  d i r ec t ion  of  t he  rad ius ,  bu t  can occur i n  t h e  d i r ec t ion  of 
t h e  circumference and does not  correspond with t h e  actual condi t ions of a curved 
p l a t e  between two longi tudinal  reinforcements i n  ac tua l  tension s h e l l  s t ruc tu res .  
Wenzek connected three  curved p l a t e s  t o  th ree  s t rong  frames and conducted a f l a t  
press test .  
was a tendency f o r  the  connection with t h e  frame t o  be too  s t rong.  According t o  
Wenzek's tests, the  re la t ions l* ip  between the  load P supported b j t h e  curved p l a t 3  
and the s t r a i n  E is  irs shown i n  the  graph and marked d i f fe rences  are manifesteC 
depending on the size of t h e  center  angle. 

In  t h i s  method of  support ,  t he  displacement 

H i s  app-oach was c lose r  t o  r e a l i t y  than Newell's method, but  t he re  

-%-& 
Figure 5.4.3. 

As a test formula, he obtained 
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(5.4.8) 

1 Here 

According t o  Ebner (1937) [45, 1711 , as a r e s u l t  of applying t h i s  t o  the  
outer  p l a t e s  of ac tua l  s t ruc tu res ,  i t  was too f a r  on the  safe s ide .  
poses the following method. 
a load res i s tance  u n r e l a h d  t o  t h e  longi tudinal  re inforc ing  s t rength .  
t h a t  can be withstood due t o  the  curvature i s  

Ebner pro- 

The load 
A curved p l a t e  f i e l d  owing t o  i t s  "curvature" has 

Idhen only t h i s  force  is ieceived, the  p l a t e  buckles, loses  i t s  curvature,  and 
then is  assumed t o  behave as a " f la t  plate".  I t g  e f s e c t  as a 'Iflat plate1'  ex- i s48  
ists with respect  t o  an extreme f i b e r  s t r e s s  (UL - UR) i n  dhich UR is  s u b t r a c t e h -  
from the  stress U L  o f  t he  reinforcement. 
by Fm. 

Denoting t h e  e f f ec t ive  width f o r  t h i s  
If the  load as a "flat  plate"  is considered t o  be 

the overa l l  load is  

For the  e f f ec t ive  width bm of the  curved p l a t e  from t h i s  

(5.4.9) 

Calculating with Marguerre's formula f o r  the  case i n  which t h e  edges a re  support- 
ed and f r e e  t o  r o t a t e  

(5.4.10) - * b , = q A b .  d L - 6 8  up=3.6 E ( 7 )  (buckling stress as a f l a t  p l a t e )  - 

fn order  t o  corroborate t h i s  formula, t h e  D.V.L.  (German Aeronautical I n s t i t u t e )  
conducted compression tests on reinforced curved p l a t e s .  They at tached a square 
timber s o  t h a t  a uniform load was applied t o  the  upper p l a t e  and t o  t h e  re in-  
forcement. 
t o t a l  load and found the  e f f ec t ive  width. 

They measured the  s t r e s s  of each reinforcement with respect  t o  the 
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compressive force  

Figure 5.4.4. Figure 5.4.5 F i g u r e  5.4.6 

They found it w a s  possible  t o  use the  following equations f o r  ca lcu la t ions ,  
As a r e s u l t ,  i n  p a r t i a l  cyl inders  having an open p r o f i l e  

In those having closed p r o f i l e s  

(5.4.11) 

(5.4.12) 

d 

b is the  spacing between reinforcements, e i s  t h e  dis tance between two rows of 
r i v e t s  i n  the reinforcements. 
outwards from the  row of r i v e t s .  
e ts  was considered completely e f f ec t ive  and added t o  the  cross-sect ion area o f  
the  reinforcements. 

Each one has h a l f  the  value of bm, is measured 
The por t ion  of p l a t e  between each row of  r iv -  

In a comparison of the  values of  Fm obtained by experiment with those ca l -  
culated from the  above formulas, immediately a f t e r  buckling, a good agreement 
was found between them i n  a s t rongly curved p a r t i a l  s h e l l  (r = 200 mm, t = 
0.4 mm, b = 140 mm and r = 200, t = 0.4, b = 140, e = 22$.  
becomes small ,  t he  ca lcu la ted  values i n  rhe op --I p r o f i l e  s h e l l  become higher  
than the measured value, bu t ,  converszly, lowcr i n  +he open p r o f i l e  s h e l l s .  
This ind ica tes  t h a t  the  p l a t e  f i e l d  i s  well 5 x p p r t e d  by the  closed p r o f i l e .  

When the  curvature 

/549 - 
160 

120 

ha! 
(Dm ) 

I :  
a; ' 0  I 8 12 16 20 24 

Figure  5.4.7 (a) 
- 5 - ) / m k  

Figure 5.4.7 '(b) 



Since the  ou te r  p l a t e  has a thickness of 0.4 rcn, the  curve f o r  t he  tes t  
values shows a bend near UL = 1,000 kg/cm2, s l i g h t l y  ahead of t h i s  i n  open pro- 
f i l e ,  s l i g h t l y  behind i n  closed p r o f i l e ,  This is  due t o  the  f x t  tha t  buckling 
of the outer  p l a t e  occurs between r i v e t s  with a p i t c h  of 20 mm i n  t h i s  v i c i n i t y .  
That i s ,  when 

raE 
UA= 5- (f )'. E= 7400 kglrnm' 

U k  = 1070 kg/cm2. 
ets scarcely increases  a t  a l l .  
t he  curve f o r  e f f ec t ive  width (reinforcing stress) forms a quadrat ic  hyperbola. 
According t o  H. Ebner [171]. 

The bending s t rength  of  t he  p l a t e  a f t e r  buckling between r iv -  
Actually, i f  a load i s  applied over t h i s  s t r e s s ,  

- *9/mn' 

Figure  5.4.8 (a)  

"KEY f o r  Figures 5.4 
5.4.8 (b): 
1 ,  p r o f i l e  shape; 
o f  measurement; 3 
extrapolated t o  t 
f a i l u r e ;  4, calcu 
5, experiments . 

- =, 
Figure 5.4.8 (b) 
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The following r e s u l t s  were obtained from t h i s  experiment. The above form- 
u las  [5.4.11) and (5.4.12) f o r  t he  e f f ec t ive  width of re inforced p l a t e s  having 
a curvature can be used within the  range where buckling of outs ide p l a t e s  be- 
tween r i v e t s  does not occur. In open p r o f i l e s  they a r e  somewhat higher,  and 
somewhat lower i n  closed P ro f i l e s .  IVithin t h i s  range it can. be seen t h a t  the  
e f f e c t i v e  width of the  outer  p l a t e  i s  higher,  the  g rea t e r  t he  curvature .  

After  buckling occurs i n  the  outer  p l a t e s  between r i v e t s ,  t he  e f f x t i v e  

In the  v i c i n i t y  of the  f a i l u r e  s t a t e ,  i t  drops t o  almost the  
width of the  curved p l a t e  decreases t o  far below t h a t  which i s  indicated by the  
ca lcu la ted  values.  
values of a f l a t  p l a t e .  

1550 
7 

5.4.3. ANALYSIS OF STRESS AFTER THE BUCKLING OF THE OUTER PLATES OF 
REINFORCED SHELLS UNDER THE BENDING MOMENT 

The s t r e s s  conditions a f t e r  t he  buckling of the ou te r  p l a t e  of t h e  re in-  
forced s h e l i  under bending, a r e  determined from t h e  proper t ies  o f  t he  curved 
p l a t e  a f t e r  compressive buckling. There are two methods f o r  t h i s :  (1) de- 
t a i l e d  method. F i r s t ,  as a first approximation, t h e  l i n e a r  d i s t r ibu ted  s t r e s s  
co is found, assuming that the  outer  p l a t e  funct ions pe r fec t ly  even on the  com- 
pression s ide ,  and by means of t h i s  t he  p a r t  of t he  compression s i d e  t h a t  buck- 
les i s  determined 
' tuckled a t  each reinforced pos i t ion  is ca lcu la ted  as i n  the  preceding a r t i c l e .  
In the  first approximation, t he  s t r e s s  ULO is  used in t he  p a r t  where the outer  
? la te  "cooperates" completely. In t h i s  manner, a new e f f e c t i v e  cross-sect ion 
area which p a r t l y  cooperates on the  compression s i d e  i s  found, a new neu t r a l  
ax is  i s  determined by t h i s  and the  moment of  i n e r t i a ,  which is  taken i n  r e l a t i o n  
t o  t h i s  

Then the  e f f ec t ive  width bml of  t he  p l a t e  f i e l d  t h a t  has 

Ja= 2 <FtSb,,,,t),y,a 

i s  calculated.  
ta ined.  This f u r t h e r  gives an accurate  b,Z and J 2 .  
t h i s  procedure and obtain an even b e t t e r  s t r e s s  d i s t r ibu t ion .  
values can be obtained i f  these repeated ca lcu la t ions  a re  ca r r i ed  out one o r  
two times. 

i3y using t h i s ,  an improved l i n e a r  s t r e s s  d i s t r i b u t i o n  al  i s  ob- 
I t  i s  poss ib le  t o  continue 

Sa t i s fac tory  

F i g u r e  5.4.9 
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5.4.4. EFFECTS OF R I V E T  PITCH ON C O M P R E S S I V E  STRENGTH O F  R E I N F O R C E D  
SHELLS 

A. Kromm [172] obtained the  following r e s u i t s  when he s tudied  the e f f e c t s  
of r i v e t  p i t ch  on the  compressive s t rength  of Duralumin reinforced p i i r t ia l  
cyl inders .  
t u r e  was 400 mm and the p l a t e  width 720 mq. 

The shapes of the  re inforcers  were ‘i,x,c , the  radius  of curva- /521 - 

(a) Figure 5.4.12 was obtained w1:en ne performed Compression tes ts ,  
varying the r i v e t  p i t ch  within 20-;0 mm. 
the bending s t rength  of the  outer  p l a t e  decreases when the  ? i t c h  i s  increased. 

I C  can be seen from t h i s  diagram t h a t  

(b) Figure 5.4.13 shows the  re la t ionship  of e f f ec t ive  width s t r i n g e r  
s t r e s s  i n  the  cases when p = 20 mm and 70 mm i n  re inforced s h e l l s  having pro- 
f i l e s .  Buckling between r i v e t s  occurs when the  reinforcement stress i s  close 
t o  800 k g / d  f o r  t he  case when p = 20 mm. 
of the  p l a t e  sec t ion  suddenly decreases.  
smooth curve i s  shown, but the  e f f ec t ive  width appears small. 
cal curves are shown i n  s h e l l s  having o ther  f o m s  of  re inforc ing  members. 

Af te r  t h i s ,  t h e  e f f ec t ive  width 
In cases where r i v e t s  p = 70 m i ,  a 

Almost i den t i -  

120 (c) Figure 5.4.14 descrjbes t h e  - ’ .average breaking stress of each s h e l l .  bm 

( m i )  11 

u and the  breaking s t r e s s  3 of the 

’ reinfoncing members with respect  to the  
p i t ch  p. In Z-ueabers, CI hardly 

: changes a t  a l l  because of the p i tch .  
u 

80 

mB L ,B  
10 

0 m lW ism L , B  
Longitudinal s t r i n s e r  ‘k9’mJ? 

s t r e s s  UL mB decreases s1igntJ.y when t h e  p i t ch  

Figure 5. 4.13 

Figure 5. 4 .14  R i v e t  pitch p(m) 

i s  increased,  bu t  nc, g rea t  d i f fe rence  
i s  seen. On the other  hand, i n  both 
channe 1 p ro f j  les , u increases along 

with p and umE decreases.  

t h a t  when t.his p i tch  is s p a l l ,  the  
buckling wave f o r m  formed on the outer  
p l a t e  bear  heavi ly  on the re inforc ing  
member, causing it t o  buckle,  s o  when p 
is small u is  smaller than when p is 
large.  When p is la rge ,  t he  buckling 
wave forms of the outer  p l a t e  do n d  
e x e r t  much inf luence.  This i s  t r u e  
f o r  the same reason i n  the case of 
open channels. 

L,E 
This means 

L , B  

(d) Table 5.4.1 gives  the r e s u l t s  
of  compression tests only on re inforc ing  
menbers without ou ter  p l a t e s .  
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(2) A simpler but less accurate  method than the  above, is  t o  d -ermine 
d i r e c t l y  the  new reinforcement stresses. 

From the  reinforcemcnt stress ULO and the  effective width bml, bm2 . . . . f o r  t he  
case i n  which it is assumed t h a t  t he  cross-sect ion works pe r fec t ly .  
this method, i t  i s  possible  t 3  admit t h e  troublesome determination of the  neu- 
t n l  a:?: m d  ca lcu la t ion  of t h e  moments of i n e r t i a .  
tiit, 

d ia te ly .  

By using 

Although it is simple, 
inear  stress d i s t r ibu t ion  on t h e  compression s i d e  cannot be obtained imme- 

Figure 5.4.10 

Flat  Compression les t  

PG t o t a l  bending 
s t rength of s h e l l  

PL bending  s t rength 
o f  s t r i n g e r  

PM bending s t rength 
o f  outer  s k i n  

F i g u r e  5 .4 .11  

4 Ili j itxd;m)afl 

Rivet pi tch p (m) 

Figilre 5 . h .  12 
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TABLE 5.4.1 
Bendin Breaking - 
Strengk I Stress I-- -- 

1 1460 I 

I , (kgpm*) 

Dimentiom 
Cross-section f-LengthTThickness Cross-section area ( ~ g )  

' (mm) ' (mm) I CUP I 
I 1 j 3% I 1.03 

5.4.5. 

This problem has been investigated by E .  Schapitz (1936) [169], (1937) 

IMPERFECT TENSION F I E L D  I N  CURVE PLATE SECTION AFTER SHEAR 
BUCKL I MG. 

[170]; and in 1937 by H. Ebner [171]. 
a r t i c l e s  f o r  de ta i l s .  

The reader i s  referred to the  original  
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CHAPTER 5 

BREAK1 NG STRENGTH OF RE I NFORCED SHELLS 
( W  I T H  PART I CULAR REFERENCE TO FLEXURAL 

BREAK1 NG STRENGTH) 

5.5.1. EFFECTS OF OUTER PLATES ON BREAKING STRENGTH 

The bending s t rength  of a s h e l l  having a p l a t e  f - e ld  and re inforc ing  mem- 
bers  which resist buckling i s  determined by the  compressive buckling stress 
uk. Shel l s  having a p l a t e  f i e l d  where t h e  buckling has already occurred, lose  
t h e i r  spec ia l  she l l - e f f ec t  and change i n t o  a single-franle s t r u c t u r e  cons is t ing  
of longi tudinal  reinforcements and r i b s .  In t h i s  case, when t h e  r i b s  are suf-  
f i c i e n t l y  r i g i d ,  t he  bending s t rength  becomes 0 when the  longi tudinal  re in-  
forcements f a i l .  Consequently, it is  the  buckling s t r eng th  of  t h e  longi tudinal  
reinforcements t h a t  determine t h e  f l exura l  breaking moment of  such s h e l l s .  
Fai lure  of  longi tudinal  members can occur i n  various forms, depending on length 
and cross-section. 
members i s  la rge ,  between the  r i b s ,  open p r o f i l e s  undergo Euler ' s  buckling ex- 
actly l i k e  t h a t  i n  Euler ' s  supports,  perpendicular t o  the  outer  p l a t e s  ( f lex-  
u r a l  buckling).  
twis t ing  ( tors iona l  buckling).  
shor t ,  very t h i n  p r o f i l e s .  When the re  are no outer  p l a t e s ,  it i s  poss ib le  t o  
ca l cu la t e  t he  three-modes of buckling for only these  p r o f i l e s ,  but when ou te r  
p l a t e s  are added, complex e f f e c t s  are exerted with respect  t o  buckling phenom- 
enon. 

When the  length and p l a t e  thickness of t he  longi tudinal  

Bucklixlg of open sec t ion  p r o f i l e  supports i s  accompanied by 
Local buckling occurs i n  both closed and open, 

I t  is poss ib le  t o  determine the  
I n i t i a l  
tens ion 
she1 1 
s t rgcture  r i b s .  The ou te r  p l a t e s  act ,  with re- 

compressive buckling stress i n  the  f o l -  
lowing manner f o r  t he  case of f l exura l  
buckling of  re inforc ing  members between 

spect  t o  t h i s  f l exura l  buckling, t o  in-  
crease the  s t i f f n e s s  of t he  re inforce-  
ments. 
p l a t e s  with respect  t o  t h i s  is not  equal 
t o  t h e  e f f e c t i v e  width b, Tiscr ibed 

s t i f f n e s s  a t  t h e  moment of buckling. 

The e f f ec t ive  width be of the  r@ffKo change t o  

Figure  5.5.1 above. I t  i s  given by t h e  longi tudinal  

frame 
s t a t e  

(5.5.1) 

When using the  Cox-Marguerre formula f o r  a f l a t  p l a t e ,  for t he  e f f e c t i v e  
width, when the  curvature i s  small 
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This i s  

i n  Marperre's equaticrn 

and i n  KSrmSn's equation 

( 5 . 5 . 2 )  

( 5 . 5 . 3 )  

The compressive buckling stress of t h e  column cons is t ing  of t h i s  be t  and 
reinforcement is determined as follows by ca lcu la t ing  the  radius  of ro t a t ion  
around the  neu t r a l  ax is .  

(5. s . 4 )  

The s t r a i n  is determined from 

In t h i s  case, t1.e required breaking load is as follows, denoting t h e  e f f ec t ive  
t o t a l  area of t h i s  state (EL or arL) by Fe. 

(5.5 .S) 

where Fe = (some of cross-sect ion areas of  reinforcements) + nb,t 
n = number of e f f ec t ive  p l a t e  f i e l d s  

bm = effective width with respect  t o  U L  

When the  p l a t e  f i e l d  i s  curved p l a t e s ,  t he  formula f o r  curved p l a t e s  may be 
used as t h e  e f f ec t ive  width formula when determining the  e f f e c t i v e  s t i f f n e s s  
Ebet. This method of ca lcu la t ion  is  considered appropriate  f o r  closed 'n 
p r o f i l e  and open 3T p r o f i l e  members. 
equation [171] can be used f o r  t he  e f f ec t ive  s t i f f n e s s  of t he  s h e l l  ou ter  
p l a t e s .  

When the  curvature is la rge ,  H. Ebner's 
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5.5.2.  ON BOUNDARY CONDIT IONS WHEN USfNG TESTS ON P A R T I A L  STRUCTURES 
I N  L I E U  OF STRENGTH TESTS ON COMPLETE STRUCTURES 

When one wishes t o  determine t h e  buckling s t rength  of la rge  s t ruc tu res ,  it 

One is  t o  
i s  frequently impossible t o  construct  test specimens of t he  same s i z e  owing t o  
the  expense involved. In such cases,  twapproaches are conceivable: 
employ a p a r t i a l  s t r u c t u r e  made t o  exact ly  t h e  same dimensions as one p a r t  o f  
t he  o r ig ina l ,  or t o  me a scale model which is i d e n t i c a l  i n  terms of geometry 
and elastic dynamics. 
mined by analysis .  

This becomes a problem when t h e  s t rength  cannot be de te r -  

In t h e  l a t te r  case, espec ia l ly  i n  
re inforced s t ruc tu res ,  it is d i f f i c u l t  
t o  reduce the  r i v e t  s ize  according t o  
scale, o r  it i s  very d i f f i c u l t  t o  re- 
duce the  p l a t e  thickness according t o  
sca le .  

In  the  case of t h e  former, where a 
p a r t i a l  s t r u c t u r e  i s  t e s t ed ,  it i s  nec- - essary t o  make the  loads ac t ing  on t h a t  
p a r t i a l  s t r u c t u r e  and t h e  deformation 
t h a t  arises from them, exact ly  t h e  same 
as t h e  loads and deformations occurring 
i n  the  complete s t ruc tu res .  In  com- 
bined p l a t e s  with eas i ly- twis t ing  r i b s  
and longi tudinal  members, it is import- 

ant  zo realize the  cor rec t  effects of the  buckling wave forms on the  longitud- /554 
i n a l  members and r i b s  i n  terms of p a r t i a l  s t ruc tu res .  A t  least it i s  necessary 
t o  test  with a p a r t i a l  s h e l l  having (2a x 2 b )  taking four  b a s i c  sec t ions  (a x 
b)  In  the  case of  reinforcements with a closed cross-sect ion n it i s  poss ib le  
t o  test the  s t rength  using a p a r t i a l  s h e l l  with (a x 2b) u i t h  the  width i n  two 
sec t ions .  

a- - 
Figure 5 .5 .3  

-. 

5.5 .3 .  METHODS FOR DETERMINING BREAKING MOMENT 

The t o t a l  cyl inder  breaking moment can be ca lcu la ted  i f  breaking t e s t s  on 
p a r t i a l  s h e l l s  (one p a r t  of re inforced cyl inder)  are used t o  determine the  break- 
ing stress. There are two methods for doing t h i s .  

( 1 )  First Method: Assuming t h a t  t h e  e n t i r e  cross-sect ion cooperates,  t he  
average compressive s t r e s s  umB of t he  p a r t i a l  s h e l l  a t  the  time of  breaking i s  
calculated.  This i s  mul t ip l ied  by t h e  f e s i s t i n g  moment W of t h e  cross-sect ion 
of the  e n t i r e  s h e l l  as completely e f f ec t ive .  That i s ,  f o r  t h e  bending xoment 
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T A B L E  5 . 5 . 1 .  R E S U L T S  OF T E S T S  ON C Y L I N D E R S  I N  D . V . L .  COMPARISON W I T H  THEORY 
( H .  E b n e r  Lufo. 1 ,  4-3,  1937, S. 1 1 1 )  

At Timeof  
Buckling of Outer mg of 
Plate partial 

:kg.cShelJ - 

CJLB of Method of calculation i hlethod of measurement 
reinforce-%B-o,dl' 
FQi! -... kg-cm 

Cross-section = ~3 
area 

3 W=367. &a255 tm 

62700--950 

' I  I 

-1500 

508000 
I 
I 

66800,-1320 -1820 

I 

487000 497030 
(Q- 
I 
I l870kg) 

350000 

i 
i 

I 
I 

i - 1  
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stres 
p a r t i  

Second Method: This method uses t h e  e f f ec t ive  width. The breaking / 5 5 5  - LB of the  reinforcement t h a t  e x i s t s  a t  the  i n s t a n t  of f a i l u r e  of t h e  
s h e l l  is calculated.  Then t h i s  i s  mul t ip l ied  by t h e  overa l l  tension 

s h e l l  res i s tance  moment W' which considers t h e  various e f f e c t i v e  widths a t  t h e  
pos i t ion  of eact, member i n  the  case of bending. 
ing  moment i s  

That i s ,  t he  f lexura l  break- 

i?rm=a&d W' 

Instead of ca lcu la t ing  t h e  breaking stress ULB using the  e f f e c t i v e  width, 
s ince  it is  poss ib le  t o  measure the  stresses i n  t h e  reinforcements i n  p a r t i a l  
s h e l l  tests, r i g h t  up t o  t h e  time of breaking, t h a t  which occurs at  the  time 
of breaking can be extrapolated.  

The values determined by Method One are lower than those found by Method 
Two. 
narrow sec t ion  at  the  extreme outs ide f i b e r  of t h e  bent e n t i r e  s h e l l  are in-  
volved. 
and s ince  the  troublesome ca lcu la t ion  of t he  r e s i s t a n t  moment W' can be omjtted. 

This i s  because only t h e  effects o f  t h e  e f f e c t i v e  widths of t h e  extremely 

consequently, Method One i s  much simpler s ince  it i s  on the  safe s ide ,  

Table 5.5.1 compares tests and ca lcu la t ions  by t h e  above method i n  the  
D . V . L .  The agreement with Method ' Iko is extremely good. 
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CHAPTER 6 

S I M I L A R I T Y  LAWS FOR STRENGTH T E S T S  SCALE MODELS 
FOR O B T A I N I N G  T H E  NECESSARY DATA FOR T H E  

D E S I G N  OF T E N S I O N  S H E L L  STRUCTURES 

In the  design of ac tua l  s t ruc tu res ,  t heo re t i ca l ly  analyzable cases a r e  
l imited t o  extremely simple s t ruc tu res .  Consequently, t he  designer must first 
s u b s t i t u t e  a standard "simplified s t ruc ture"  f o r  the  ac tua l  s t r u c t u r e  before 
applying the  theo re t i ca l  methods. However, depending on the  type 01 subs t i -  
t u t i m ,  s ince  holes may develop i n  the  s t r e s sed  outer  sk in  of t h e  ac tua l  s t ruc -  
t u r e  o r  o ther  d i scon t inu i t i e s  may occur, i n  t h e  case of complex s t r u c t u r e s ,  t he  
s t rength  and r i g i d i t y  cannot be estimated with s u f f i c i e n t  accuracy. 
case, the  designer e i t h e r  increases  the  weight t o  be su re  it i s  on the  sa fe  
s i d e  o r  determinesbe s t rength  and r i g i d i t y  by tests. 
conduct such fu l l - sca l e  t e s t s ,  owing t o  cos t  o r  equipment l imi t a t ions ,  it is  
necessary t o  estimate t h e  s t rength  and r i g i d i t y  of t h e  s t r u c t u r e  by: 

In  t h i s  

When it is impossible t o  

(1) Partial S t ruc ture  Test o r  

(2) Tests on small scale models. 

In tests on p a r t i a l  s t ruc tu res ,  it i s  necessary t o  have the  same deforma- 
t i o n  and load conditions as t h e  t o t a l  s t ruc tu re ,  with respect  t o  the  boundary 
conditicns and dimensions. 

When scale models are uscd, care  must be exercised with regard t o  the  
Below we s h a l l  examine s i m i l a r i t y  laws f o r  such cases. s imi l a r i t y .  

t h a t  t h e  models below a re  constructed t o  cor rec t  s a l e .  
We assume 

We denote the  load ac t ing  on an ac tua l  object  by P,  t h e  similar forces  
ac t ing  i n  the  same d i r ec t ion  i n  the  correspondisg plane i n  the  sca l e  model by 
Pm and the  respect ive lengths as 1, 1,. 

We s h a l l  consider 
the  r e a l  problem of determining displacement due t o  t h e  load on an ac tua l  ob jec t  
using a small model. 
but we assume t h a t  it is made of materials whose densi ty ,  y i e l d  point  and e l a s -  
t i c i t y  modulus d i f f e r  from the  r e a l  ob jec t .  

(1) S imi la r i ty  of deformation i n  model and real ob jec t .  

The model i s  geometrically similar t o  t h e  ac tua l  ob jec t ,  

/556 - The displacement 6 a t  some poin t  i n  the  s t r u c t u r e  is expressed by 

6=cp(Pt 1. E ,  Q, ~t Ot 8 ,  a> (5.6.1) 

P: working load, 1:  representa t ive  length,  E:  Young's modulus, G :  shear  
e l a s t i c i t y  modulus, p :  densi ty ,  g: g rav i ty  acce lera t ion ,  8: temperature, 
a: l i n e a r  expansion coe f f i c i en t .  Deflection assumed t o  'Je a function of these ,  
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Cdnsidered t o  be within e l a s t i c i t y  l i m i t s .  Consequently, 

a b  E d a y z u  Q=2 P1 E O  P g O  a 

t he  dimensions must agree on both s ides  Since 

J = I  F((%), (F), (9) * 

Consequently the  comparison of the ac tua l  object  with t h e  model is 

Therefore, i f  

The v lues  f t h e  funct ion F i n  he model and ac-ual objec 
I Q -- 

b,- In 

( 5 . 6 . 2 )  

( 5 . 6 . 3 )  

( 5 . 6 . 4 )  

( 5 . 6 . 5 )  

( 5 . 6 . 6 )  

( 5 . 6 . 7 )  

become equal and 

( 5 . 6 . 8 )  

is  obtained. 

Next, we s h a l l  consider the conditions f o r  t h e  s i m i l a r i t y  law t o  obtain 
f o r  equations ( 5 . 6 . 4 ) ,  ( 5 . 6 . 5 ) ,  ( 5 . 6 . 6 ) ,  ( 5 . 6 . 7 ) .  First we requi re  t h a t  E/G = 
(E/G)m from equations ( 5 . 6 . 4 )  and ( 5 . 6 . 5 ) .  In cases i n  which it i s  poss ib le  t o  
eliminate the  e f f ec t s  of shear  deformation as i n  the  case of a beam under l a t -  
e r a l  load, condition ( 5 . 6 . 5 )  may be omitted. 
pr imari ly  shear ,  equation ( 5 . 6 . 4 )  can be omitted. When both the  normal stress 
and shear  stress are important, it is  necessary f o r  E/G t o  be constant.  
s t e e l  and Duralumin as can be seen from E/G = 2 (1 + v) (v + Poisson's r a t i o )  
Since they have roughly the  same values,  t h e  condition is  s a t i s f i e d .  
t h i s  is  s a t i s f i e d ,  from equation ( 5 . 6 . 4 ) ,  s ince  

Similar ly ,  when t h e  s t r e s s  i s  

In 

Assuming 

( 5 . 6 . 9 )  

is  obtained, i f  t he  load of t h e  ac tua l  ob jec t  ac t s  by t h e  same method as the  
model, and has a magnitude which i s  (E/Em)(l/lrn)2 times g rea t e r .  
t i on  t h a t  occurs is 1 / 1 m  times t h a t  of the model 

The def lec-  

650 



Next, considering equation (5.6.6) assuming conditions (s. 6.4) and (5.6.5) 
are s a t i s f i e d ,  from equations (5.6.6) and (5.6.4) 

P gllE=Pmgnlm/Em 

when g = gm /557 

(5.6.10) 

when the  model and ac tua l  object  are made from the  same material, and the  de- 
f l ec t ion  due t o  t h e  weight of t he  s t r u c t u r e  i s  included i n  6 ,  t h i s  r e l a t i o n  
ind ica tes  t h a t  by appropriately d i s t r i b u t i n g  t h e  addi t iona l  mass, the  niodcl 
densi ty  may be a r t i f i c i a l l y  added t o  t h e  r a t i o  l / l m .  

Since usua l ly  the force  and deformation are proport ional ,  it is  poss ib le  
t o  accumulate the  deformation due t o  t h e  s t r u c t u r a l  weight 2nd the  deformation 
due t o  load. Consequently, each can be handled independently. Thus, when only 
considering deformation due t o  load, condition (5.6.6) becomes unnecessary. 

I f  the model load is  g r r a t e r ,  t h e  c lose r  i t  is  t o  the  breaking load of t he  
s t ruc tu re ,  o f  course thr, proport ional  r e l a t ionsh ip  between load and displace-  
ment i s  not  es tab l i shed .  However, t h e  purpose of  comparing t h e  displacement i n  
t h e  model and r e a l  object  is t o  determine the  r i g i d i t y  of t h e  ac tua l  ob jec t  and 
s ince  the  poin t  i s  reached where a la rge  load i s  used, t h i s  po in t  i s  no obsta- 
c le .  That i s ,  i n  comparing r i g i d i t i e s ,  ac tua l ly  equation (5.6.6)may be omitted 
and the  r i g i d i t y  may be found from equation (5.6.8) o r  (5.6.9).  

Linear Kigidity and Rotating R i i i i d i t y :  Defining these  as D/6 and P1/(6/1) 
respect ively,  

(5.6.11) 

(5.6.12) 

When the  materials a r e  the  same, the  l i n e a r  r i g i d i t y  i s  proport ional  t o  
l/lm and the  ro t a t ing  r i g i d i t y  is proport ional  t o  (1/1 3>. 

vibra t ion  number var ies  i n  proportion t o :  

m 

r i g i d i t y / i n e r t i a ,  so 
Proper Vibration Number f :  In v ibra t ion  causing l i n e a r  displaceme2t, t he  

(5.6.13) 

When the  mater ia l s  a r e  the  same, t h i s  becomes f/fm = lm/l and the  proper vibra-  
t i o n  number i s  inversely proport ionate  t o  the  length.  
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(2 )  Cases i n  which models a r e  used f o r  s t u d y i n g  s t rength  

In 
Pf  of a 
the  f o l l  

addi t ion t o  the  quan t i t i e s  E ,  G ,  p ,  g which e f f e c t  t he  breaking load 
s t ruc tu re ,  there  i s  a l s o  the  y i e l d  point  o r  y i e ld  s t rength  u. 
owing r e su l t s  a r e  obtained from dimensional ana lys i s  as above. 

Hence, 

(5.6.14) 

Consequently, i n  t h i s  case it is  necessary f o r  G / E ,  o/E t o  be equal i n  t h e  
model and ac tua l  s t ruc tu re ,  and the  conditions i n  
s a t s i f i e d .  
t i o n  (5.6.10) becomes unnecessary. 

equations (5.6.10) must be 
When t h e  s t r u c t u r a l  weight i s  smaller than the  working load, equa- 

Fai lure  d u e  t o  Direct S t ress :  When the s t r u c t u r a l  weight can be d i s r e -  
gatded and the  f a i l u r e  i s  unrelated t o  G ,  E ,  as i n  a t i e - rod ,  due t o  t e n s i l e  
force 

/558 - 

k.1'6 

Consequently 

Fai lure  due t o  E la s t i c  Ins t ab i l i t y :  When f a i l u r e  occurs due t o  pure 
e l a s t i c  i n s t a b i l i t y ,  t h e  important factor i s  t h e  modulus of e l a s t i c i t y ,  and 
the  e f f e c t  of p and J may be disregarded. Hence 

P.=,?E.F(F) B (5.5.17) 

Thus t h e  f o n  of f a i l u r e  includes expansion-contract: on and s l i p  deformation, 
and if r e l a t e d  t o  E,G, i t  i s  necessary t o  have G/E the  same i n  both model and 
ac tua l  s t ruc tu re .  In t h i s  case 

(5.6.13) 

and t h i s  agrees with Eu1er;s formula Pf = r2EI/12 = kEZ2. 
a re  the same. 

When the  materials 

(5.6.19) 

H. Wagner c a l l s  t h f j  quant i ty  Kennwert. The r e l a t ionsh ip  i n  equation 
15.6.19) is  convenient f o r  determining t h e  buckling stress Uk i n  a compression 
support. 
i n  the  column range, as can be seen from Euler ' s  formula; t h a t  i s ,  denoting by 
A the  cross-sect ion area of t h e  column and by E I ,  the  bending s t i f f n e s s  within 
the  plane i n  which buckling def lec t ion  occurs.  

I f  we descr ibe the  curve ak-4 P k / l ,  t h i s  re la t ionship  is l i n e a r  with- 
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Z V E I  V P ,  ( 5 .  € . 20) .- 
A I ai -= 

- 
i s  obtained. In tqe range where 1 i s  small and vPk/l is  la rge ,  from Euler ' s  
formula [misprinted word, untranslatable]  en te r s  t he  s!iort column range, and 
near the  y ie ld ,poin t ,  t h i s  curve becomes f l a t .  

Figure 5.6.1 

According t o  equation (5.6.19), i n  the  case of 
a geometrically similar column, s ince  the  
agree i n  the  model and i n  t h e  ac tua l  s t ruc tu re ,  it 
can be seen t h a t  the  buckling stress does not change. 
? f  t h i s  curve i s  determined experimentally f o r  each 
-.lode1 column with pa t te rns  ".aving various cross- 
sec t ion  dimension r a t i o s ,  it, i s  poss ib le  t o  d i r e c t l y  
determine the  column with cross-sect ions having the  
l i g h t e s t  dimension r a t i o s  with -3spect t o  a given 
load P and load 1 by using t h e  ,raphs t h a t  a r e  con- 
s t ruc ted .  That i s ,  one may f ind  a Lolumn with dimen- 
s ion r a t i o s  ind ica t ing  the  l a rges t  buckling s t r e s s  
o with respect  t o  the  values obtained by ca lcu la t ing  ?-. In  the  usual U k  slenderness r a t i o  l/i curve, 
t h i s  cannot be determined as e a s i l y  as with a graph. 

The abovc concerns axial loads,  bu+ 
i n  tt;s case of buckling due t c  the  bend- 
ing o r  t a b i o n  moments of a cyl inder ,  
s ince  the  moment Mk a t  the  time of buck- 
l i n g  has the  diaension Pkl,  it can be 

expressed by 
C derived from the  above equation. I t  i s  

N.=E ra-F\ ;, t ') 
-4p 

(5.6.211 /559 - when 
Figure 5.6.2 

This i s ,  proportional t o  the  cube of  t h e  l i n e a r  dimensions. 

Secondary Failure: When fai; r e  occurs due t o  a c m t i n a t i o n  of d i r e c t  
s t r e s s  and secondary s t r e s s ;  e.g. ,  i n  t he  f a i l u r e  of  a cyl inder  a f t e r  buckling, 
the values of a/E must be the  same i n  t h e  model and i n  the  ac tua l  s t r u c t u r e .  If 
the  f a i l u r e  a l so  depends on G/E, G/E is  taken a; t he  same f o r  both. 

When'the same mater ia ls  a r e  used i n  the  model and i n  tl-s 4111 scale and 
the e f f e c t s  of w i g h t  can be disregarded, f o r  a l l  forms of  xa i lure  
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P , = ( i - )  I '  Ph 
(5.6.22) 

obtains . 
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CURVED PLATES 
C6mpression 

No. ; Graph B Bound. Cond. Fsrmula or Table of Results 

Note that i n  the 

1 , flat press, ends wi* 2 ;,s an experimental formula for compressive 
buckling strength 1 #&-ff,&o. 18E -- 

: straight sides rotating I 
Et* --- 'KB is the buckling strength for a flat 

plate of the same wid&: 'The & ~ ~ ~ & ~ l t ~ = T (  l-~')b'- 
i with K==ut!oxn are given in  the graph below. 
! I 

-7 

I vicinity blr-0 , there is a relatively flat section 

- 
Note?, Ref. 

39 

(39). ihese data were 
taken from (40). 

r - 0 - 7  

straight sides rotating ends 

End with 4 sides rotating 

41 Redshaw's I formula Compressive buckling s u e s  of curved plate 

r is radius of curvature. t is plate thickness. Calculated values 

43 
T imoshen ko k 
equations 

t E -=m I ( Compressive buckling I stress of tube). 

1 e& - 3(- r 
.~ I - -  
In a short arc plate 

The first term is the buckling stress.(f 0 p ) i n  the 
case of a flat plate with ends w i t h 4  sides rotating. The second 
term is expresed bfianckp and is aetermined as fol!ows. 
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No. 1 Graph & Boundary Cond. ~ Formula or Table of Results Notes, Ref. 

well the test results on @ yr i 
60 

44 x :experimentapoints 
! the right 

4 
I 
1 Timoshenko's equations . 

when 
.&=up+ - up 

4 or 
-=OR d l l 2 2 a P  

Rewriting Redshaw's equations 

at= Jam++ 
Timoshenko's values here smaller than those of 
Redshaw in particular, when 

#R+?Up, the difference between the two i! 

35 
Ebner's 
:xpression 

Materials 2 and 3 
(omitted text) 
may be rewritten 

great, being 2w0 and when i t  is desirable to take I 
into consideration the initial deflection 

I I of finite deformation, in both equations es-O.2E; 

SHEAR 

#E t. may be used. Here 
3(1--rC) b* 

I 
Flat press, both sDaight 1 Experimental equation for the results of experimentsds 
line edges reinforced I on the compressive buckling oi steel curved plates 

i 

kaph & Boundary Cond . Formula or Table of Results Notes Ref. No 

6 

- 

- 
656 

The shear buckling mess of a curved plate can be expressed by 
the following equations of Wagner's. 

(end with 1, 
exper'rnental 
equations. (straight sides 
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NO. I Graph & Boucdary Cond. I Formula or Table of Results I Notes, Ref 
I I 

' Rotatin sides in a stiai lit Leggett obtained the thin solid line in the following, 

52 

7 edge wRich is 
respect to bending, i.e. 
in a straight edge when no 
displacement occurs in the 
direction of the circumference 
along the curved plate surface. 

graph for the ca&in which the straight edge and 
all the rotating edges were Stiff with respect to 

( In the case when l b  y-*-T w=o 

ximation . 
The curve is asymptotic. 

ir the graph in Materials 

is plate width) 

Rotating edge, soft with 
respect to bending 

*3 
, : T h  means chat the per 
pedicular sues on the 
edge is zero. 

b 

-k 
Figure 7.1 

Krornn obtained the curves in Figure 7.1 under the 
conditions on the left, and these can be expres.:d 
approximately as 

~ ~ - - 

See Figure 7.1. 

I 

rpc&+(+=+=. 2 

Here rB= shear buckling stress of unreinforced I 
cylinder (e. g. Ballerstedt-Wagner's equation?, I See Materials 6. 

I f f T k of strip where width 
rrp4'85 E( %) is b, simple support 1 

d . l S E ( \ + y  ( R fixed). I 
;his agrees with the experimenrs. Compared with the 
experiments, Timoshenko's equation i s  10% lower and 
Redshaw's equation is 10% higher. These equations can 
also be used for the torsion (shear) buckling of reinforced 
cylinder plates. 1 - 
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SURFACE PR€SSuRE 

Formula or Tab!e of Results No ' Graph & Boundary Cond. Notes, Ref. 

,* 

Deformation 

Cylinder curve plate 
under surface pressure 

EP w- 1)- 
1 2 9  (I-u') * 

PI----- 

is given in a table below and is the solution of &an9 .cot 66:; 

0 1 3oo/ aoI 90" I 120' I 150- I 180' 

B 18.621 I 4.375 1 3 12.364 I 2.04 2 

AFTER COMPRESSIVE BUCKLING 

:aph and Bound Cond. 

- fixe, 

m- 

i Notes, Ref. Formula or Table of Results 
For the effectiw width after the compressive 
buckling of a curved plate 

b,=&+%(b-6,). a 

i 
#~=0.3E--,  f rz = stress of reinforcement 

indicates the effective width of a flat plate having extreme 
i) hlarguerre's equation 

61 

fiber stress CJL --- a~ 

i n  a open cross-section profile -- 
&-1.63,/-& tfO. 14 b. 

5)  in a closed section profile 

i Q  Effective width after the compressive b u c k l i n s  a 
curved plate as an experimental equation for the 
effective width of a curved plate when Wenzek's equation is used . 

Buc ing stress of curved plate 
I I et 2 stress of reinrorced - V u , ,  
I member. 

1 1 1 \ e m n l  -= I 

with two sides fixed) 0 I 
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Graph & Boundary Cond. 

Sides rotating around 
circumference 

ak = compressive buckling stress, 
Ek = compressive buckling Strain, 
01 average stress for plate width. 

~ ~~~ 

Formula oi' Table of Results I Notes, Ref. 

Initial configuration for the effective width of a' 
curved d a t e  having 

R ' = P c o s ~  , the graph below is obtained 
I 

I 
while the energy method (finite displacement) 

z 
t i  

10 

a5 

- 
Notes, Ref. No. Graph & Boundary Cond. Formula or Table of Results 

I '* 1 
I 

1 d * i  at both enus #=- dz' 
bending moment Y. 

BI. = bending stiffness, 1 = length, 
C = torsion stiffness 

Here k is calculated from 

65 

Denoting the shear stress acting on the cross-section by 'I , 

= bending angle, e = supplementary stress function. 
I 
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cntNDEPs 
Compression 

raph &! Boundary Cond. 1 Formula or Table of Results I Notes, Ref .  

is the solution for 
- E - t a long cylinder, I 72 

#a = 3(1--V') f 

and can be used with respect to a cylinder wi.lch 
has a larger length than 31-72 V rt 

I 

The test results appear to be 4\, -6070 of that of the 
theoretical values, approximately 

mr = 0.24.3 EL. 

I 
I 

Flat press 

in a short cylinder ( l b I . 7 b ' F )  

but this is the Euler buckling stress of a strip of 

length 1. 
~~ 

This shows the results of the comprevive ':!-pkling 
stress on soft steel and nickel chromiur , .';el cylinders 
w i th  axial compression and eccentricity. 

Here, only the case of axial compression is indicated. 
I 
I 

_.__..~~ 
Stress-strain graph of nickel-chromium steel tube t/r and buckling Stress %Vtn*> 

I 
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T N o t e s , R e f .  
- -  

?,rn. Graph & Boundary Cond. 1 Formula or Table of Results - 
I7 

18 

P-2nrt. 

Level 
compression 

The following equaticns obtained for the plastic buckling due t o  
the longitudinal compression of a cylinder 

2 
V3~1-4  t rV3(1-q 

/5 67 
, 1 7 3  

-. V E g  t E t  
OLE--- -- 

I 
Here 

Xh 4 EE' is Engesser-Karman's 
(V/-e+ V T l *  

See References 
(47) and (48) for K 
-. 

equivalent modulus of elasticity in the plastic range, ' 
and in the elastic range, K = 1, which agrees with the classical 

theory described above. This agrees i i  approximately 
with the test results. 

the convergence phenomena of the diameter in the boundar end  
I E'=--- 

d E '  I 

section is not effected by uk as long as 1 ' 4.8 k. 
7m 
MOO 

4 ioDD 
? 
v1 4OOO 

E 

rn 
I 2 #OU 

gJ 2Mff 
u) 

IU9G 
a m 

Both ends with rotating edge 
axial compression I 

! 
.fO 

b /a* 
rn: in direction of axis 

wave numbers a: in direction of circumference 

I 
The above graph are the results of calculating *-*''*.. 

I2 
the numerical Values for the Case,  w h n  a=- I ($y=lw* "-7 

I I 
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;taph 8: Boundary Cond. 1 Formula or Table of Results I Notes. Ref 

ingot steel: u,-3100k~/cms. a-0.00368, E-2. 15*tO*kg/ctns. 

Zoompression in direction 
i f  axis 

L ___._ 
allowable com-pressive stress of cylinder taking 
intial deformation into consideration: I n  0 6--lIP'j L 

eu4 : allowable stress t 
E t+o.- 

eYI* 

For brass and steel: 10 

Duralumin:, 1 
artr-E 

B - = 545. 
UYP 

E 
@Y.* 

-=265. 

t u5 x-300-1500 : 
The above equation was 
constructed so that it 
agrees with the 
experiments 

I 

Pt=et ' t. 79 

1 
In the plastic range 

#e-e,(l-d), A = 7  

I P Here k=-- 3(1--v*)fla'P - I 
also 6.0 are the constants given from the materials (according to 
Tetrnajer). Below a comparison is shown with Gecktler's equati0n.P. 

90 
10 

range 1; 
r" so 
e40 

2 
20 
v 

116 - Buckling load from Geckeler (martin te steel) 

/568 

L.r.Tetmajer 's equation 
2/m. d3( 1 -3 j  ** Gtckeler's equationq- 

4 EtE 
Here K :  Karma's equivalent elasticity modulus I r j j l - - + -  J r ) r  
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Graph & Boundary Cond. I Formula or Table of Results 1 Notes, Ref. 

Figure 21.1. Effect of length of cylindrical 

I r / t  = 200 on at 

Flat press 

In 

1 82 
Test results carried out by N. Nojima and S . Kanemitsu 

I 

.A above graph p r 1 . 0 0 ,  r/t= 10oo. 

I under the direction of E .  E .  SeLhler. 

'I' 

Flat press 

;'or the lower equilibrium stress based 
on finite deformation theory 

iell with 

81 

Results of analysis 

Ice 
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No. 

23 

- kaph & Boundary Cond. 

Y 
4 
-tist ~ ( r o - P ) * a  

d - 2 r  
Flat press 

~~ 

Formula or Table of Results 1 Notes, Ref. 
- 
w e  assume that the reason why the test results are 
In the compressive buckling stress of the cylinder, 

the effects of the initial deflection. From the 
point of view of finite deformation theory, we have 
compiled the results of many experiments and 
compared them below 

much higher than the theoretical values is due,to- 
Donre''* 

c-c. Wan 

It is assumed that the form of initial buckling is as fciiows. 
I 
I 

W,==aot 

I 0 : "unevenness factor'' 
n= wave number in direction 

Moreover. we have a s s u e d  that the additional I 

ieflection occurs in a exactly the same .form as wo, 
and use the energy method (the five parameters m ,  I 
n ,  b ,  c., d are also included) below we indicate the results of 

I 
Iumerical computations ucl., 

wave1engtt;- in  direction -of circumference 
of circumference, = wavelength in direction of axis 

L P -2, -  

indicate buckling values based 

on classical infinitesimal deformation theory. 

Celluloid (Fligqe) 

Pure elasticity 
Buckling- 1 

Q Begins with yield 
Buckling ---- I 

curves : 

s u r  
olid line connects peaks of 

I 

: of peak) 

of test points 

ncl = n(classica1 theoretical value) = 6-87f I 
I 

- I  
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Twisting 

--- 
Torsional buckling in which the ccxfiguratiol of 
the cross-section does not change 

- 
No. 
c_ 

24 85 

" 

Graph & Boundary Cond. 

End with both cnds 
rotating 

r 
when l / r  is greater than this 

8 

E (+jT ( 1+0.45-). t 
? 

nn 0.272 
( 1  -*a)% 

1: length . 
J :  polar moment of inertial of cross-section 

I 
8 = angle of wrinkles with respect to axis I I 

- 

a) end rotating around end1 
Torsional buckling of thin walled tube circumference (maintains 

cross-section) f7-p 
Here ' I  

I he experiment results are 60 to 70% of the above theoretical 
equation. For a design formula, 60% of the theoretical equation I is used, and the equations below arz used with =,C. 3 .  

/571 
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NO i Graph Br Boundary Cond I Forr l a  or Table of h-sults i Not:s, Ref. 
I -  

- 
1 

% I  I According to experiments, for l / r  < 5 (Bailcrstedt u. Wagner) 
I I 

2) Theoretic;! - - . . I  c r r P O . 1  E L  +5 E ($)*. 
3) Steel 
4) Brass 
5) Donnell's cu;.:r.nlents 
6)Duialurnin 
7) Rubber 
8) Celluloid 
9) mralurnin 
10) Brass 
11) Steel Gough and Cox 
il) Average of 33 experirn ent 
12) Standard 
13) Lltirnaw load 
14) hlaxirnurn load 0 f 2 4 6 6 3  1W ?M I#@ P G m  
15) Sollenrarh - -  when wrinkles occur g-;.rL 

trt 

In the above graph Oexpzrirnent points 1 
! 

for steels tubes (fixed end). The n x n b e n  indicate i 

I 

_ - -  
the values of n observed. 

ThL experiment res1:lts are 60 to 70% of the above ibeoretical I equations Using 60% for the design foirnulas, when, 

/572 



- 
No. 

26 

L 

I_ 

P 

-.- 

accordir 

- -.. _. 

-- 

1573 
dhen 

t 
->7.9 1 i /  I - 

rkr0 .272 E 
( I  -,*)'I. to tests when 

1 -<s - i 
I And as a test formula 

I 
here-K takes the values in the table behw according to l / r  - w I 0.2 1 0.25 1 0.39 ! 0.40 I O.M 1 0.7- 1 -  
g I 3.30 : 2.75 I 2.45 j 2.02 1.78 I 1.45 

& 1 1.0 I 1.5 1 2.0 1 3 I 4 I 
g I 1.27 I 1.06 I 0.34 I 0.78 I 0.68 i 0.61 

5 

i 
&low we show the results of torsion buckling test! 95 
on cylinders. for 63 chrome molybdenum steel and 
102 17ST aluminum alloy cylinders . ' "U.'''F-f 

The types of buckling are generally classified as follows. 

I 
I 

- _  .. - 

I (1) buckling with two wrinkle forms. 

(2) deformation in helical shape around cylinder axis. 

(3) accompanied by plastic deformition. 
i 

I 

I 
(1),(2) occur within the elasticity region, and theoretical research 

has already been conducted on them for example, see Materials (26) 
a I 0 6 5 6 3  - t 

(1) w=%*-( D )  * {1+2.%+--} : Long column 
I 

Here an experimental equation and chart have been produced on 
the basis of a detailed investigation of case (3). Mk is the 
torsion moment at the time of buckling. 

(1) Chromium, molybdenum steel (Figure 27.1) 
* I '  

*elasticity region '* I .  based on 
MI 3 . 1 l X l O ~  ' : ' -i- 

where 0=5--63.024.- : 
n 

i.. -- - 
Schwerin 

66 7 



No. 1 Graph & Boundary Cond. 

27 

Formula or Table of Results Notes. R e f .  

Elasticity region 
based on Schwerin 

44T 18 0 ~ ~ ~ = 9 5 , @ I l  Ibh*,u,.,,. =60,r)X)lb'in* 
YIT I8a [0,,~~=95,rX13 lb/in I.,,.=75,000 Ib/inx{ 

design chart for the torsional strength of 19-60 inch'chromium- 
mclybdenum steel Figure 27.1 

I 
"Naval standards correspond to 

I 
I ! 
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No. Graph 6: Boundary C o d .  Formulii or Table of Results ! Notes, Ref. 

M p a -  E rt.. I -u= 
In the case of 
a long tube; a=zfirr=0.99. 

9 

c 

27 /575 

0 01 Dz 03 Di .05 .05 117 48 f?9 .U I1 Jz 

Figcre 27.2. Results of Tests on 17ST aluminum alloy t x k .  
t /O 

fracture 

Figure 27.3. Design chart for the torsion 
s u e n e  of 1 7 s ~  aluminum alloy tube. 

Bending 
No. Graph & Boundary Cond. ! Formula or Table of Results 

I 

The effect of length may be disreg?.rkd except 
i n  th- case of extremely short i & ~ .  

I 

Notes, Ref. 

669 



t- 

No. 

s 
- 

- 
10 

-- 
Graph 8r Boundary Cond. 

.-. 

& U 

Boundary conditions 
not considered 

Formula or Table of Results 1 Notes, Ref. 1 103 /576 

_ .  
Simple bending 'test 

The bending stress a; a t  the time of buckling in 

the diagram has the value determined by beam I 

Yield due to bending of thin tube 
The solution is carried out hy the energy method, assuming that the 
cross-section is deformgd-in the shape of an elipse. and that the 
circumferential length does not change, taking into consideration 
accuracy up to  a hi3h order infinitesimal term. Attention is called 
to the far! that this indicates that this occurs in a state of deformation 
in which hfk(:hl 

. . 

differ 
ma$ and a m a x  

M-=Mk=o.378xErt', 

~ . p = O . 5 1  E t/r. 

Here is the maximum u fiber stress 



Sucface pressure - io . 1 Graph & Boundary Cond. 1 Forrxsla or 1-able of Results 1 Notes, Ref. 
1 1- 1- 

31 

End co- 3itiocs -at 
considercd. Case i n  
which exter.al pressL. 2 
is  received, but there 
is not axial force. 

Suckling due to :\ter.-al p s s u r e  I 104 

this corresponds 
to the special t a w  
in R v .  hlises 

resultc 
I , .? the L '?e of  a s :t tube, wheri the membcr end maintains its 1 c i r l d a r  shape. or a 1on.g tube is I. inforced so chat for each 1 it 
I maimair:- its ci-cular fcim. as an approxim1:ion 

Collapsing ressure 1 Ditto I 
I 

t E -  
2r I 

a* I *= n * - l + y  

I112 

1 .  
1 

Zt a=--- n = number of wrinkl-s(nus;ber of compfife waves 1. 

direenor. of circumference, with half waves) 
I L L '  

. .  CI 
n is determilie 

I an 

I I 
u from *io assuminn . 2 t < < l .  u=O.3 

Case of a 
cylinder 
closed at  
both ends 

Assuming n -- I , 2 ,  
a given :t/r. If we ut cribe the family of curves where \ is the 
abscissa and p,, is the ordinate, the minimum value of thi- c one 

For 

. . in order to determine pk w i th respcct to 

i family of c. rvcs Fi ies the required pk with respect to l / r  
1 a given t/2r, 1/2r, the pk in the above equation should be reduced 

to a minimum, and the value of n that should be used in calculating 
pk i s  shown in the following chart. 
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No. Graph & Poundary Cond. 1 Formula or Table of Results 

33 

Notes, Ref 

34 

/578 

1 

Case where there is external 
pressiirc but no axial pressure 

-. . .... 

The chart on the upper I 

,was constructed by 
Timoshenko. 

The lower right graph is 

t 

If the above results are expressed i n  a different 
form, the following graph is obtained 

:*aphof p "1/2r * 

with t/Zr found from i 

R. v 1 Iises' equation as 
parameters, for a steel cylinder 

CI 

b 
Y 

where . .  E ~ 3 . 1 0 7  p . s . i .  1 
U YIP, =2-6x104p.~.i. 

(see ref. ce 115). 

I 
i 
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Notes, Ref. No. Graph & Boundary Cond. 1 
External pressure and axial 

Formula or Ti ble of Results - 
Buckling due to combined load 
PI a 

I 
f I 123 

121 
Materials 33 I is a special 

a ( I  4') 
E =-&. 

Force 

-[Y+ 
Ends xiih both ends 

rotating 

a. 

m n t  * Number of half-waves in direction' case of this 

number of waves in directio n of 
circumference = 2n, compressive stress = 

! 
I = -  

* of axis = in, outer pressure = p. 

m-* 
10 
at  
ab 
w 

4: 
-a 
-# - 0 .  
-08 
-to 

-Ilb-RI-ffl 0 R2 6?# a6 @8 10 11 14 16 18 20 22 Z4xfO-4 
6 

COMPRESSION AND BENDING 

ation results, th 

/579 
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BENDING AND EXTERNAL, AhD INTERNAL PRESSURE 

No. I Graph & Boundary Cond. 

No. 

37 I 

Graph & Boundary Cond. 

-- 

(Ext. press.) 

(Int. press.) 
Calculations made for 
the case of an infinitely 
Long cylinder. 

Formula or Table of Results I Notes, Ref. .-- 
! 129 

Buckling of a cylinder under excrna l  or internal 
pressure and bending moment 

i )  , External pressure. Assuming 

.I 
LG.%.azier 

i 
*. H. Bryan 

aPt + . -  = I .  
(dWr-8 (PE)Ud 

I i) Internal pressure, as an experimental 
equation 

1 

Mt -0.65+0.835 
(Xdr-0 

also, when p is relatively large 

bsults of experiment on the bending of a celluloid tube with - 
t = 0,124 m m ,  r = 15.3 mm under isternal or external pressure, 
comparison of calculated curves anc .xperiment curves. 
Ordinat is Mk: abscissa is p k or pk/ (p jJ~=, -~  ...- 

TORSION AND EXTERNAL PRESSURE 

Formula or Table of Results 1 Notes, Ref. 
~~ ~ 

I Torsion moment and internal or external pressure 
1) case where 1 is comparatively large . A ihree- 
dimensional linear differential equation was derived 
from the basic equation for a cylindrical shell, ami 
solving this, the following equation was obtained, if 
high order infinitesimal quantities are disregarded I K 4- -8-. 

/580 
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No. 1 Graph & Boundary C o d .  Formula or Table of Results I Notes, Ref 

[n the above equation, if calculations are performed 

'P to term P , the buckling condition equation is 

38 

? 

W t  

The boundary conditions 
are not taken into 
comideration here, sincc 
In Donnell's calculation! 
there is only a slight 

i IM Hete 

p =  A'( 1 -us) +a (2 Ab( 1 - vz)+ ( A'+n*)'+ (3 + v )  Iana 

I 

I 
n -- positive integer (number of waves in dbection of circumference 

due L ?-!dingJ, 1/x = wavelength in direction of axis. 

The shear stress is 

a= t 6 J- 
difference between fixed 
and supported boundaries . 

I 2) when 1 is small 

/581 
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131 

1 

I 

I 

- 
No. 

Forrnuia or T'ibli of Results j Notes, Ref. ---- I 3) AS an experimental formula 

I Here AIk0.  pko express the criticzl torsion moment and external 
pressure when in the cylinder p = 0 aiid hl = 0, and i n  
particular, when 1 is large 

d- I Et' 
--12 r y l - Y ' )  

The experiment results agree with the thcory when pk is small, but 
when p,, is large, the experiment values are d56;, of the theoretical 

TOFSION AND COMPRESSION 

Graph & Boundary Cond. 1 
I 

Formula or Table of Results : Notes, Ref. 

39 

- 
40 

- 
41 

{-@ 
8 

Torsion moment = T 
compressive stress =u 

Experiment results 
are iridicated 

The solid line in  the 
graph indicates the 
average curve of the 
experiment values 

#e=(udrrO, 

Te=(Tt) 4. 

t 

125 

The experiment results are I 127 
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ELLfPTfCAL CYLINDERS 
COMPRESSION 

No. Graph & Boundary Cond. 

‘ 4 2  I 

cross-section t ! E - ;  
Flat press 

Formula or Table of Results 

For the compressive buckling of a thin walled 

C BE.- 
zt * 

K Q  a= - e ’  
c :  semi-circular length of elipse 
m: half-wave number i n  direction of axis 
coo: polynomiai related to mP 
m a is determined such that Q beomes Min 

: e g : n/b-1.5. 

I V3-( I=*)- 
i E t  

a,, -4.706- -- 

L 

Notes, Ref. 

132 

-_I_ 

: Below is a graphical representation of a comparison 
: of this with the experiment results. The comparison 

of cal .culations and experiment is as 
2P 

f5 

.I 

t t0 s 
B 

5 

Wa 

:Jllows . 

1583 

-- -. 

SPHERlCAL SHELLS 
Spherical shells under concentrated force 

Form-ila or Table of Results i Notes,-Ref. 
! 

-_- No. I Graph & Boundary Cond. , 

1 End with circumfcrence I 
43 1 I33 

of circular plate having small curvature (based on unit  load P) 
C(L=d0.152(1+74.9)-2.88. ( 2 0 < 1 < ! 0 0 ) .  !When - 10<1<20 

-- 
(2) @a= ~’0.093(~+11-5)-0*94- (lm<i<m). , t h e  jump phenomena:, 

does not occur in 
stable equilibrium 

I 
I 
I 

to. 1 s -  p . p  - K l ’ k  
l I k s - -  

I 
E t a  ’ 

This eqriatiw is stown in Figure 43.1.  Pk is the maximum value on j 
\ the positive side of P in Figure 4 3 . 2 ,  As can be seen from Figure 
1 4 3 . 2 ,  i MI) it is always the case that P ’ 0, but in (2) the 
j equilibrium range P . . 0 occiirs 
I I 
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- 
- 

Xloreover I - !  
when is#x) , the second maximum point is generated, 

and where A - =  330. an isolated equilibrium point appears. 
I I 

u p  center &flection 

Figure 43.1 

tr-s 
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SPHERICAL SHELLS 
External Preuure 

No. I Graph 8: Boundary Cond. 
- 

- 
Is 

L- 

46 

As above 

I37 
t. plate thickness 
d .  diameter 

I 
K a r m a  provides the 
following approximation0 
equation based on f ~ t e  P 
displacement theory. cI 

hem 

4 . 3 8 1 6  E( $y 
due t o p  

p -  external pressure 
.=p compression imide shell 

mess --p- ?a 

U 
As above 

For an approximate collapsing pressure 

f i= l6 .708(7)  t 2. . 139 
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ELLIPTICAL SHELLS 
Internal Pressure 

r 
;=ti- r1 

Formula or Table of Results j Notes, Ref. 
-- 

I40 

I 

p: unifom inrernal presswe, r: radius of equator I 

N : case in  which the plate thickness is multiplied by the 
compressive Stress in  the direction along the €quator 

when #<$ N<O becomes the internal compressive force 

Symmetrical axis 

conical shell due to the pressure q that is sustained' The buckling 
i n  the czse when the thickness t is expressed as 

a funaion of s. performed calculations for the ~e,,,~~, 
when the wall thickness varied uniformly 

wave are 

r (t=t - ) and obtained tk following results 
(assuming n = 2) 01.  

E ti  
I d r.' 

lrl 
qk- q i y  - 

k . - A  

the hypothcsis 
f '  

/586 

of revolution 

Form of buckling equator 
i 

CONICAL sHEL.Ls 
Distributed Loads 

I 
p :  minimiim radius of curvature of meridian 

The pressure at  the time of buckling of a revolvinh elliptical sheli 
due to the above internal compressire ? Y ~ L  IS 

I M O  2 -- 
t e -  ?k- 

b'3(1-9) 2-- 

The ~ 2 v e i ;  J- . ~f tt.: buckling waves that form around the 
equator 

' -fi- 
12(1--v.) 

The number of waves is 

This p 
. -..A' - n agree well with experiments. 
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NO Graph & Boundary Cond . I Formula or Table of Resuits I Notes, Ref. 

Uniform pressure 

I 

~~ 

I 

1 
Here, % is a constant as shown in the graph below 

I 

I 
:ional 

a- 

-Buckling due to uniform vertical pressure 

limit 

141 

= 9.6 

a-60.5. 
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No. Graph Pr Boundary Cond. I Formula or Table of Results I Notes, Ref. 

(1) when reinforced only 
‘in longitudinal direction - 

E xi  ZEIS 

/588  

Formula or Table of Results 

As in the case of a reinforced cylinder, 
-_ =,-. z. z, tr 

*= %/- t,+--i- - c, 

I 

REINFORCFD CURVED PLATES 
Compression 

Notes, Ref. 

I 47 

7 

No. 

52 

- 

- 
682 

Graph & Boundary Cond. 

m.  n are respectively the 
half-wave numbers ip the 
directipn of the axis and 
the circumference 

FS e-t +- d. 
C=t +-& F. 

mx? 
A=- I ‘  

If the dimensions of each part of the curved plate &e given, PI, n 
are determined I 

I plate E;( , Fy = cross-section .a= s{F$. a¶=- 2n.E v x .  
area of stringer or tib I b(ra 1’ 
d , d, = spacing between -+- - ’ stringers or ribs 1 i 



No Graph & Boundary Cond. 

End revolving around 
circumference 

p- 

Formula or Table of Iiesilts 1 Notes, Ref. 

I 
P is given in the graphs below 

--. . 
OW* : ('elongation stiffness, 
D , , D ~  : bending stiffness . ---- 
D*= D ~ u * +  R/2. 
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No. I Graph & Boundary Cond. 1 Formula or Table of Results 

I Straight side fixed, 
I other side rothting end I 
SHEAR (tension field) 

No. Graph & Boundary Cond. ' 

I 
55 ' 

Formula or Table of Results 

I Shear tension field of curved plate 

I Notes, Ref. 
- 

Notes, Ref. 

I 
When the spa- between the longitudinal reinforcements is small 

L 

(55-1) f - f k  t*b 
r *p.' C=- 

(55.2) 

l with f: deflection of longitudinal reinforcement 

b' 

tX= spacing between longitudinal 
reinforcements 

f = spacing between ribs Y 
t = outer plate thickness 

Fx, Fy = cross-section area cfstringers 
and ribs respectively 
shear stresss 

=J24tana[%7+ cos20 6) .  (55.3) 

a=: Cor a--0 

cot a= {F 
I - -  

I 

(55.4) 

J 

a=U angle formed by and 
.ringer 

I 

the trial method. In this case, the right side of equation (55.3) is 
calculated, and cot a i s  determined from Figure 55.1 i n  combina- 
tion with the anticipated a ,  and is made to agree wit+ the 
cot 3 calculated from equation (55.5). Calculations may be 
performed first assuming f = 0. In t h z  case of a continuous beam 

;. supported by reinforcements spaced equally, the 
average value o f f  is I 

t : plate thickness I 
If a is known, the principal tension of the tension field and the 
tension and stiffness of the reinforcement in  the direction of the 
axis is 

I : /590 
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- 
N ~ .  ; Graph & Boundary Cond. 

--. 
55 

.- 

Formula or Table of Results 1 Notes, Ref. 

t n = - - - - - - Z  OW CCota. 
E E  0- aina-a * 

L= t - 2 c o t a ( r - r t ) .  Q .  
If (J 

curved, the stress iqtaken from the plate surface), in place of 
the above equation) (55.4), (55 .5) ,  

of the reinforcement is first known, (when the stringer is 

. .  

a= %cot* a--0, 

are used. 

Figure 55.1 - 
REINFORCED CYLINDERS 

Compression 

No. ' Graph. & Boundary Cond. i 
I 

t (thicluiess of outer plate) 

' Formula or Table of Results j Notes, Ref. 1 147 -- 

I 
Here t X ,  t = 
(for example, for t x ,  in  the case of a strhger cross- 
section FL , and a facing b,  it is assumed t X  = t + Fx/b. 

average plate thickness qf cross-sections x and y 

t is outer plate thickness) In the case when reinforcement is only 
in the directions x and y 

at' - 
Y 3(1--~') ' 

E L J+.ak,/F, 
lG--KFj at - 
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;raph & Boundary Cond. 1 Formula or Table of Results I Notes, Ref. -- 
Where -, ..& 

,-,+& ~. circumference for the unit dldth in  the direction cf the 

'unreinforced cylinder , .  

- A  JX-EI~' bending stiffness ir, direction of the axis and the 

I - ' circumference and axis 
,*e& =buckling stress of - 

In deriving the above equation, it is assumed that a considerable 
r imber  of wrinkles are formed in  directiorls x, y. It  should also be 
noticed that in this case it is assumed that these simplifications 

-- 
e 

NO. 

58 

. .  : , ..I 

Graph & Boundary Cond. 1 Formula or Table of Results i Notes, Ref.  
The results of experir rnts on the torsion strengtt f 
plywood cylinders are given. The tests were I 
conducted on linden and Birch plywood c linders where 

are-allpwecd, ~ In  - sufficiently -. . - - .~ ._.-. long . . . and - - wide . - reinforded shells, th, 
buckling units stress is increased by reinforcements in the 
both lateral and longitudinal directions, but k s h o r t  columnar 

shells, only reinforcement in direction x is essential. 
_ _  .. . . _  . . . . . - . - .. . 

For an orthotropic cylinder *1 assuming axially 
symmetrical deformatim and buckling, with 
uniform plate thickness and uniform material 

aC'-- 

In the general case 
2 f i  - - d Darn ( 1  -vvuS,,) 2 s. 
T r 

: compressive stress per unit wi - 

148 
IS 

n 

I 
The buckling load Pk is about 75% of the maximum load 

even when at  its lowest value. I pmax 
I 

'./592 

I I I 
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Notes. Ref - .-..- No. I Graph d: Boundary Cond. 1 Formula or Table of  Results 

--_I 

i I  I 
I I average 

Reverse 45. 1 2 

4 

Birch !average 

58( 

' 0.3~ [ IYV ~ ~i 
0.34 210 ; 3.1 
0.38 1 200 i 8.4 

0.29 90 8.0 
0.24 80 7.8 
0.23 103 7.7 

- -, 
0.26 1 120 7.5 

0.25 I 100 , 7.7 

Grain 

plywood 

I 
Specimen SO. 

i 1 ' 0.73 ; 123 , 7.7 
I 1 2 i 0.71 ' 120 8.0 

,average 1 0.72 I IX) 1 7.9 

I Material 
#I 45' I 1 Thickness 

I (v!E)- j Direction 
of grain- ! -  Diameter 

he 450 brace is installed 1 --@"'~- 
3 that the wood grain of I PA 

I ___-- :a& half of the plate has p,,,o (lie) 

eft winding. 
espectively a right and a 

17- 
I I Here YI=P*Z. d : , Ip : polar moment of inertial 
The shear elasticity modulus 

Jf * L  was calculated from G = i  
Similar test, were made for specimens with dimension 

e . I d  

D,CZ*O mm, tki mm and the results shown in thz following 

Buckling waveform 
u b l e  were obtained. 

Shear Modulus of 

(11) birch plywood, 1 mm 

( tn l inden  plywood, 

60 8.296 1 8.2 
0.13 1 55 ' 7.9 

0.31 I 50 8. I 
60 9.0 

)-/ 0.35 1 E-- 8.3 

I I I 0.18 I 200 I 9.0 

/593 
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140. Giaph 8; Boundary Cod. Formula or Table of Results 
-- 

* I  

! 

594 

Torsional buckling 
case in which the )expanded DonneU's results for an isotropic cylinder. TG-bii;ckling 

principo: hectiom of I 
cix;dciq Of Outer I distributed along the assumed to be 
plate 1,2 match respectively st / z d l - w d ~  \ of the same shape 
t h  direction of the axis 
and the circumferene -- 
of the cylinder. 

Hayashf , using infinitesimal deformacion t h e ~ ~ ,  1 161 

fa the torsional buckling of an orthompic cylinder. 
waveform is  he shear buckling load Sk per unit width 

c.-fewm 
mmn's eauatiom B E  

-,(I -1.3- 

I ij for a s h m  cylinder 

(J <r 5). 
End revolving around both ends: B-I. 18- 

I 
(3 < 7.8). 

I 
End fixed at both ends: B - 1 . 2 9 t T  

ii) for a long cylinder 

end revolving roundbothends1 B d J . n Z / T  (J>5.5), 
both ends fixed -2. 
In particular, in a cylinder of cniform materia: an 
uniform thickness t. is expressed by 

s t  J-, Es 

E. 
Bdl -u*ws) - 

ext . &=t*rt. 

J =*d 

n: number of waves 
in direction of 
circumference 

The torsional buckling shear stress T k for a long cylinder is 



-.ringer lateral load 
1 -  

Stringer bending strea 
1 -  
Stringer deflection 
-I I NOrmalmenB 

Principal sues u, 
I. 
Principalmess 9 

Compressive stress cr, 
- 1 ofstringer 

e - 3  
bal axis angle o( 

N 

- .  

8 
E I r  = contraction in direction of 

radius at point of intersection 
of rib and stringer 

.d P., P, = cross-section areas of stringer 
and rib respectively 

L = geometric moment of inertial 
of axis) Wr.= cross-section coefficient 0 

0 
.- c) 
2 of stringer 

i 
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Bending 

M 

- 
61 

- 
690 

occurs owing to flzttening of the cross-section. bLt such unstable 
fonns do not occur in the case of a reinforced cylinder such as that 
shown on the left, and it was proved quantitatively by using the 
energy method that simultweous buckling and local buckling occur I 

1 It was shown by L .  G. Brazier, that when an unsuppozedc).linder 163 

1 on the compression side in the column and the stringers. The local 
buckling load of a stringer under maximum stress on the compression 

ESu: modulus of elasticity of stringer E, : elasticity 1 

modulus of frame ISuq: modulus moment of inertia 4 

of 
spacing to bending in the 

si& is P P = G ~ U - ~ I , ; J ( ~  W- I L I -  
+-I-# 

inertia w i th respec: Ir-: moment of inertia of frame. ; 5: * ! I**+: moment of 
between adjoining frames k : equivalent I 

It  is assumed that the 
frames a t  both ends are 
perfectly rigid bodies 

length ca 

The relationsi 
m is the numb 
local buckling 
seen that when 

Deformation of 
cross-section 

nil 

the tangent 

rests were-C?.@UctCd. on the specimens indicated 
below with the given aimensinnc In rk fi~sr .rr ~ E L I ~ S S  

25% higher 02 than the theoretical values, and in 1 ratio =- r 
the second sperfmen, a local buckling stress was 

specimen. a flatness ratio was indicated that was ; e 

see figure on the left 
found which was 3% higher 
than the theoretical values .- 

(in the figure the outer ' plate thickness = o . 2  L m  I 
rivet pitch = 25 mm, circular frame riveted to stringer 
by 2.5 (illegible symbol) rivets Outer wall riveted O n l y  I to stringer: rivet diameter = 2 . 5  mm. 

I 
I 

1 I 
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NO. Graph 81 Boundary ConJ. I Formula or Table of Results I Notes. Ref. 

. . ._- u .. 
hl is ab@Q: 3@"0 of hlfafiuri-d perpendicular to ti= above) 

Experiments were conducted for specimen 
.- .. --.--I= L I- -- k 

1) specimen with aircraft fabric glued on it 

2) specimen with one layer of CBK glued on it 
(fabric thickness = 0.7 mm) 

(CBK thickness = 0.2 mm) I 

L 

62 

i- I i 

i 

I 
When the principal directions 

I '65 
flexural buckling of orthotropic cylinder of uniform thickness 

597 

I 

I 
I 

Of 

' parallel to the cylinder axis 
'acd the circumference, the 

are respctively - -  Here &,E, : modulii of elasticity in principal 
di,-t.:crions of el-asticit-j 

,if& has the same value ettm if  the principal directions I elasticity modulus of directions of elasticity are switched . 

69 1 



No I Graph & Boundary Cond. , 
64 

Formula or Table of Results 

Shear bending test of plywwd cylinder 

1 Notes, Ref. - 
598 

as for Pks when the grain direction of the surface is toward the 
cylinder axis, it is very close to Pfailure in the case of //. and 
about 60-8070 of this in the case o f 1  The exprime1,t results 
are given below. In the table f is the bending stress determined 
by pure bending theory formulae from the maximum knding 

The load causes the couples moment M 
P, P to act on the center 

a* +$- *-. ofgravity of the dead 2'I-e +'+ o'.S u Q) 0 u >,\M- .&-' ,%b!$zBending stress 
+A c 2r +It 5 

7.:7,(- mm) -- (mm) -- 

I 
-- - I 

'i; .5 
3 2  3 M, .e: ,osb 

f n ; (m*)/(p, I W ~ I  weight of the load frame &''+ I -  
I and the right end bending I 1 1-12 , I a I 221 1//"1 820621 4 7 7 0 . 3 8  

moment X I  = 1435P - 27 x , . .  
t 394) = 1435P - I !?%8 mmkg. Shear load I 

(compression side V = p - 27 lq. 
4lin&n 1.5 : 4% 165 1 I/ I 155161 1 97 j 0.54 

5 linden 1.4 j 4% I 177 11 j 1-2 1 91 0.54 

6 linden 1.85 1 500 I 143 f 0.61 135 1 // I 219862 1 
I (in the case of //) 1.95 f 4% I I27 11 I 2C0362 I 129 0.51 

The bucklin waveform is 1.9 I 497 1 131 I J- 1 274362 I 181 I 0.75 
- 

not much different from that . I of pure bending, similarly, 9 1 birch 2-15 503 i 116 I :I 473862 I 320 1 1-13 
I 

IO 'birch1 2.05 i 497 I 121 i I 1 502862 i 340 1-28 I concave wrinkles occur i i  
the vicinity of the - i attachment on the 

I I compression side. 

COMPRESSION AND EXTERNAL PRESSURE 

No. 1 

65 

Graph & Boundary Cond. - 
External pressure 

I Formula or Table of Results I Notes, Ref. 
-~__ 

When EIy is the bending stiffness of one frame I 166 
inciu2ing OK part of the cylinder wall, the effective 

A is cross-section aiea of frame. thickness: t , , ~ t + ~ ,  

PU-.'), u( 1 -u=) 
# l = - E r  Et 

Calculating from the buckling condition equation, 
I 
I results are obtained. 

(longitudinal 
I ' I  

cross-section) 

I 
I 
the following 

I 

I , - 
692 



- 
66 

c 

in  the graph below. 
F is the cross-section area of the reinforcing member 

u: circumferential length. 
in the direction of length; i x t.r==r+- 

as v 
Po= - b-* P&= 7 

REINFORCED ELLIPTICAL CYLINDER 
Bending 

3 

No. Graph & Boundary Cond. I Formula or Table of Results 

' Flexural failure and rigidity of thin walled 

Notes. Ref. 

cylinder. When a thiii-walled elliptical cylinder under- 
goes pure bending, as the cutvature increases i n  the same manner 
as a circular cylinder, the bendiiig stiffness decreases along 
with the flatness ratio of the cross-section. Generally, in thin 
walled cylinders, local buckling occurs by the time that the yield 
is reached, and the buckling stress due to yield is expressed by the 

E following equations. 
i) bending arcund long axis : @~=CO--==_ LJ.. I 

I d 1 - 9  @* - 
c: I 

I 
ii) bending around short axis : @k=ck  Z 'J~ .  1 

-b r-Y* Pa 

Moreover, the critical moments are as follows for the above two 

1 equations. 
% i) M P = Z ~ *  

ii) &==ZWr, 

Zo'Tb (b+3 a) tmn 

Zt---0(5+3 b )  tm I % 

4 
I as- h* I 

Here Cg , Ck ate values which change according to &'io, as shown 
I I 

~ ~ 

Bending around short axis 

42500 j 713 0.181 I 1 j 1 1 1 ~ I 19600 405 0.347 
1 22.51 15 780.050 33.75 48.5 21200 1 437 1 0.3751 Io I S9s51 47300 , 794 I 0.202 - 
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~ WAVEFORM PROFILES 

68 

No - 
67 

I 

-- - 
B!: ’ ling strength # 

1) there are no 36 
*hcoretical values 
for the buckling 14 
stress of the wall 
surface when under ’ p  
compressive force. 

Flat press i 174 
I “f. *-rrugated plate 

U. S. standards 

-! 

haph & Boundary Cond. 

m- 

Formula or Table of Results 1 Notes, Ref. 
I In order to increase the buckling stress of waveform ,7L 

profiles the following cautions are necessary. In , 7 ~  

particular, thio is true when high-tension steel plate 
is used and high tension is required, for such materiais Brazier 
as girder cdanlings. 
i) the linear section should not be more than 18 t i n e s  greater than 

ii) the radius of curvature should not exceed 30 times the plate 

iii) at points where sections wi th large radii of curvature adjoin 

/600 - 

1 Frdnl 

the plate thickness. 

.thTckness a t  any point. 

each other, caution should be taken so that they do not become 
flat. consequent!y, it is possible to insert sections with 
small radii of curvature between the sections with large radii as 
shown in (a) 0.1 the left. 

iv) as shown in Figure (b) when one should avoid inserting anything 
thing that is nearly flat with a small radius of curvature between 
the parts having large radii of curvature. 

- .  

v) when the coaming radius /thickness ratio exceed 30, there is 
a tendency for flattening to occur because of the load. Therefore 
as shown i n  Figure (c) plate a should be inserted as a tension member. 1 

vi) one should avoid having the end of the plate- b a. high tension 
part Otherwise, local buckling wiil occur only i n  the end part, 
and there is danger that this will extend over the entire part. 
Therefore, one may either attach a small diameter piece as in 
(d) or make sure that the end comes in-the low stress part as 
shown in (d’). 

vii) coKpar6ig the waveforms in  (e) and (e’) since the wall buckling 
stress in (e’) becomes several times greater than that in (e), (e’) 
is more effective. With regard to attachment, similarly (e’) is 
more effective 

,-.*A- . - . - .  . - . - - 

~ _ . .  . 



. -  

kaph & Boundary Cond. 1 Formula or Table of Results I Notes, Ref. 

: when the wall surface buckling strength is adjusted for t/R, this 
Iecomes as shown i n  Figures 68.1, 68.2. 

e 

"0 40 80 IM 160 itro Ico, 
Figure 68.2 - 

According to these, for uC=K. am the value of K is almost equal to 1 
here 0 is the buckling strength of a flat plate of the same width) 
ii) the compressive buckling strength for a corrugated plate column, 
E the buckling strength equation for a ihort column 

--- 

I'll * 
a=a&&. ( d%,i) 

Here it=ddT= buckling length 

The above equation indicates the straight line equation where m is a 
Eonstant, and is 2 in Johnson's equation and 1 in Euler's o-quation 
In the above equation, if the above values are used for the vallu 
value of a 
is used in the U. S. . which is 

Figure 68.3 is obtained. The straight line formula 
I kk' 

e . g .  
Io-0.00368 

including the values in the above graph in this ud, 
it alright to consider that a = 0. 

soft steel 

Figure 68.3 

/ 601 
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No. Graph & Boundary Cond. 1 Formula or Table of Results 1 Notes, Ref 

1 I -- 
I 7 

b&h ends are considered fix 

I I 
iv) the compresive buc.klin wen th for a.corru ate - plate is 

found frcm the equation kr an lrthotropic plage. 

1 i above 3 

* -  
I 

I 

c=l case in  which the corrug,,d:d is 
the members around the partitian 
to 1.5 in the case when the corru 
supported and the width is bel 

69 

(equival 

- 

696 

Figxe  89.4 

The results of tests by H.  Ebner on the cor.ipressi 

177 

: strength of 

flat plates reinforced by channels, and flat plates reinforced by 

I corrugated plates (1 = 500mm) VI 

Q 
U 2 2  

- 
3: 

Q 

0.4) 

0.60 

0.54 

0.60 

0.57 

0.6) 

' 0.53 
0.50 
0.53 

- 
- 
- 

-. 
I 

--e 

./602 



FL 
k = 2 + -  b 

t 
k 

Q'mQ- 

20 30 1.5 I 1.82 10.82 I 140 1 700 I 2450 1 1950 0-45 

- 2o 1.5 12.28 1 1.51 1 105 I 1700 1 2330 1 1930 1 0-66 

105 J 720 I 2400 I 2020 1 0-38 

I 

I8 

33 1.5 2.20 0.50 105 1 190 I 2750 240') 0.22 

1880 1 0.44 

! 

- -- 23 I l l  
1.5 12.70 1 1.20 I 1-10 I 800 1 2203 

Corrugated plate reinforcements are more effective for increasing 
the shear stiffness and compressive stiffness. This is because 
channel reinforced plates have a low shear stiffriess. 
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No 

~~ 

(experiment results) These are t k  results of 
compressive buckling tests in  the case of 
pressure on the inside, for the two cases 

1 = 50 3/4 in. small width ,pacing 10 in. 
1 = 90 3/4 in. small width spacing 30 i n .  

n 
- 

191 

smal 

Jre of curved plate 65 in  

curve 

radius of curv8 

CURVED PLATES (Supplement) I 
Compression 

Graph & Boundary Cond. 

Curved plate 
Compression 
[with internal pressure) 

Formula or Table of Results E I N o m ,  Ref. 

P 1blsq.in 

/604 
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C.:aph & Bounday Cond. 

Zxperimental equation for magnesium alloy where 
. _-. -- 

Curved plate 
Compression 

Curved plates 
Compression 

Formula or Table of Results I Notes, -gf. 

.i 
I 

Y 

P lbisq. in 

191 

constant 
constant 
co; 

86 to 515 . .  

E,: secant modulus 

t: thickness 

r: radius 

iange where 

Flat plate equation used - 

see section on flat plates for k . 
C 

Y 
rt U) I<-<lOO 

P 
P 

increa$edi 
decreases) 

ant, p increases) 

194 

219 

/605 
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kaph & Boundary Cond. .-ornula or Table of Results - 
te b,xd on following graphs I 

tor C, the case of cylinder is used. 

C 

Schildcrout. and Stein 
Donnell and Wan's the 

a 2 3  S I #  2~ ~ I Y  2 3  5 1  
'h 

&.=Seraat modulur 
&=Tonlent modulus 

8 = *# -(e#-#.) -6f- E. 

u.aO.3 (elastic region; 
8 , = ~ .  5 (plastic region) 
W =  f Unevenness factor) 

- 
Notes, Ref. 
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No 

74 

c 

SHEAR - 
karh 6; Boundary Cond. 

Curved plate 
Shear 

Four sides riveted 

Curved plate 
Shear 

1 is considered sufficieni 
long 

Formula 91 T ible of Results 
Test formulas of K u h  and Levin 

\ 

r > J o o ,  a r b a n d  r>b t 

(htdorf)  

rb = shear buckling stress 

E= coefficient 

D= bending stiffness 
I U(1--3) 

Notes. Ref. 

193 

/607 

179 

2 4 -  

Comparison with other analyses 

70 1 



~ ~- 

kaph & Boundary Cond . 

Curved plate 
Shear 
Simply supported end 

b >e 

Cuived plate 
Shear 
Simpiy supported end 
when*>) 

~ ~ ~~ 

Formula or Table of Results 

30 (Batdorf) 
r b  = K- 

(Stein, Schildcrout) 

rb: sheat buckling sttes 

R: coefficient 

D= ET bending stiffness 
Q(1-9) 

rb :shear buckling stress 
K: coefficient 

D= E? bending stiffness W--V’) 

- 
Votes, Ref. 

1?9 /608 

179 

- 



Curved plate 
Shear i ) case where the radius of curvafure is large. 

Rat plate equations used. 

(Transition-length) 

K,r'E 
rA = 12( 1-p.Z) (+Y 

& is found from the graph below. 
Where 

4 

( a  long curb long curved plate (sim 

( b 1 long curved plate (fixed sides) 

Notes, Ref. 

219 

le support) 

703 



No. - 

- 

( c ) wide curved plate (simple support) 

Graph & Boundary Cond. Formula or Table o f  Results 

I 

- 
Notes, Ref. 

/610 

-- 4 
( d ) wide curved plate (fixed sides) 

Y a) ->30 d + rb=o-n(zb) r k  flat p'ate; Tk flat plate is the 

I shear buckling sr:ess of a flat plate . 
Comparison of theoretical values and experiment values 

I 

704 



# 
No Graph & Boundary Cond. Formula or Table of Results E 

: COMBINED LOADS: 

Notes, Ref. 

79 

(Compression and Shear) 

N ~ .  ' Graph & Boundary Cond . I Formula or Table of Results I Notes, Ref. 

Curved plate 
Compression and Shear 
1 is considered sufficientl 

Re'+ R, = 1 

Acting compressive stress 

179 

219 

No. . Graph & Boundary Cond . I Formula or Table of Results I b t e s ,  Ref. 

80 Curved plate 
Compression and Internal 
pressure 

Acting internal pressure 
R F  Pressure at time of buckling when only external pre&e 

I I is acting 1 
(AXIAL STRESS AND SHEAR) 

No. I Graph & Boundary Cond. I Formula or Table of Results INotes, Ref. 

Curved plate 
Axial stress and shear 

~ ~~~ ~ 

R,'+ Rx = 1 
when 

Shear stress 

Tensile or compressive stres - 
Rx= Buckling stress in the case when there is only tension 

Buckling stress in  the case of shear only 

l 2 ,=7?4=p Y or compression I 



SHEAR AND INTERNAL PRESSURE 
No. Graph & Boundary Cond. 1 Formula or Table of 2esults I Notes, Ref. 

Curved plate R,'+R, = 1 

Shear and Internal Pressur; Shear buckling stress 
R*s Buckling stress when in  the case of shear only 

"== Buckling stress in  the case when o i y  the 
Internal pressure 

I external pressure acts 

EFFECTIVE WIDTH 

No. ' Graph & Boundary Cond. I Formula or Table of Results 
I_ 

83 

A. 
1) for cases in  which - 

Curved plate 
Effective width I when 
Experiment equations OSZrS31 

I From (Romberg-Levy-Fienup 

ii) for the case ;n which 2 . g 1 . 4 5  
b I 

when o S & s r n  
26. -&'.*a(+("#]'''' . ..... 
b 

From (Jackson-Hall 

Notes, Ref. 

' 2 2 0  

4Q 
4 

I (Notation) 
%*b* (kc Compressive stress coefficient of flat plate) G= U(1-9) 

Rp6.3 
6- plate width 

b,a effective width measured from end 
axial stress a t  end section 

zb 4Curved plate parameter) 
-7m Y 

;= average axial s i res  

o.p= compressive yield stress 
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PROFILES, REINFORCED PLATES (supplement) 
Compression 

Graph & Boundary Cond. Formula or Table of Results 

I 
'rofiles, hollow cruciform 
Compressicn 

Compression in  open 
:ross-section stringer 
ittached to plate 

.oss-section 

#,e+- 3GK Y ( h 4 b )  

#,.: buckling stress within elasticity lim 

4 - W  0.09S2+0.289 c I 4?,=2.35(%) 
In Figure A 

Y613 Notes, Ref. 

190 

199 



No. Graph & Boundary Coiid. 

A = 

Formula or Table of Results 

cross-section area of stringer 

a=- cross-section area of plate for stringers: 
i ) for unbuckled sheet in a wide panel u=bh 

il) for buckled sheet in a wide panel u- -+ 
.--.I 

b stringer spacing 
h : plate thickqess 

Notes, Ref. 

199 I /614 

s :distance from twist center S to rivet position 
t : effective length of panel I 

S (see abave) found from the route of the following equation 

I 
+9.87+-) - . r p , p . 3 8 5  B,L+9.871-)] 1 

In particular. ,:IC ..cnstants for panels having Z 
stringers is foun. 
( 1 ) equal flange and equal rib stringers 

follows for Figures 1 and 2 

(Figure 1) 
1 =-3-[tn'(2 bp  +br +h ' (2  b d J  

rivet A=2 b L t L + t W  2 b, +A ( C O B 6  1 I 



Jraph & Boundary Cond. 

2 

~~ ~ 

Formula or Table of Results INotes, Ref. 



Graph & Boundary Cond. Formula or 'Table of Results 1 Notes, Ref. 

latetal buckling occuts when Hatcross-section 
Compression 

'The effect of t is neglecteri ( i f  A>5 I t may be neglected). 

I (W 
I 

t 

1"1 

D = ~ ( F ) + =  8 C  4 CRY+-R 1 
7 

1 1 C -  

R =L height-width ratio 

S =_I_ length-width ratio 

- - R - + , o  

W 

W 

I 

4616 
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CYLIHDER~ -( suppiemeni) 

cc 
p!~. 

c 

Graph & Boundarv Cond. 

:ompression in direction 

;imply supported ends K =  coeffi2ient , 

Formula or ‘rable of  Results I Notes, Ref. 
I 

:?3 I UpK7 i D  (Batdorf) 
I t  

of axis = compressive buckling stress in direction of a-.;s 

I Dz && bending stiffness or the following expression 
Et may also be 

B‘ 3(1--~’) I used * k =  

when 3<2<6($-)’ (I-#’) , K=0.7C22. 

i .- 

Cylinder 
Compressiori 

Zxperiment formulas 
u,=K- d D  (Batdrof, Schi!dcrout, S t e L )  

et 
u,= compressive buckli.lg ctrgSS 

K =  coefficient 

I D = .-L 12(1--3) Dending stiffness 

180 

--- Simply suppoited end 

I 

vklues 
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No. 1 Graph & Boundary Cond. Formula or Table of Results 

Comparison with experiments 

Notes, Ref. 

180 

/618 



Graph & Boundary Cond. Formula or Table of Results 

I 

Cylinder 
Compression 

#&E+- (+0.75) 

c : coefficient 

equations (experiment equations) of Kanemitsu anc 

Notes, Ref. 

180 

203 
bjima 

The above equations are more suitable than those of 

I iallentedt and Wagner. 
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kaph & Boundary Cond. 

Cylinder 
Compression 

Cylinder . 
Axial compression 
(plastic buckling) 

I. = plate thicknes: 
& = average radius 

Cylinder 
Compression 

Local buckling 

I 

T 
i 

Formula or Table of Results I Notes, Ref. 

180 

Equation of Ballersteat and Wagner 

/620 

%==3.3 (+y +O. 2 ($) 

I Accuracy less than in equations of Kanemitsu and 
Nojima 

h = buckling at coefficient (for buckling w'ithin elastic range) 
v = modulus of plasticity; = 1 within elasticity range 

. .  
in .a not very short cylinder, l o c h  buckling O C C L U S ~ ~  

Its values differe according to the absolute values of t / r ,  r ,  and t ,  
and according to 1 . In this paper, we consider the case where t/r 
is a constant value. - I 

I Deformation W is expressed as follows 

Total deformation energy W is 

where I 



Graph & Boundary Cond. 

Wi.-i 

Formula or Table o f  Results-[ Notes, Ref. 

I k and v(n) as parameters, assuming 

# r 
4 =m == 1 2 ( 1 - 4 ) 9  

-=d. fi 
0 =Agl(+B9ll9lt+c~*'-~LI~'+Cg1)+1FJrll 

1 

1 1 1 

A= k ' + m  

4(9ka+1)'+ 4(La+9)' } 
k' 

4( k' + 1)' C= 

D = Y  1 

F = l  

(k' +l)' +x 
6 '  

c -  (kl+l)'  
4 

H = 2 ( P + l ) '  

= average compressive stress in direction 

L: = aspect ratio of bucklig lobe k 
=wave numbers in direction of circumfc 

- 
Cylinder (long cylinder) 
C Impression 

of axis 

rence 

- _  

Gerard's theoretical equation 

I 8W' awr -=o, -=o 
Y l  

Before and after buckling it is possibel to find the compressive 
(train where the same amount of deformation energy becomes a 
minimum. in this case, the stress corresponding to strain becomes 
the buckling stress. The wave number m in the direction of the 
axis becomes a minimum of m = 1.5 in the c a s  of local buckling. 

I Therefore, generally 

207 

/621 



No. 

Cylinder I i) Compression 

kaph & Boundary Cond. 

r short cylinder ' (T< 1) 

' Cylinder 

Compression 

From 
Fuog-Sechler 

Formula or Table of Results 
~ 

Comparison with expei.ments 

Notes, Ref. 

212 

Compressive stress-( KSL) 
Where the theoretical value is assumed to be. we = 0.3. 
- ~~ 

Kaoemitsu-Nojima 's experimental equations are 
expressed by a separate method. 

Where 

A&=(+)( 9(L)'*'+O. 16(+)'.') 

If this is written i n  the form of a graph. i t  has 
the following representation. 

212 

219 

716 



No. I I Graph & Boundary Cond. 

K, is found from the following graphs 

Formula or Table of Results 1 Notes, Ref - I In the elasticity range, this is folind by the following 
/623 

equation 

717 

ob =qch$ 

C is found in the bottom graph on p .  606. 
(notation) 



do ' Graph & Boundary Cond Formula or Table of Results 

- 
No. 

Notes, Ref. 

EpSecant  modulus 
&=Tangent modulus 
E = Young's modulus 

v = Poisson's ratio =v)-(v)--v,)--&r E. 

,,= Poisson's ratio (elastic range) = 0 . 3  
u,= Poisson's ratio (plastic range) = 0 5 
U =  (Unevenness factor) 

Cylinder 
Torsion 

TORSICN 

rr=K- 30 (Batdorf) 
P t  

(Stein, Schildcrout) 

ends and fixed ends K= coefficient , 
D =  Gnding stiffness 

12(1--3) 

when 

K=O.SSZz 
Comparison with experiments 

Notes, Ref 

179 

/624 

718 



1 Notes, Ref No. 1 Graph & Boundary Cond. Formula or Table of Results 

Two-lobe buckling 

Lc 

97 

- 
98 

Y 

rb=O. zn( 1-u')< E, (Gy 
&=secant modulus 
: =thickness 
R= cylinder radius 

99 Cylinder 
Torsion 

Cylinder 
Torsion 

208 

rb=O. 815&(+-):(5)f 

ii) in other cases 

181 

Therefore, generally - 
rr=O. 2 7 Z ( l - - u , ' ) ~ ~ ,  E (3 I Comparison with experiments 

I .Shear Stress (KSI) I 

LY' 

I 

occurs. 

lenum 

'/625 
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- 
No. Formula or Table of Results 

100 

- 
720 

- 
Notes, Ref. .aph & Boundary Cond. 

Cylinder 
Torsion 
Plastic buckling 

Lee-Ades 

First, in equa 

1 
+0'08213H'[ 0 .0276H' f0 .1~0(3Pb , -1 )~1+l  

I In (1) assuming we find &I, E,=E 
I ( rb) (=  (fb)d..lllc These equations are derived'assuming that 

through the elasticity 'and plastic ranges the -. . Poisson's ratio is 1/2, Some 
errors will creep in for other Poisson's ratio:. is given approximately 
by equation (3), and this is sufficient . .- for . actual practice.. The precise 
calculation is extremely laborous The error in equation (3) and in  a 

tlie values of rl that can be us?d are from 0 . 5 ( 2 )  to 
I 

(-2) 
Below are shown the results for aluminum alloy 

(assuming N 10) I 

1 1 J=z 



Graph & Boundary Cond. 

The graphs below are for the buckling stress with 
various imperfections. 

Formula or Table of Results I Notes, Ref .  

respect to 

(r,),= shear buckling stress of perfect cylinder 
N= configuratian coefficient ( experimentally) 
ra,l average shear stress 
F*.,= stress value determined by secant with slope 0 . 7  

&=Secant modulus 
&=Tangent modulus 
E = Young's modulus 

I 

(experimentally determined) 

( b) in the case of imperfection, in the plastic range, this is expressed 
approximately as follows I 

In the elastic range, this is based on the following equation 

The imperfection factor V,  for the half-wave 
length Is of the surface 

( 6 )  

In particular, in  the ca= of pure torsion 
1*= I 
l,=ml,eml 

According to Donne11 and Wan, when , for a q 
c ylindir 

va=l. 5-3. ox lo-* (machine processed) 
=3.0-5.OxlO-' 

=5.0-riO.OxlO-' 
(rolled well-flattened plate) 

(rolled , unflattened plate) 

721 



No. 1 Graph & Boundary Cond , I Formula or Table of Result; -Ref. 

1'628 



No. IGraph & Boundary Cond. Formula or Table of Re-ults Notes, Ref. 

/629 
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- 
No. - 

( d Compariwn with experiment 
Steel cylinder 
Tensile strength 9x10' Psi 
Young's modulus 2.9X 10' psi 
Yieldpoint 7x10' psi 

F,.,=6.77x10b poi 
N= 17.6 

kaph 8: Ef.~.~ndary Cond. Formula or table of Results I .Notes, Ref 

(Notation) I 
Overall torsion angle of one end with respe a to the other /630 

v"= end of a cylinder 

shear buckling stress of imperfect cylinder 
(3 I 

! 
I 
I 

(r,),= 
V =  (Imperfection factor) 
U,= ( U ~ ~ ~ e n n e o t  factor) 
&= half-wave lergth in direction of length 
1,- half-wove length i n  direction of circumference 
9 =  (Second uneoenaess 

I= wavelength ratio 
factor) 

I 
Here, Uo and 6 are determined experimentally 

( Strict soluticn 
The above were solved by the energy method. but :hey include 
several simplifications and approximations. In order to check the ' 
above results, we analyze the case of an exuernely long cylinder 
which buckles due to torsion. 
Timoshenka' by a method he used in the elasticity region, derived 
a brsic equation for the plastic region. He obtained differential 
equatiors for 3 displacements from the relationship 
between the membrame force and the equilibrium E See Timoshenko's 
and displacement Of the bending moment. The "Theory of Elmtic 
SucUing stress becomes as follows, using 

Timmhenko's surface displacemetit 

I 

Stability" pp. &o-@o I for 'his method. 
3 e&* +l.S (+y C(C7 c+ IO. S)LL'+36 €1 

(9 6-21 I*+ 12 r, rb= a. 12 

( 7 )  

Where L is the ratio of the wavelength in the direction cf the 
:he circumference to the wavelennh in direction of length ai the 

724 



Graph & Boundary Cond. 

4i 
where F,,=- (&)tD 

2 I# 

D =  Outer diameter 
( M , ) k = ! r k ) .  - 2 xr'i Torsion moment during 

I Notes, Ref - Formula or Table of Results 

buckling 

0.9991 
0.9985 
0.9978 
0.9979 
0.9971 
0.9961 
0.9932 
0.9887 
0.9822 
O.96dO 
0.9867 
0.9935 
0.9853 
0.9965 
0.9933 
0.9906 
0.9983 
0.9974 
0.9968 
0.9988 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
l2 
13 
14 
1s 
16 
17 
18 
19 
20 
n 
22 
23 
24 

- 

- 

0.982 
0.982 
0.904 
3.932 
0.904 
0.938 
0,958 
0.97l 
9.982 
0.866 
0.897 
0.823 
0.878 
0.904 
0.978 
1.018 
0.876 
0.929 
0.988 
0.937 

7 5 -  
1 

9.9 
15.1 
20.0 
20.1 
24.9 
30.1 

40.2 
a. 9 
57.4 
80.6 
80.6 
58.8 
58.8 
39.4 
39.4 

- 

39.4 
19.8 
19.8 
19.8 
10.0 
So. 6 
60.6 

6.41 
6.94 
7.21 
6.55 
6.69 
6-78 
6.91 
6.98 
7.03 
7.09 
5.70 
5.70 

5.70 
17.0 

17.0 
27.6 
5.70 

17.1 
27.7 
17.1 
11.5 
11.5 

73.050 
a 
a 
a 
4 

a 
e 
e 

4 

4 

40,500 
38,000 

38.500 
4 

D 

n 
39,800 

n 
n 

39.700 
40,705 

40. OOo 

PS' 

53,400 
50. ooo 
43.600 
44. Nul 
41.900 
41,700 
38.600 
36.m 
33.100 
20.600 
19,100 
18.600 
17,400 
22.700 
22,300 
22,000 
23,400 
25, loo 
&9oo 
28.600 
15.400 
20,200 

psi 

5.1. OGJ 
So, 900 
48,200 
48,100 
46,400 
44,400 
40, 500 
37,300 
33.700 
23,800 

22,600 
19.600 
25,100 
22. 800 
21,600 
29, OOO 
27. OGO 
26,200 
30,500 

21,300 

Average 1 0.930 

'631 
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Formula or Table of Results : I NO. I Graph & Boundary Cond. Notes, Ref. 

I 

rr=Et'&RR (Plasticity reduction fa:tor) 
E,=Secant modulus 

Both ends simply supported 
I 

101 

From 
Radhakr ishaan 

I 
1 

I 

Cylinder 
Torsion 
Plastic Buckling 

(a) LI g cylinder when (+y>l+ 

r,=O. 701( I - u , ' ) ~  .#E(+)f (+)i 

210 

Gerard 

(notation) 

-~ 

(hypotheses) 1 216 
1. For the strain and-curv&re.u&d to express dispiacement. thin 
shell theory was employed within the elastic range. 
2 .  The secant shear modulus in the plasti: range is defined as 

I ocrakdral shear stress 
octahedral shear strain-" 

3 Henchy-Nadai's stress-strain law is used, Moreover, it  is 
assumed that the Poisson's ratio (v  ) is 1/2. 
4 In the infinitesimal buckling of the a entire cross-section, it is 
t assumed that this is within the plastic range. 

/632 
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(Notation) E,= Secant modulus 
E,=-- ngent modulus 
b T  1' 

Z = T ( T )  

/633 

219 

I 
torsion I 

using the equation for a flat plate, 
K,x'E 

r b = Q  12(1-u#9 (3 
o, K,  employ the case of the shear of a *at 

a ) cylinder in i (Transition-length range) 

} when p(+)i<<<3(+)9 
( 1 j Case of simple support 

K t d E  
r r = l  u(l-u.a)(+Y 

K, determined by the following graph. 

4 
P -  where ZL=-b'i-u2 rt 

( 2 ) Linear equations may be used in the case o 
r,= t 

I 3  h In the case of fixed ends 

1 is, in the case (2), (a) 

iii) Long cylinder when 

where , (-:d)$ 
E -ut I 

simple suppbrt . 

72 7 



- EXTERNAL PRESSUW - 
No. 

104 
- 

c_ 

105 

-- . _ _  

Graph & Boundary Cond . 

C yiinder 
Uniform external pressure 
only on si& wall 
Simply supported end 

Formulh or Table of Results 

0. = R - d D  (Batdorf) I 179 
P l  

(7 k Buckling stress i-n d i ~ ! + e  circumference p p / t  

K =  coefficient 
D= ET bending stiffness 12(1--3) 

Comparison with experiments 

k 

I 
It p,=C (Batdorf) both ends) Uniform exterrfal Pt 

ends simply suDoorted I - 
p,= buckling pressure 
Cr= coefficient 

pressure over entire surface, 

0 
.. 

D =  ar bending stiffness 
12(1--3) 

t I .-a-. 

7l9 

179 

/634 
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Graph & Boundary Cond. 

a =+, r = average radius, t = thickness 

Thin- walled cylinder 
Water pressure 
Eoth ends fixed 

Both ends fixed 

d 
I 

Thin-wAled cylinder 
Water prcssure 
Both ends supported 

1.=(+y +O. ?e{+)+(+) A' - * E  

Thin-walled cylinder 
External pressure (water) 

Formula or Table of Results 
~~~ 

Comparison with experiment 

m : wave number in  direction of circum 

m: wave number in direction of 
circumference 

Notes, Ref. 

/635 

184 

:rence 

184 

185 
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- 
No. 

109 

- 

-. 
iia 

- 
111 

- 
730 

;raph & Boundary Cond 

'hin walled cylinders 
.xternal pressure 
water pressure) 

(total surface) 

Cylinder 
External pressure 
Plastic buckling 

Cylinder 
External pressure 
(side only) 

Simple support 

Formula or Table of Results Notes, Ref 
I 

185 

0.92 E ($y 
(+) (+y -0.636 

PA= 

k d n E  
*'= 12(1--3) (&Y 

v =plasticity modulus ( = 1 in buckling I i n  elasticity region) 
k = buckling modulus 

LO 
Q!? 

Qb 3 
3 a1 
'p ; a6 

5 0.5 
0 .  -z 04 
3 "a 0.3 

.d 

a1 

0 
&=secant modulus 
&=tangent modulus 

Donnell's equation is solved adding the transverse 
'shearing force term. 

( 1 )  
where 

d @ =-.- 
zv 

assuming also 

214 

Gerard 

/636 



.- 
No. - 

* See reference V. 
D.I.Bd. NO. 19 (1914) or 
T imoshen ko "Theory of 
Elastic Stability" for 
V.  Mises's solution in 
the graph on the left. 

11: 

- 

here z L = - , w  P 
rl 

Graph & Boundary Csnd. 

either the equation for case i) is used, or the following 
is used. 

ab= 0.93 E($>'(+) 

Cylinder 
External pressure 
(total surface) 

Formula or Table of Results I Notes, Ref. , 

/637 

----- V. Mise? 

2 4 6 a 
uxro' 

1) -..8nitely long cylinder (+- 0)  
sPeci+l_case 

I 
in  ths in this case, the above equation becomes as 

E I 4 ( 1 - u ? )  ($y 
I 
I 

I according to Ling's equation 
2) Length i s  finite. but radius is infinitely large 

( - ; - - O . T ' O )  1 t 

in  this case, the above equation becomes the equation for a flat plate 

i )  -+loo P 

K, r 'E 
l2(l-u,') (-H 

Where Kp as in the following graph. 

2 

I 
731 



- 
No 

Cylinder I 

11: 

- 
114 

- 
732 

I 

Graph & Boundary Cond . I Formula or Table of Results 

Where Ku as shown below 

Cylinder 
External pressure 

Plastic buckling 

either- the equation in case i) described above, or the following 
equation is used. - 

= 0.93 E ($y (+) 

I 

Where 

I 

Long cylinder ($)'> s f 

vu= .* ~ I - u , ' ~  - E, 1 3 Et 
( I-P' J E (T'7-3:) 

( b ) lOO--<(+y< f 5 

I-#,' " E, E,' 1 3 E t )  =( E. )'(T+_b=) 
(notation) 

'I# = (Plasticity reduction factor) 
&=Tangent modulus 
E,= Secant modulus 
#,= Poisson's ratio (value of elasticity rangc 

Notes, Ref. 

210 

Gerard 

0 . 3  
= Poissons' ratio 

219 

ii) 
I 

/638 



BENDING 

No. ' Graph & Boundary Cond. I Formula or Table of Results 
1 

Cylinder Experiment equation u, = maximum bending stress a t  
- 

115 

Notes, Ref. 

204 

The experiment values 

116 

- 

are from Lundquist : NACA TN 479 
and Ospood : NACATR632 

Bending 

plastic region ob = 0.3+ 

experiment results (1%-T aluminum alloy) 

Cylinder 
Bending 

- 
MOW is a comparison of the results of Lundquist 
tnd D6ineil-*s-experiments with Donnell's linear 
thoery . 

..-.p\! 

'*- e '. ' 

2 
(notation) 

z,=- t q  rt 
Y,= Poisson's ratio (elastic region ) = 0 . 3  

Kb 

(this cJ k is the pure flexural buckling stress 

0,. 12( I--v,')P 
a'&' 

219 

/639 
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- No. Graph & Boundary Cond . 1 Formula or Table of Results 1 Notes, R e f .  

~ 

or.12(1--v,')P 
A'Ef I 

(This ak  i s  pure compressive buckling stress) 
In t h e  graph, K,, = 1.3 K is t h e  r e s u l t  obtained by Flugge 

stress a t  t h e  time o f b u c k l i n g  due t o  bending is  30% 
h i g h e r  than t h e  buckling stress d u t  t o  due t o  pure 

compress ion.  I 

solving-  by t h e - i i i e a r  . ,.-c_ theor<: That  is ,  .thi.'maximun bending 

THERMAL BUCKLING 

117 Cylinder  
Thermal buckl ing 

Both ends f i x e d  
(no c o n s t r a i n t  i n  

(uniform hea t ing)  

/640 

Galerk in ' s  methqd is used i n  I 213 Donnell 's  equat ion buckl ing temperature 
x 4 ~ ~ ( 6  r+32ri:)c384i*~ 

T, = 12( I - u ' ) z * u # P A ' (  7 1 ' 4 6  Pi*) 

TI= r a d i u s  
I =  wall th ickness  

1 
L 

rbp 'Batdorf 
K,=- (stein 

118 1 I 
Cy 1 i n d e r  
Torsion and compression 1 Schildcrout 

B L 1 
'w" 

D =  Ep ; bending s t i f f n e  
12( 1 -u') 

179 



Graph & Boundary Lond. 

Cy1 i n d e r  
'Torsion and 
Compression 

Formula or Table of Results 

0 
0 Q2 a4 126 08 10 

Cyli.ider 
Axial cornmession ((Range of a p p l i c a t i o n )  
a i d  t o r s i  ;n i) using t h e  t h e o r e t i c a l  ak, Tk# 

when z L ( = L , c p ) < 1  rt 

end with --imple support 
when z ~ < 5  .Fixed end 

I 
when <zL <7.7(+] simply supporgej  

when 5 <ZL <7.7(+)' Fixed end 

i i )  us ing  t h e  experiment ak, T~ 

n 

I 

Notes, Ref. --- 
179 

- -  
205 

/641 

219 
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No. 

I 

Graph & Boundary Co Formula or Table of Results 'Notes, Ref, 

(Spechen) /647 
; 1 = 32" inside diameter = 15" 
~ t = 3.0249" 

(Not a t  ion) 
24s-T aluminum al loy cylinder 

p = i n t e rna l  pressure 
ak = compressive buckling stress 

E = Young's modulus 
(Remarks ) 

in f in i tes imal  defomation theory. 
the  theore t ica l  and experimental values do not 
match can be explained by the  following. 
i 1) i r r e g u l a r i t i e s  i n  producing the  test specimen 

I 3) absorption of energy by load apparatus 

- 
p = 0.169, zk = 0.605 and t h i s  agrees with 

The f a c t  t ha t  

2) non-homogeneity of materials 

No. 

i(side wall) and 
ax ia l  compression 
Both ends simple 
lsupport 1 P l a s t i c  buckling 
I 
I 
! 
1 
I 

Graph & Boundary Cond. Formula or Table of  Results Notes, Ref. 

1. For t he  s t r a i n  and curvature used t o  express 
displacement, t h i n  s h e l l  theory i n  the  elastic 
repion is  used. 
2. The secant shear  modulus i n  the  p l a s t i c  region 
is defined as 

octahedral shear  s t r e s s  
octahedral shear s t r a i n  

, 3 .  Henchy-Nadai's s t r e s s - s t r a i n  law used. Moreover, 
it is assumed t h a t - t h e  Poisson's r a t i o  (v )  = 1/2. 

' 4 .  I t  is cssumed tha t  the  t o t a l  cross-section i s  i n  
the p l a s t i c  region duriqg inf in i tes imal  buckling. 

Kp- axia l  s t r e s s  coeff ic ient  d E a  P 

dEae circumferential  s t r e s s  coeff i -  
c ien t  

7 39 



No. Graph & Boundary Cond. Formula of t a b l e  of  Results /Notes, Ref, 

o d are the s t r e s s  i n  t h e  d i r ec t ion  of 

1 t he  axis and the  circumference during buckling. 
I x’ y 

! 

tension K Compression Kx ! 
X 

j This graph ind ica tes  t h e  values of  Kx, K . . . . 
Y 1 during buckling for t h e  three values of 

-EL10.2 when Z = 9,000. 
E. 

I 
i 

i 
I 
I 
! 
1 
I 
1 
i 

i 
i 

! 

i 

I 

! 
i 
i 

I 

i 
I 
I 
I 

I 
I 
I 
I 

I 
! 
1 
I 
I 

i This graph ind ica tes  t he  Kx, K during buckling 

i with respec t  t o  the  th ree  values of  2 when Et/ES = 
Y 

= 0.2, moreover, t h e  v e r t i c a l  displacement 
of t h e  s h e l l  i s  

W =  W, sin(?:?) sin (-?-) 

I (Notation) 

i 

/648 
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No. Graph & Boundary C o d .  Formula o r  Table of Results 
I 

Es = Secant modulus 

E = Tangent modulus 
t 

Notes, Ref, 

m = ha l f  wave number i n  d i r ec t ion  of axis 
X = ha l f  wave number i n  d i r ec t ion  of 

circumference 

No. Graph & Boundary Cond. Formula o r  Table of Results 

124 1 Experiment equation Cy 1 i nder 1 

/649 Notes, Ref. 

186 

. In te rna l  pressure 
and tors ion  

No. Graph & Boundary Coild. 

+hen the re  is i n t e r n a l  pressure,  T~ becomes higher.  

Formula o r  t a b l e  o f  Results 

~ ~~ 

t 

R Z + R  = 1  219 
P 

- Acting to r s ion  moment 
t -- Buckling moment when only to r s ion  is act ing 

i 

kp = Stress a t  time of bickl ing when only external  
pressure is act ing 

Acting i n t e r n a l  pressure 

125 Cylinder 
Torsion md 
in t e rna l  pressure 

i 
I 

1 BENDING AND TORSION 

126 
Cylinder = 1  R,,lS5 + Rt 2 

Bending and Torsion [Range of Use) 

i 
I A l l  z‘(=+=) 

1 A l l  ends constrained 

Notes, Ref. 

74 1 



! > 
No. I Graph & Boundary Cond. Formula o r  Table of Results Notes,Ref. 

TENSION AND TORSION 
~ 

I No. !Graph & Boundary Cond. Formula o r  Table of Results Notes,Ref. 
I 

lZ7 ;Cylinder 0.4 Re + Rt = 1 
I Tens ion and t o r s  ion 
1 (.:age of use) 

k Using the  theo re t i ca l  value T 

219 

end conditions : 
simple supporf 
and f ixed  

~ 

COMPRESSION AND BENDING 

No. !Graph & Boundary Cond. Formula o r  Table of Results N?)tes, Ref. 

12' :Cylinder Rc + Rb =1 219 /650 

- compressive s t r e s s  ' h i  31 compression 

Buckling stress i n  t h e  case only of compression and bending Rc - 

bending s t r e s s  
,Rb 
(Range of appl icat ion)  12 

Buckling stress i n  case of only bending 

Used f o r  a l l  ZL (= - 41-7) a l l  ends can- 
s t ra in9d  rt e 

- 

74 2 



'SHEAR AND BENDING i 
No. /Graph E Boundary Cond. FomiuI8 o r  Table of Results 

I 

I 
2 

,Cylinder I % + R s = l  

Notes,Ref. 

219 
1 I 

h e r e  R uses the  values 1.25 times g rea t e r  than the  
I S 
i theoret ical  buckling stress T~ i n  the  case of t o r s ion  
lalone. This i s  because the  e f f e c t s  of t h e  shear  
/deformation of 
jaccount. 
jstress due t o  shearing load and 1.2STk. ' The 
/mult iple  1.25 appears on the  safe s i d e  
compared with the  experiment r e s u l t s .  

.e cross-sect ion are taken i n t o  
Rs i: the  r a t i o  between t h e  maximun. shear  

when 

~ I 

(INTERNAL PRESSURE, BENDING AND TORSION) 

130 /Cylinder 
j In te rna l  pressure,  
iBending , to rs ion  

I 

I 

I 

I 

I 
i 
I 
I 

I 
I 

I 
i 
I 

I 
I 
I 
I 

i 
I 

j 
I 

I 
~ 

~ 

~ 187 

I 
u: m a x i m u m  ex terna l  skin compressive stress 

considering bending and i n t e r n a l  pressure 
( c ~ ) ~ :  compressive buckling s t r e s s  when effects 

7: shear ing stress i n  d i r ec t ion  of circumference 
( T ~ ) ~ :  shear  buckling stress when only the  t o r -  

p: i n t e rna l  pressure 
pk: Buckling pressure 

of bending and i n t e rna l  are considered 

s ion  moment i s  act ing 
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COMPRESSION, BENDING AND TORSION 

2 J$.+ Rb . + R  . t = 1  I 
Cy 1 j. nder 

No. 

131 219 /651 

_c_ 

No. 

132 

Compress ion, bending 
and to r s  ion 

Graph G Boundary Cond. HFntula Qr Table of Results 

- compres s i v e  s t r e s  s - 
Rc buckling stress when only compression is 

-- 
Ngtes,Ref. 

act ing 

bending stress 
% = buckIing stress when only bending i s  ac t ing  

stress due t o  tors ion  - 
buckling stress when only tors ion  i s  ac t ing  

I R t  - 
i 

COMPARISON OF THEORY AND EXPERIMENT 

;raFh & Boundary Conc 

:y 1 inder 
:omparison of 
i nea r  buckling 
heory and 
lxperiment values 

Formula o r  Table of  Results 

KC 
a) a x i a l  c o v r e s s i o n :  

b) to rs ion  : 

c) external  r a d i a l  pressure:  K 
Kt 

Y 

K,+ u,.l2(1--v,')P Notation) 
X ' E P  

Jotes ,Ref. 

219 

744 



No. 

Graph 6 B O L I  :ry Cond 

1 l i p t i C a l  Cylinders 

- 

1 I 

1 
Graph Boundary Cond. Formula o r  Table of Results IRef,Notes 

I 1 
I *  I 

. Formula o r  Table of Results jNotes,Ref. 

Method of ca lcu la t ing  f l exura l  I 219 /652 
buckling stress i 

r -  Zt=- ,l b’1-V: I 
i 

v 

ELL I PTI CAL CYLINDERS (supplement) 

= Poisson’s r a t i o  ( e l a s t i c  degion)=0.3 e 
l 

Bending 

I 

1 
on 

! 
I 

I I 
yk = distance from 

NA (y coordinate) 
of point where 
buckling occurs 

- on cross-sect ion 
r = yk radius of curva- 

t u r e  of  point  

-may a l s o  be writ ten Yk 

i 
a 

k * 

(1) Sa = na2t  i s  found. 

of t h e  c i r c u l a r  cross-sect ion covered 
by t h e  e l l i p s e  

(2) Se = (Se/Sa)Sa found from the  graph below. 

The cross-sect ion 

T (3) (z), and -;- found from the  glaph below. 

I 

1 
745 



WHERE 

I 

1 $, found from t h e  graph below. 
I 

i 

(fj- OM0 IS) I 

gygg nEcK 

8%; 
"/lL--' - 

i c*a,l 
b4 

a 067 
050 

bending around 1 sho& axis 
I I - .  bending around long ax i s  

'/c 

:range of s c a t t e r -  
ing of experiment 
values f o r  bending 
of cyl inder  
according t o  
Lundquis t I 

I 
IO 

' T h i s  ind ica tes  the r e s u l t s  of experiments on alumimm 
al loy  e l l i p t i c a l  cyl inders  by Lundquist-Burke and 
Heck. The experiment values cDllect  i n  the  v i c i n i t y  
/of  t he  expcriment values for a cy l inder .  

j Comparis on of experiment values (25o<+<;so> and 
- 

I L = 5 3 0  experiment equation t 



No. -- 

I 

iraph Boundary Cc:d Fornula o r  Table of Resblts -. - 

Compared with the  theory,  h i s  approach ' 

I is b e t t e r  than t h a t  i n  t h a t  he takes 
jump-wer i n t o  consideration. 

I 

4 

(Notation) i 

- Nr'os ,Ref, 

v = Poisson's r a t i o  ( e l a s t i c i t y  region) = 0.3 e 
Method of  dete- l ining the p l r e  an; nagnitude of the/654 
buckling curvature radius  

SPHERICAL SHELLS (supp lement ) 

External Pressure 

747 



No. !Graph 6 Bcundary Con{. Formula o r  '.'able of Results potes ,Ref. 

External presswe 

I 
I 

I 

-over, the external pres;ure is constark before 

Expressing 

and afrer buckling. 
i t  is f i r s t  necessary fo r  the  poten t ia l  energies 
before and a f t e r  buckling t o  be equal. 
the  t o t a l  ?o ten t ia l  energy k; as dimensionless 

In older  f o r  buckling t o  occur, 

I 

I :where 

I 

f =p"' 
2Ep 

t 
# x i  

p ,e 
t 

I 

t 

ThereLore, assuming t h a t  W' are  equal where y = 0 
I"d Y = Y, 
I I 23-9 Y 3--r '-22 

4(1--r)ar' 3(1-u) +{T5=)-2' 

I 

poreover, denoting the  state of e q u i l i b r i u  after 
buckling by ye, t h i s  is expressed as follows. 

, ] (2) I 
I I + u  

I 

,From ( l ) ,  (Z), t he  r e l a t ion  between a and x becomes 
ias follo:.s. 
! 1 

3 

! 

! assuming (v = -). 

t h i s  i s ,  fo r  m i n i m u m  value of the  curve on t h i s  
'graph i n d i c a t s  the ouckling load. 

I 
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KO. - 

~.~21(3-~){80(23-9 I)+ (f--v)( I--~)u'}u - 

k a k h  & Boundary Con Formula or Table of Results 1Notes.Ref. 
I 

low w e  give a canparison of the  r e su l t s  of 

previously], t he  theore t ica l  values and Tsien's 
kheory . 

hese two people [Tr.  note: not mentioned 

i 

I 
No. *Graph & Boundary Cod.  Formula or Table of Results /Notes,Ref. 

349 



No. Graph & Boundary Con Formula o r  Table of Results 

ere 

given by t h e  following equation. I 

J(301--19.4 U+33 u')q ' -  160(23-9u) i 
l + u  I 

Notes,Ref. 

I 3 ~ ~ ( 3 - ~ ) ~ , { 8 0 ( 2 3 - 9 ~ ) - ( 7 - v ) (  1 -u')a,'j = (1+*)(301-194v+33u')a'+320(23-9u) , 

1 
I Moreove;, c i l c m n i n g  occurs i n  the  following case 
I 

160(23-9 U) 
d>4.*=(1+u)(301-194 v + 3 3 3 )  

2) Lower buckling pressure xc 

I 
7 (3--v){80(23-9 ~ ) + i 7 - u ) ( l - v ' ) a ~ } a  

a( 1 -I#)'( 23-9 u ) h  

I 
Next, considering t h e  buckling under ex terna l  

pressure under a spher ica l  s h e l l  having i n i t i a l  
def lec t ion ,  t he  buckling load is  given DY the  
'fell owing equation. I 

where I 

subscr ip t  t fOt t  expresses the  i n i t i a l  s ta te  

75 0 



Graph & Boundary Cond. Formula o r  Table o f  Results 

Graph & Boundary Cond'. Formula or l a b l e  o f  Results 

Thin-walled 
sphe:ical cyl inder  s h e l l  ( r = 2 C B ' 1  

I 
External pressure 

,Solut ion by Beiss 
1 

here 

p = geometric p a r m e t e r  
Qk = loading parameter 
c = J 3 y  

E = Young's modulus 
qk = buckling ex terna l  pressure 

v = Poisson's r a t i o  

Iotes ,Ref. - 

( i n a t i a l  load) 

iotes ,Ref. 

217 
/ 657  

.e 
+ due t o  a i r  pressure 1 f: th;or!ti;alivaf:. w = 0.32 

P 

I [ - -Chain's t h i o r e t i c a l  
0 I O  m 3@ .oo 

P 

( i n i t i a l  load) 
i 

ralues 

75 1 



No. 

137 

- 
138 

i 

1 
I 

~ 

I 

i 
i 
! 
I 
I 
~ 

1 
I 
! 

I 

I 
i 

I 

I 
I 

;raph & Boundary Cond. Formula or Table o f  Results 

External pressure 
Plastic buck l ing  

I 
I 

Spherical s h e l l  ! r E  _f_ 
0, = 

b ' 3  (1-Be') * 

Spherical s h e l l  
external  pressure 

(Not at i on) 

rl = p l a s t i c i t y  reduction f a c t o r  
Et = tangent modulus 

E = secant modulus 
S 

Notes, Ref. : 

210 

Geraxd 

v = Poisson's r a t i o  (value i n  elastic region) e = 0.3 

I v = Poisson's r a t i o  ( p l a s t i c  region) 

[n the  elastic region, for a l l  t h e  

there K found from the  graph below. 
P 

I 219 
I 

f o l  lowing equation 

/658 

75 2 



No. 

I 

Graph & Boundary Con( I i 
Formula 01 Table of Results INotes,Ref. 

h e r e  C -dete&i;d& from the  following graph, 

+ere Uo = uneveness f a c t o r  

C 

r/t 

13’ 
! 

o r  long c i r c u l a r  arc sec t ion  cyl inders  219 

c,=O.285 E+ 

ere r = radius  of curvature of each arc 
i t h i n  doublet 1 I 

Circular  a r c  sec t ion  
cyl inder  
Bending + 

I 

No. /Graph & Boundary Cond. Formula o r  Table of  Results potes,Ref. 

-- 
No. 
140 

~~ ~~ 

Graph & Boundary Conl. Formula o r  Table of Results Notes,Ref. 

Shel l  with hyperbolic 197 
IES’P C 



Graph & uoundary Ccnc t Fwmula o r  Table of 

h : s h e l l  ' thibkness (uniform) 
P:  buckling load coe f f i c i en t  

i s  given b9 t2e ' func t ion  of 8 .  

REINFORCED C U R E D  PLATES (supplement) 
Compress ion 

No. 'Graph & Boundaq- Cond. Formula o r  Table of Results 
I 
I 

-- - 
141 1 

IReinforced curved p l a t e s  
Q=-- *?E,:) (3 $ompress ion i 

/End revolving around I 
/ s t r a igh t  edge 
I 

reinforcement 

yso 
when (a) a/b = 4/3 

/Notes ,Ref. 
/660 21 8 
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No Graph & Boundary Con . Formula o r  Table of Results -*- 
K 

K 

a when 6 = 2 

4 8 a n 3 2  

Notes,Ref. ' 
---, 

/661 

56 

(c) whe$ = 3 
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;raph & Boundary Conc Formula o r  Table of Results 

/ .  

K 

K 

a 
b (d) when - = 4 

:nc<tation) 

K = coe f f i c i en t  

\Iotes,Ref.' 

A = cross-sect ion area Oi reinforcemen 
t = thickness 
zb = p l a t e  curvature parameter =-$- 
D = bending s t i f f n e s s  of p l a t e  per  u n i t  width 

/ 6 6 2  

I 

r = radius  of curvature of curved p l a t e  
E = Youns's modulus 
I = moment: of  i n e r t i a  of reinforcement 

w = Poisson's r ac io  ( e l a s t i c  region) 
cross -sect  ion 

e 

SHEAR 



No. /Graph & 3oundary Cond. Formula ar Table o f  Results 

143 :Curved p l a t e  e s u l t s  of ,Chid t i to ' s  experiment (24s-T) 1 Shear. 

- 
5.22 
3.45 
3.75 
2.32 

14.20 
2.14 

1 t 

1.63 
2.00 
2.50 
2.09 
7.10 
2.02 

-- 

18.93 
20.45 
25.00 
22.75 
24.90 
22.20 

hoop 
s t r i n g e r  re inforcing re inforc ing  r e  

web 

1 
2 
3 
6 
7 
8 
10 

Notes, Ref. 

205 

nf orcing 
web 

1.40 
1.82 
1.50 
0.93 
7.10 
1.43 
1.76 

I R e i n f o r c i n r  

sei .  D i m .  ( in . )  & D i m .  ( i n . )  
I I S t r i nge r  hoop - Specimen t i n .  d incrL 

I 1  

0.0154 ' 15.0 2 - x ~ X 0 . 0 4 0  I L 1 2 . - x -  3 3  1 -1 1 1'6 16 I ,  4 4 32 

I/ 

3 2 ' Experiment values (KSI = 10 lb / in  ) 

2.29 2 23 17.65 I B - Id- 

208 / 6 6 3  
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No. I Graph & Boundary Condl. Formula o r  Table of Results , Notes ,Ref. 

(a )  when buckling occurs f i r s t  i n  sane panel 
(b) when a l l  panels of the  center  s t r inge r s  

(c) when tiuckling first occurs i n  the  center  

A with web cracks, buckling of reinforcing hoop 

B no web cracks, buckling of both reinforcing 

buckle 

s t r inge r s  

and s t r inge r s  

hoops and s t r inge r s  i 
I I - -  

14' IReinforce, curved p l a t e  
~Shear  i 
iSimple support 
i 

reinforcement 
I 

i 
I 
i 

1 

i 

I 

I 
1 
j 

I 
i 

I 
I 

i 

I 

i 1 
! 

i 
I 
I I 
i 
I 

-% I 
I (a) reinforcement i n  d i rec t ion  

of center  axis 
Case i n  which the length i n  the di rec t ion  
of the  axis  is  g rea t e r  than the  width i n  
the d i rec t ion  of the  c i r m f e r e n c e  

I 
i 
! 



No. Graph & Boundary Con 

36 
IC) Reinforcement i n  d i r ec t ion  of  center  of 

Formula o r  Table of Results Notes ,Ref. 1 

/ 6 6 3  

b) reinforcement i n  d i rec t ion  of center  ax is  
ase i n  which the  width i n  the  d i r ec t ion  of t he  
ircumference is g rea t e r  than length i n  d i r ec t ion  
f axis 

759 



No. Graph & Boundary Con1 Formula o r  Table of  Results Notes,Ref. 

i 

1 '0 

-# I 

d) Reinforcement i n  d i r ec t ion  of cen t r a l  circumfer- 
nce. Case i n  which t h e  width i n  the  d i r ec t ion  of  
he circumference is  g r e a t e r  than t h e  length i n  the  
i r e c t i o n  of  t h e  ax is .  

Notation) I 
K = coe f f i c i en t  
t = thickness 
% = p l a t e  curvature parameter 

D = bending s t i f f n e s s  of p l a t e  pe r  u n i t  width 

=- ; J1cT 

ET 
12(1-v,t) 

9 

r = radius  of curvature of curved p l a t e  
E = Young's modulus 
v = Poisson's r a t i o  ( e l a s t i c  region) 1 
I = moment o f  i n e r t i a  of reinforcement 
e 

cross -sect ion 

/665 
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PZ IN FORCE D CY L INbERS (supplement ) 

Tors ion i 

14' /Reinforced cylinders 
Torsion 
Simple support 

~~ ~- ~ r 
No. \Graph C Boundary Cant. Foxmula or Table of Results /Notes,Ref. 

.L 

Theoretical equation 

T 30 
2 d t  I't 

r,=-=K- 

/666 I 188 

I 
I>'> .3 ) ))? 1. I Reinforced by r ings placed a t  same equal i n t e rva l s  

I t b  ,,lid 

las when the  tors ion  s t i f f n e s s  is  zero. 
1 Solution f o r  K by Galerkin's method, adding the  
(tern expressing the  bending s t i f f n e s s  of the  r ing  
bo the  equilibrium equation f o r  a c i r cu la r  columnar 
kurved p l a t e .  
I 1 Tk: shear  buckling stress I 

K : coeff ic ient  
I T : to rs ion  monent 1 

: bending s t i f f n e s s  of outer wall I EP ' = 12(1--3) 
of cylinder i 

7 -AM 

= number of  l i ngs  n 
I = e f fec t ive  gcoiwtric moment of i n e r t i a  of r ings 1 

i 

~ v = Poisscn's r a t i o  
I 

76 1 



No. - iraph & Boundary Con( 

No. 
146 

EXTERNAL PRESSURE 

;raph & Boundary Con( 

Leinforced cyl inder  
ixternal pressure 
:simultaneously i n  
l i rec t ion  of circum- 
rerence and i n  
l i rec t ion  of axis)  

:ound from the 
iinimum conditions 
)f total  po ten t i a l  

Formula o r  Table of Results lNotes,Ref. 

:ompared with % experiment values ,  the I 
of the  experiment values i s  about 15% lower. k 

:omparison w i t h  esperinent  . 

k 

s -s ect i  on 
Y 
-sect ion 
Y 

7-IL 
M 

Formula o r  Table of Results INates ,Ref. 

/667 I 189 
) When the  s t i f f n e s s  of t h e  re inforc ing  
bings i s  i n f i n i t e l y  l a rge  

When the  displacement can be expressed as follows 

h e r e  A,B .C .  : a r b r i t r a r y  constariiz 
m: number of waves i n  d i r ec t ion  

of circumference 

For s impl i f ica t ion ,  t he  following notat ion 
.s introduced 

762 



No. Graph 6 Boundary Con Formula o r  Table of Results lNotes,Ref. 

!orecver 

The buckling condition in the  equation becomes 
.s follows 

i'n t h i s  matrix,  assuming n = 1, the buckling 189 / 6 6 8  
lressure can be determined i f  one f inds  the  
iinimm valve of p f o r  t he  va r i ab le  end. 

i n g s  is f i n i t e  
2) Case i n  which t h e  st iffness of the  reinforcing 

The displacement i s  

763 



i 
i 

i 
I 
i 

i 
i 

! 
i 
I 
I 
I 
I 
I 
1 
i 
I 

i 

i 

I 
I I 
i 

I 

I 
i 
i 
I 

I 
i 

! 
i 

I 
! 

I 1 

I =Asin= sin2dx+Bsin =cos& 
r 

+CCOS= sin 2 dr+D cos E cos UX+- FS 
r 0 

e = sin T G + H s i n  2 dx+ Jcos2  6) 

r=(Ksin=+bfcos (I-cos2dx)+N 
-7) 

Now, for simplification 
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No. Graph & Boundary Cond. Formula o r  Tabae of Results 

Where 

Notes, Ref. 

189 

/669 

r - radius  as f a r  ,as t he  center  of  t he  mass o f  '' the  cross-sect ion of the  s h e l l  with reinforce-  
ing r ings  

. Izo: geometric moment of  i n e r t i a  of s h e l l  with 
re inforc ing  r ings  passing through the  

cross-sect ion center  of mass, around the  
axis corresponding t o  t h e  diameter of t h e  
she1 1 

The buckling matrix is  
A B C  D F C  €I J K M N  

1 ha hu hl =O 

2 h" h,, h8 =O 

3 h,. ha h. h, s o .  
4 hi h,, Si hw 4, =O 

5 4 8  41=0 

6 41 &I L, I =o 
7 4. =O 

8 4, 41 S+ 4 8  4, 1 0  
9 h a  has 41 =O 

10 hu c 4, 41 s, =o 
11 hn 4 4  
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No. - 

3ENDING 

Graph & Boundary Con Formula o r  Table of Results botes ,Ref .  

AS above, 6hS buckling load i s  obtaii.zd i f  
ne f inds  thb minimum value of p f o r  t he  number 
f waves m. 

No. 

147 

766 

;rap11 G Boundary Con( 

teinforced s h e l l  
'ure bending 
:Spring subs t i t u t e s  
'or frame; 

ixperiment r e s u l t s  

I 

Formula o r  Table of  Results jNotes,Ref. 

M : bending mcment 
D: s h e l l  diameter 
L:  d is tance between frames 

Cf : coef f ic ien t  

If :  moment of i n e r r i a  of  frame 

f :  frame 

Alumincm a l loy  
7 E = 10 PSI 

P = expresses panel f a i l u r e  
G = expresses buckling ove ra l l  
P - = expresses combination of both G 

TABLE 1 

31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 

;(In: 

8 
4 
2 

16 
16 
8 
4 
2 

16 
8 
4 
2 
I 
1 

16 

4 
2 

- 

a 

x 10' 

1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
1.537 
I. 537 
I. 537 
I, 537 
1.537 
1.537 

hlult 
(In-Lb) 
219,000 
27,000 

168,500 
123,000 
107,500 
137,500 

340,000 

185,000 
45,000 

75,000 
100,000 
209,000 
397.000 
222,300 
283,600 
336,500 
380,000 

58,500 

- 
x 10' 

0.554 
0.225 
0.809 
1.438 
1.972 
1.128 
0.441 
0.164 
5.376 
2.074 
0.808 
0.303 
0.072 
0.038 
1.091 
0.428 
0.180 
0.080 

om of 
'ai lu 
C 
C 
C 

PIC 
P 
C 
C 
C 

c 
C 
C 
C 
C 
P 
c 
C 
C 

PIC * 

? 
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No. Graph & Boundary Con' 

31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
31.84 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32.00 
32-00 

Farmula o r  Table of Results Notes,Ref. 

16 
8 
4 
2 

l.S 
8 

4 
2 

16 
8 
4 
2 

16 
8 
4 
2 
8 
4 
4 
2 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

1.537 
1.537 
1.537 
1.537 
1.53i 
1.537 
1.537 
1.537 

31.194 
31.194 
31.194 
31.194 
51.194 
31.194 
31.194 
31.194 
27.400 
27.400 
27.400 
27.400 

1.537 
1.537 
1.537 
1.537 
1.537 
1.537 

(In-id) 

108,000 
163,000 
186,000 
263,000 
59,000 
82,000 
97,500 

153,000 

J6c. 000 
i . I ,  000 
434,000 
460,000 
75,000 

134,000 
220,000 
2s4.000 
169,000 
256,000 
436,000 
500,000 
110,000 
140,000 
66,500 

117,000 
79,000 

150,000 

2.247 
0.744 
0.326 
0.115 
4.115 
1.479 
0.622 

29.411 
8.403 
2. ,3008 
1.324 

66.667 
18.131 
5.524 
2.145 

12.658 
4.184 
2.457 
1.070 
1.396 
0.549 
2.309 
0.973 
1.314 
0.512 

0.198 

- 

P 
c 
c 
G 
P 
c 
C 
c; 

P 
P 
G 
c 
P 
P 
c 
G 
P 
c 
c 
c 
c 
c 
c 
c 
G 
c 

The above from E.  E .  Sechler .  
Aluminum a l loy ,  E = 107PSI 

P = panel f a i l u r e ,  G = overa l l  buckling 

P - = combination of both G 
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No. - 

No. 
148 

3.96 
5.15 

19.22 
8.55 

28.60 
4.70 
5.32 
2.43 
2.70 
1.77 
2.14 
5.95 
4.07 

13.70 
3.40 

;raph Boundary ConC 

C 
G 

PIC 
G 
P 
C 
c 
c 
C 
c 
C 

PIG 
PIG 
P 
G 

7.07 
7.07 
5.79 
6.43 
5.79 
9.00 
6.43 
5.79 
9.00 
9.00 
9.00 
9.00 

TABLE 2 

16.30 
65.00 
8.15 
8.15 
5.15 
6.10 
6.10 
8.15 

12.20 
8.15 

27.50 
6.10 

- 
D(1n: 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 
20 

- 

- 

kaph & Boundary Cond. 

I 
I 

Formula or  Table of. Results Notes,Ref. 

h.llilt 
(In-Lb) 
273, OOU 

280,000 
280,500 

403,500 
251,500 
246,500 
486,500 
508,500 

553,300 
460,600 
451,000 
451,000 
403,000 

337,500 

553,500 

e 

l 
i 
I 

I 

I 
I 
I 
I 

3ending and r i b s  i s  , 
! 

If = moment of i n e r t i a  o f  r i b s  around axis 

E = Young's modulus o f  r i b s  

L = dis tance  between r i b  centers  
M = bending moment 
D = s h e l l  diameter 
Cf = experimentally determined coef f ic ien t  

Values of Cf 

) From the r e s u l t s  of Shanley's experiments, 
;enera1 l y  

p a r a l l e l  t o  p l a t e  with s t r i n g e r s  attached 

f 

Ct>6.25~10- '  buckling a t  panel 
Ct<6.2Sx.10-' inward bulge type buckling 
C / = 6 . 2 5 ~ 1 0 - ~  it was found t h a t  both occur 

simultaneously . 
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No. 

- 

r. = number of buckling waves i n  d i r e  
circumference 

I f  n > 5.5,  only buckling as a panel 

n < - 5.5, I ward bulge type buckling 1 
I 
1 -5 When n = 5.5, Cf = 6.84 x 10 
i ,.loreover, i n  . the  case of inward bulge typq buckling, 

Graph E Boundary Con; 

2 

~~ 

Inward bulge type 
buckling 

0.0157 7.5 t n It; e 

-@- .) 

Formula or  Table of Results botes,Ref.  

2 4 1  c,=(=) '7 

w 1  
xD 3 n  
-=- 

SHEAR 

Graph E Boundary Conc &- /Reinforced cyl inder  

!Shear 
j 
I 

Formula o r  Table of Results 

Chiar i to ' s  experiment r e s u l t s  (24s-T) 

re inforcing r ing 

s t r i n g e r  
web reinforcement web reinforcement 

Jotes ,Ref. 
209 

Specimen 
in )  I 
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I 

I 
! 

I 
I 

i 
I 

i 
I 
i I 

/673 

1 I 1 Experiment Values 1 
rb jKSI) 

I I 
I 

I 
I 

, 
/(a) case i n  whic?? buckling first occurs i n  some panel 
I(b) case i n  which buckling occurs i n  a l l  panels 
;A with web cracks both reinforcing r ings  and 
/ s t r ingers  buckle. 
1 1 

lSo 

SANDWICH COLUMNS (supplement) 

'Sandwich colcsms 11) when 
Axial compression 

buckling) 
(axial ly  symetrical I ++- 

Compre. ion 

NG. /Graph & Boundary Cond. Foxmula o r  Table of Results 

I 
i 
i 

f = facing index 
c = core index 

' 2 )  otherwise 

b 

1 
i 
! 
i 

Notes,Ref. 

195 

I 

(m: hal f  wave length number around 
generatr ix  of  she1 1) 

I 

,with res; . c t  to shear.  
Assuring tha t  the core i s  especial ly  weak 

N ~ ~ ( ~ + ~ ) G ,  ___ .- -__ - 
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No. - 
I 

haph E Boundary Cond. Farmula o r  Table of Results botes,Ref.  

I I 
!weak with reqwct shear .  
I 
~ 

~ 

Assuming t h a t  the core i s  appropriate1 

Assuming t h a t  t he  core i s  r e l a t i v e l y  1 
st rong with respect  t o  shear .  In t h i s  case,  
t h e  cyl inder  may be considered a homogeneous 
,cyl inder .  

1 E(h+t)  a,=-.- 
. /1--v*- 0 

i k i n  t h e  case of ( i i )  i s  
C 

Applying t h i n  membrane theory t o  the  
'compress ion  
ICase where core i s  
Iweak, facing is  t h i n  

facing,  i t  is  assumed t h a t  t he  core only 
undergoes shear  buckling. 

1 If h E/ i )  vhen ----- 
J I - ~ / *  t. a C, - 

tf = thick..ess of facing 

2tc  = thickness of core 

/674 
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No. I Graph E Boundary Cond. Formula or Tabie of Results Notes,Ref. 

TORSION 

No. 
152 
- 

2h = distance between neut ra l  planes of 

a = radius of neutral  plane of cylinder 
Ef = face .plate  Young's modulus 

Gc = shear e l a s t i c i t y  modulus of core 

uf = face p l a t e  Poisson's r a t i o  

two face plates 

. .  

lraph E !Boundary Cond. Formula or Table of  Results 

anwich cylinder 
'ors i on 
:ase ia which core 
s weak, face 
d a t e  th in  

Thin membrame theory applied f o r  
'acing, only shear deformation considered 
or core. 

Notes , Ref. 

206 

tf = thickness of facing 

2 t  = thickness of  core 

2h = distance between n e u r a l  planes of 

a = radius of neutral  plane of cylinder 
Ef = face p l a t e ,  Young's modulus 

G = shear  e l a s t i c i t y  modulus of core 

uf = face p l a t e ,  Poisson's ra t io  

C 

two face p la tes  

C 
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COMPRESSION, TORSION E@ BENDINS 
- ~~ 

440. I Graph E Boundary Cod.  h d l a  or Table of  Results /Notes,Kef. 
I 1 196 /675 

N1 ~ lhapt3ssive buckling stress 
C 

= - -  
Bwkling stress i n  rhe case of c o w .  only Comb ina t  ion of 

compression, torcion 
and- bending 

I 1 
('B IC Buckling moment i n  case of bending only 

2Mrt = Buckling bending moment =- 

T Buck1 ing t o r s  ion moment 
Rt = = Buckling amen t  i n  case of  tors ion only 

I 
INotation 

C = G t ,  
G = shear e l a s t i c i t y  

; = distance between 
modulus of core 

centerpk-mes of 
face p la t e  

r = radius from center  
t o  neutral  plane 
(of outs ide p la te )  

[ = moment of i n e r t i a  
of cross-section 
of sandwich cylinder 
taken with respect 
t o  the  diameter 

= ver t i ca l  forces 
(compressive force) 
acting per  un i t  width 
i n  d i rec t ion  of axis 

I 

= bending moment 
' = tors ion moment 

N1, M, T a re  t l e  
values during buckling 
when they a c t  i n  
combination i 
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